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Synopsis

Relevance. The topic discussed in this thesis is of relevance for the
modern and rapidly developing field of quantum nanophotonics. This field
of research merges the areas of quantum optics [1] and nanophotonics [2]
in the context of light-matter interaction. The former one historically was
mainly covering the statistical properties of light [3], and its interaction with
matter at the level of individual particles - photons and atoms [4]. However,
for quite a while it was mostly about the light propagating in free-space and
its interaction with atomic matter either in the vacuum or in high-quality
cavities [5]. In turn nanophotonics, as a field of research, studies in details how
one can control different properties of light at the nanoscale with the use of
nanostructures, the creation of which became possible with the outstanding
progress in fabrication technology methods.

Clearly, on the intersection of these two fields there are a lot of novel
and exotic phenomena: both already discovered, and yet unknown ones. In
this regard the collective effects in light-matter interactions are of relevance
as the strength of atom-field coupling can be significantly increased due
to the lightfield localization at the interfaces of nanophotonic structures.
Within this perspective, the appearance of sub-, and superradiance [6; 7]
are the appealing phenomena to consider with potential applications in
quantum technologies. Being well-studied for atomic ensembles in free-space
[8; 9], their features in the presence of nanophotonic structures are still
not fully explained and understood. The atom-field coupling, besides the
aforementioned enhancement, can be drastically modified with the use of
photonic structures, for instance, by taking control over the polarization
degree of freedom. This can lead to the appearance of chiral coupling [10]
between the quantum emitters and propagating electromagnetic fields: the
strength of coupling in this case strongly depends on whether the light
wave propagates in forward or backward direction. In the extreme limit it
leads to a one-way emitter-mode coupling with absent back reflection, and,
therefore, with a unidirectional emitter-emitter interaction mediated by this
mode. Such a propagation direction-dependent atom-field coupling strongly
modifies optical properties of light-matter interfaces [11–14], and allows to
observe novel quantum mechanical phenomena.

The goal. The main goal of this thesis is to discover the manifestation
of the interference phenomenon in the radiative properties of individual
quantum emitters and their ensembles, which interact with electromagnetic
modes of different nanophotonic structures, with account for chiral
interactions.
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Scientific tasks. With regard to the goal above, we can formulate the
following scientific tasks (problems to consider):

– Analyzing collective states with low radiation losses in a periodic
subdiffractional chain of two-level atoms in free-space, and in proximity
of dielectric nanofiber.

– Quantifying, and explaining chiral sub- and superradiance in a system
that is a chain of two-level atoms unidirectionally coupled to a guided
mode.

– Studying the temporal dynamics and spectral properties of a quantum
emitter with multiple excited states in the vicinity of an anisotropic
metasurface.

– Explore the possibility to asymmetrically couple circular dipole
transitions of a V-type atom put in the vicinity of a plasmonic dimer
formed by two asymmetric scatterers - prolate ellipsoids.

Scientific statements:

– In periodic subdiffractional chains consisting of 𝑁 dipoles there exist
modes with low radiation losses at a particular separation distance
much smaller than the resonant wavelength of an individual dipole. This
optimal period for large 𝑁 can be found from the flat-band condition
right at the band-edge. The radiation losses of such modes decrease as
𝑁α with α < −6, contrary to a well known 𝑁−3 behavior observed for
non-optimal period. These extremely low radiation losses are a result of
simultaneous minimization of multipolar contributions to the radiated
field up to high multipolar order.

– For a perfectly asymmetric interaction of 𝑁 two-level quantum emitters
through a single guided mode, the collective spontaneous emission rate
in case of superradiance is 𝑁Γ𝑔, while for subradiance it becomes 0
for even 𝑁 , and Γ𝑔/𝑁 for odd 𝑁 . The latter happens as a result of
imperfect destructive interference between the decay channels.

– When coupling the transitions in a multilevel quantum emitter through
the modes of an anisotropic metasurface, it is possible to achieve
asymmetry in the excitation transfer dynamics. This asymmetry
appears only if the quantization axis is tilted with respect to high
symmetry planes, and if the dressed states of the emitter are not
degenerate. The effect arises from the phaseshift in the interference
part of the temporal dynamics, and it is prominent in both detected
temporal intensity or the total emitted light spectrum, making them
dependent on the spin orientation of the initially excited state.

– By using a plasmonic dimer structure consisting of two anisotropic
dipole scatterers (prolate ellipsoidal particles), one can achieve an
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asymmetric coupling of circularly polarized transitions in a single
V-type quantum emitter. This coupling asymmetry results in an uneven
steady-state populations of the excited states even when pumping
strengths for both transitions are equal, and it also makes the optical
response of the system being strongly dependent on the local helicity
of the total field at the atomic position.

Scientific novelty. The novelty and practical importance of the research
results can be formulated as follows:

– The emergence of long-lived states in a system consisting of a periodic
chain of atoms polarized perpendicular to the chain axis has been
studied theoretically. It is shown that with the right choice of the
system period, it is possible to achieve a significant increase in the
lifetime of such states, as well as the fact that their lifetimes can grow
much faster with the increasing system size than was shown previously.
The mechanism of the appearance of such states is revealed, which
is associated with the interaction of the eigenmodes of the system
and destructive interference of their constituents. The mode interaction
becomes possible due to the flattening of the dispersion curve, and the
appearance of the inflection point. Moreover, the multipole analysis was
performed, and it showed that such states allow for the simultaneous
reduction of multipolar contributions up to a high multipolar order.

– The rates of sub- and superradiance for a system of atoms strongly
asymmetrically interacting through the guided mode have been
obtained theoretically, the mechanism of the phenomenon and the
reasons for the deviations from the symmetric interaction case are
explained.

– The effect of symmetry breaking of direct and reverse electron
transitions between the excited states of a quantum emitter interacting
with the modes of the photonic structure is theoretically predicted. In
a simple model, criteria for the observation of such an asymmetry are
derived and explicitly formulated. The effect of this phenomenon on the
physically measurable quantities was studied (intensity dynamics and
spectrum of the emitted light). A numerical calculation of the temporal
intensity dynamics, and also the detected spectra for an emitter located
near an anisotropic metasurface is carried out.

– It is also shown that for an atom with two circularly polarized transition
dipole moments (V-type level structure) one can realize a strongly
asymmetric coupling of these transitions by placing such an atom
in the vicinity of a plasmonic dimer consisting of two geometrically
asymmetric dipole scatterers, which were taken to be prolate ellipsoids
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made of silver. We demonstrated that such an asymmetric coupling
leads to a unidirectional excitation transfer between the excited states.
We have demonstrated that if one illuminates the system with a
plane wave, which induces equal pumping rates (the respective Rabi
frequencies) on both transitions, then the populations of the excited
states will be unequal due to the asymmetric coupling. Moreover, we
demonstrated that the response of the system strongly depends on the
local helicity of the total field at the atomic position.

Practical significance. The research carried out within the framework
of the dissertation are valuable from the point of view of fundamental
science, since in it we studied different physical effects and clarified the
mechanisms of their occurrence, and we also derived the conditions for their
observation. Of a special interest some of the presented results are for the
modern rapidly developing field of waveguide quantum electrodynamics in
particular, and quantum nanophotonics in general. From a practical point
of view, the phenomena studied can serve for the development of new
quantum nanophotonic devices. In particular, the dependence of the response
of the system on the orientation of the initially excited electron spin in a
quantum emitter can potentially be used as the basis for the creation of
nonreciprocal optical devices. This can be done if the spin (or polarization)
of the field incident on the system will be also coupled to the direction of
propagation - a situation which is called spin-momentum locking. In addition,
the knowledge about the occurrence mechanism of long-lived optical states
in one-dimensional chains of dipole scatterers can be extremely useful in the
development of optical resonators, hybrid waveguide structures, and in the
applications related to quantum technologies like communication, computing,
and metrology.

Reliability and the validity:
The reliability degree of the results of studies conducted by the applicant

is based on the use of generally accepted theoretical approaches, and a clear
indication of the approximations used in order to obtain analytical results.
In addition, these results are consistent with those previously obtained
by other researchers when considering the relevant limits. Some of the
observed effects were also demonstrated during the numerical simulations
for realistic structures by the author’s colleagues, however, these results are
not presented in this thesis. Moreover, the reliability of the results is due to
their approbation at international scientific conferences, scientific seminars,
publication of articles in international peer-reviewed journals.

Approbation. Approbation of the scientific research results was
confirmed by 9 public reports at Russian and international conferences
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over the past 3 years. The applicant’s research was also acknowledged
and supported from funds in the form of grants and scholarships: The
Ostrogradski Scholarship of the Embassy of France in Russia for a scientific
internship in the Kastler-Brossel Laboratory, University of the Sorbonne,
Russian Foundation for Basic Research, a grant from the Foundation for
the Advancement of Theoretical Physics and Mathematics “BASIS”, a grant
from the Committee for Science and Higher Education in St. Petersburg.

Author contribution. The author’s contribution to this work consists
in constructing theoretical models, obtaining analytical results, analyzing
the obtained results, explaining the studied physical effects, finding out
the mechanisms of their occurrence, and also in performing the numerical
calculations. The author not only contributed significantly to the solution of
the problems under consideration, but also to their formulation.

The scientific statements submitted for defense fully reflect the personal
contribution of the author to the work.

Publications. The main content of the research work (dissertation) is
published in 7 articles, of which 7 publications were published in peer
reviewed journals indexed by Web of Science or Scopus, 7 publications were
published in journals from the list of Higher Attestation Commission. Out of
these 7 publications, 4 were published in American Physical Society regular
journals, while other 3 as peer-reviewed conference proceedings.

This thesis consists of 3 chapters, and 4 appendices. The thesis is 247
pages long, has 34 figures, and 192 references.
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Main contents of the work:

Increasing interest in the subject of quantum emitters coupled with or
through the modes of different nanophotonic structures has been stimulated
by a huge success in experimental relizations of such systems. For instance,
it became possible to arrange atoms in 1D [15], 2D [16], and 3D [17] ordered
arrays in a controllable way. Simultaneously, quasi-1D systems gained a
special attention as a possible platform for quantum light-matter interfaces in
the context of waveguide-QED [18;19] - a modern and rapidly developing field
of research in which many remarkable results have been already demonstrated
experimentally such as Bragg reflection from just ∼ 1000 atoms [20],
generation of single photons [21], and observation of sub-, and superradiance
[22], to mention a few.

In this regard, a new field of research has emerged called chiral quantum
optics [10], where the asymmetric interaction of quantum emitters with the
photonic modes propagating in opposite directions arises as a result, for
example, of non-zero tranversal component of the optical spin momentum
density [23]. This area of research is especially important for the development
of nanophotonic devices operating at few-photon level: optical circulators
[12], optical diodes for a single-photon [13], a single-atom optical switches
[14], deterministic single-photon emitters based on a quantum dot coupled
to a waveguide [24], and others.

As an alternative to atoms and quantum dots, semiconducting two
dimensional materials is another promising platform for studying chiral
interactions [25], where chirality is provided by the circularly polarized optical
transitions associated with spin states of valley electrons. The important
progress has been recently demonstrated in coupling excitons in such 2D
materials with plasmonic waveguides [26], and metasurfaces [27–29], for
instance. The latter are naturally considered as photonic counterparts to
two-dimensional semiconductor materials, and have already demonstrated
the unprecedented flexibility in optical properties.

All of the mentioned above confirms that quantum emitters coupled with
the electromagnetic modes of different nanophotonic structures is a very
versatile tool not only to investigate exotic effects in light-matter interaction
from a point of view of a fundamental science, but also a quite promising
platform for future optical devices working at a few-particle level.

Now, below we provide a quick overview of the presented work,
highlighting the most important results.

In the first chapter, the author studied subradiant states (with very
large radiative lifetimes) in a system consisting of two-level atoms arranged
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Figure 1 — (a) Emission rates versus system period for a chain of 𝑁 = 10
atoms with transverse dipole moments, the color represents the average
correlation between the dipole moments of the neighboring atoms. Red
arrow specifies a state of interest. (b) Scaling of the emission rate with 𝑁
for some fixed period (blue for Δ𝑧 = 0.3λ0), and for the subradiant state
identified by the red arrow in (a) (red). (c) Dispersion of eigenwaves in an
infinite chain of atoms. For the same periods as in (b). Note how flat the
dispersion becomes for Δ𝑧opt

in a periodic subdiffractional chain. It was found that there are specific
periods of the system at which certain states close to the band-edge have a
significantly smaller emission rate (see Fig. 1 (a)), and such states were found
only for the case of dipole moments transversally oriented with respect to the
chain axis. These states were found to have an unusual scaling of the emission
rate with the number of atoms 𝑁 , namely, it falls down much faster than
it was known before for similar systems - γ ∼ 𝑁−6.88 instead of the usual
γ ∼ 𝑁−3 scaling law [30–32] (see Fig. 1 (b)). By considering an infinite chain
rather than a finite one, we managed to obtain the equation which defines
an exact limiting value for the period at which the most long-lived state
occurs. It turned out that it is related to a period at which the dispersion
becomes flat at the band-edge: instead of ∼ (β−π)2 behavior that is typical
for such systems, it starts to demonstrate ∼ (β − π)4 dependence on the
dimensionless quasi-wavenumber β = 𝑘𝑧Δ𝑧 (see Fig. 1 (c)), a situation that
is known as Degenerate Band Edge (DBE), first predicted theoretically for
photonic crystals [33].

Moreover, it was found that the corresponding eigenstate (distribution
of the excitation among the atoms, or, equivalently, distribution of dipole
moments in a chain) for these strongly subradiant states is much more
localized (see Fig. 2 (a)). We empirically found that this state can be
well approximated by two dominant contributions of the basis states from
the tight-binding problem solution (see Fig. 2 (b)), namely, that it can
be approximately represented as ∼ 𝐶𝑁 sin

(︀
π𝑁𝑛
𝑁+1

)︀
+ 𝐶𝑁−2 sin

(︁
π(𝑁−2)𝑛
𝑁+1

)︁
. It

is also of interest that these two contributions interfere destructively as
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(a) (b) (c)

Figure 2 — (a) The absolute value of the probability amplitude of atom 𝑛
to be excited for period Δ𝑧 = 0.3λ0 (blue), and optimal period Δ𝑧sub (red).
(b) Expansion of the eigenstates from (a) in a basis of the tight-binding
solution in a form 𝐶𝑘ψ

(𝑘). (c) Expansion of the total emission rate Γ𝑗 in
terms of Vector Spherical Harmonics contributions with order 𝑗 versus the
system period Δ𝑧. Note a point specifying Δ𝑧sub, and how many
contributions Γ𝑗 experience a local minima close to this point.

Re [𝐶𝑁𝐶𝑁−2] < 0, and the reduction of the emission rate for this eigenstate
can be attributed to this destructive interference. This finding also shed light
on the relation between the formation of the long-lived band-edge state, and
band-edge degeneracy. As the dispersion at a certain value of the period
becomes flat, than the corresponding eigenmodes have very close values
of eigenfrequencies (real parts of the corresponding eigenvalues). However,
the states 𝑁 , and 𝑁 − 2, which have the same symmetry with respect to
the reflection around the system’s central point, are not allowed to have
the same values of eigenfrequencies. Therefore, the avoided crossing takes
place, which “mixes” these eigenstates (Fig. 2 (b), bottom plot). At a certain
period these states are mixed in such a way that one of them becomes even
more subradiant due to the aforementioned destructive interference of the
constituent components.

There is also another peculiar property of such a subradiant state, which
can be found if one performs the multipolar decomposition of the emission
rate. By expanding the total value of it into contributions of Vector Spherical
Harmonics (VSHs) of different orders 𝑗 as Γ =

∑︀
𝑗

Γ𝑗, and plotting them

versus the period Δ𝑧, it can be seen from Fig. 2 (c) that in a region
around Δ𝑧sub functions Γ𝑗 experience a local minima simultaneously for
all Γ𝑗 up to large values of 𝑗: if there are 𝑁 = 10 atoms this happens at
least for Γ𝑗 with 𝑗 up to 10. This situation is somewhat rare as usually
the reduction of the radiated power into the far-field is related to the
decrease of the lowest order multipoles as they contribute the most to the
total value of the spontaneous emission Γ. The reason why many Γ𝑗 are
simultaneously reduced for this state can be easily understood if we recall that
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the corresponding eigenstate can be roughly approximated by the expression
∼ 𝐶𝑁 sin

(︀
π𝑁𝑛
𝑁+1

)︀
+𝐶𝑁−2 sin

(︁
π(𝑁−2)𝑛
𝑁+1

)︁
. For large enough 𝑁 ≫ 1, the functions

sin
(︀
π𝑁𝑛
𝑁+1

)︀
, and sin

(︁
π(𝑁−2)𝑛
𝑁+1

)︁
are very similar to each other. Therefore, the

multipolar contents of the fields emitted by the system with dipole moments
destributed according to these functions are also similar. Taking into account
that Re [𝐶𝑁𝐶𝑁−2] < 0, the destructive interference of the two allows for
many Γ𝑗 to be minimized simultaneously.

In the first chapter we mostly discuss the appearance of strongly
subradiant states in periodic arrays of two-level atoms which interact through
a vacuum dipole-dipole interaction. At first glance it might seem that such a
phenomenon is an exclusive feature of this particular type of interaction,
and that the presence of other interaction channels might lead to the
disappearance of such non-radiative states. However, as we show in the main
text, this is not true at least for a particular additional interaction channel,
which was taken to be the coupling through a single guided mode of an optical
nanofiber. We have shown that not only the aforementioned subradiant states
are present, but also states of two other types: 1) the subradiant states at
the first Bragg resonance for the guided mode, and 2) the subradiant states
which arise as a result of the interference between the two interaction channels
(vacuum dipole-dipole coupling, and interaction via the guided mode). We
discuss the emission rate scaling with the system size for this case, and also
show how do these states are prominent in the optical properties of the system
like single photon transmission and reflection spectra.

Figure 3 — (a) Transport of a single excitation for a system of atoms
unidirectionally coupled through a guided mode. (b)-(c) Collective
dynamics for subradiance (b), and superradiance (c). Solid lines are the
exact solutions, while dashed lines - exponential functions with a decay rate
Γ(0) substituted. Emission rate solely into non-guided (radiation) modes
𝑒−Γ𝑟𝑡 is in dotted black. For all figure we set Γ𝑔 = 10,Γ𝑟 = 1

In the second chapter, the author studies the collective emission of
a system of 𝑁 two-level atoms, which are unidirectionally coupled through
a single guided mode. The unidirectionality of atom-mode interaction can
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arise due to the spin-orbit interaction of light [23; 34] for a surface localized
propagating mode, which leads to the dependence of the local helicity on
the propagation direction: forward-, and backward propagating modes have
different helicities in this case. As a result, the modes propagating in opposite
directions can couple differently to an atom with circularly polarized active
transition dipole moment if the latter is properly oriented in space [35].

As a first step, the single excitation transport problem has been solved,
and the analytical solution was obtained in a form:

𝐶𝑘(𝑡) = 𝑒−Γtot𝑡/2+𝑖φ𝑘,1𝐿
(−1)
𝑘−1 (Γ𝑔𝑡), (1)

where 𝐶𝑘(𝑡) is the probability amplitude for atom 𝑘 to be excited at time 𝑡,
Γtot = Γ𝑔 + Γ𝑟 is the total emission rate into both guided Γ𝑔, and unguided
(radiation) modes Γ𝑟, φ𝑘,1 is the phase acquired by a photon during the
propagation from atom 1 to atom 𝑘, and 𝐿

(−1)
𝑘−1 (𝑥) is a generalized Laguerre

polynomial of index−1, and degree 𝑘−1. The respective probabilities 𝑃𝑘(𝑡) =
|𝐶𝑘(𝑡)|2 are shown in Fig. 3 (a) for first 4 atoms. One of the features of the
transport problem being solved is that the dynamics is not described through
hyperbolic, and trigonometric functions, as it happens for a symmetrically
interacting emitters, but it is rather of a polynomial type as a result of the
degeneracy of the problem. Moreover, we found that the number of excitation
absorption-emission events is strictly related to the ordinal atom number in
a chain 𝑘 as 𝑘 − 1, which directly follows from the mathematical properties
of the 𝐿

(−1)
𝑘−1 (𝑥) function.

Apart from solving a toy model with a perfectly unidirectional excitation
transfer between the atoms, for which an exact analytical solution of a
single excitation transport problem was obtained, we also considered a
more realistic problem. In order to do that, we took a metallic nanowire
made of silver that supports a propagating surface plasmon polariton that
demonstrates a strong spin-momentum locking effect. Even though it does
not allow for a perfectly asymmetric interaction of atoms, we showed that
the asymmetry of interaction exceeds the value of 10 for spatially separated
atoms. With the help of the resolvent formalism [4], we were able to find the
probabilities for the excitation to be transferred between the atoms, and then
compare the obtained results with the analytical expressions describing the
solution for a toy model with equivalent parameters. The comparison took
into account the averaging over the random deviations of atomic positions
along the nanowire, and it is demonstrated that the dynamics provided by
Eq. (6) is in a very good agreement with calculations obtained for a metallic
nanowire despite the imperfect coupling asymmetry.

From the solution of the transport problem, it was possible to solve the
dynamics for an arbitrary state in a single excitation domain. Some specific
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collective states like sub- and superradiant states are of special interest in
this regard as under certain conditions in the case of symmetric coupling
they demonstrate either the supression or the enhancement of the emission
rate, correspondingly. If we set the initial state to be of the form |𝐷⟩ =∑︀𝑁

𝑘=1
1√
𝑁
|𝑒𝑘⟩|𝑔⟩𝑁−1 (symmetric Dicke state), then one can find that:

𝐶sub(𝑡) =
𝑒−Γtot𝑡/2

𝑁

𝑁∑︁

𝑘=1

(𝑁 − (𝑘 − 1))(−1)𝑘−1𝐿(−1)
𝑘−1 (Γ𝑔𝑡),

𝐶sup(𝑡) =
𝑒−Γtot𝑡/2

𝑁
𝐿
(1)
𝑁−1(Γ𝑔𝑡), (2)

where 𝐶sub/sup(𝑡) are the probability amplitudes for the system to remain
in a state |𝐷⟩, if any two neighboring atoms are emitting photons out-of
/in-phase. Even though the dynamics is polynomial, not exponential, we can
still find the emission rate of the system at small time arguments given by:
𝑃|𝐷⟩(𝑡) ≈ 1 − Γ(0)𝑡 + ...

The author found that the approximate emission rate in the guided mode
for the superradiant case is equal to Γ

(0)
𝑔 = 𝑁Γ𝑔 (similar to the symmetric

case), while for the subradiance the emission rate becomes Γ(0)
𝑔 = Γ𝑔

1−(−1)𝑁
2𝑁

(instead of 0 for the symmetric case). As one can see, the chiral subradiant
emission rate depends on whether there are even or odd number of atoms
𝑁 . The author reveals the reason for this to happen, namely, it is due to the
imperfect destructive interference between the pathways for a system to emit
a photon as a natural consequence of the interaction unidirectionality.

From Fig. 3 (b), one can see that for the collective subradiant emission,
the bigger the system, the smaller discrepancy there is between the curve
given by Eq. (2) (top), and the 𝑒−Γ

(0)𝑡 function. Therefore, one can conclude,
that for a sufficiently large systems the collective subradiant emission rate
adequately describes the temporal dynamics of the system. However, as one
can see from Fig. 3 (c), this is not true for superradiance: for large 𝑁 the
𝑒−Γ

(0)𝑡 function and the dynamics given by Eq. (2) (bottom) are in a good
agreement only for very small values of Γ𝑔𝑡, while at later times there is
some small probability for the system to re-absorb the emitted photon. This
behavior has been straightforwardly linked to the mathematical properties
of the function 𝐿

(1)
𝑁−1(𝑥) as it has 𝑁 −1 real positive roots, therefore, the are

𝑁 − 1 acts of the photon re-absorption, but only the first one is observed,
while the rest are supressed by an overall 𝑒−Γtot𝑡 factor.

In the third chapter, the author considers the problem of excitation
transfer between the excited states of a quantum emitter having an active
𝑠↔ 𝑝 transition, and put in the proximity of some nanophotonic environment
(see Fig. 4 (a)), which was an anisotropic metasurface in our case. It was
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Figure 4 — (a) Pictorial representation of the system studied: an atom with
a triply degenerate excited state is put in the vicinity of a nanophotonic
structure (anisotropic metasurface). Note that the transition dipole
moments are arbitrarily oriented here. Temporal intensity (b), and the total
emitted light spectra (c) for an atom initially excited in state |𝑒𝑞0⟩. Red
lines/markers correspond to the isotropic metasurface, while blue - for the
anisotropic one. Note that in the latter case both intensity and spectra
differ for different initial excited states

shown that under certain conditions, the excitation transfer probability
differs in forward and backward directions: 𝑃𝑞,𝑞′(𝑡) ̸= 𝑃𝑞′,𝑞(𝑡). As an example
we took 𝑞,𝑞′ ∈ {−1, + 1}, and obtained:

𝑃−,+(𝑡)− 𝑃+,−(𝑡) = 𝑓(α,β)
(𝑥,𝑦),(𝑦,𝑧),(𝑧,𝑥)∑︀

(𝑘,𝑙)

𝑒(𝑔
′′
𝑘+𝑔′′𝑙 )𝑡 sin ((𝑔′𝑘 − 𝑔′𝑙) 𝑡) ,

𝑓(α,β) = 1
8 sin(2α) sin(2β) sin(β), (3)

where 𝑔′𝑘,𝑔
′′
𝑘 are related to the frequencies of the eigenstates, and the modified

emission rates, respectively, while α,β are the angles defining the orientation
of emitters quantization axis (and, therefore, the orientation of transition
dipole moments). From the equation above it follows that the transfer
asymmetry 𝑃−,+(𝑡) ̸= 𝑃+,−1(𝑡) happens if the transition dipole moments of
the emitter are arbitrarily oriented with respect to high symmetry directions
of the problem, and, when the nanostructure is locally fully anisotropic. The
former means that the local quantization 𝑧′ axis of the emitter (the dipole
moment of the π-polarized transition) should not lie in the planes formed by
principal axes of the metasurface. Mathematically speaking, it provides the
restrictions on the values of rotation angles: α ̸= π

2𝑚, and β ̸= π
2𝑚
′, where

𝑚,𝑚′ are integer numbers. In the latter “locally fully anisotropic” means
that from a point of view of an emitter all 3 principal exes of the structure
are physically unequivalent, or, one can say that 𝑔′𝑘 ̸= 𝑔′𝑙 for any 𝑘,𝑙. One
can also state that the condition 𝑔′𝑘 ̸= 𝑔′𝑙 means that the eigenstates formed
due to the interaction of the emitter with the modes of the nanostructure
should not be degenerate.
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The author also analyzed the transition probabilities in the basis of
eigenstates, and a special interest here is in the interference part of the
dynamics, which reads as:

𝑃
(𝑘,𝑙)
𝑞′,𝑞 (𝑡) = 2

⃒⃒
⃒𝐶(𝑞′,𝑞)

𝑘,𝑙

⃒⃒
⃒ cos

[︁
(𝑔′𝑘 − 𝑔′𝑙)𝑡−φ(𝑞′,𝑞)

𝑘,𝑙

]︁
𝑒(𝑔

′′
𝑘+𝑔′′𝑙 )𝑡, (4)

where 𝐶
(𝑞′,𝑞)
𝑘,𝑙 is a complex-valued constant, while φ(𝑞′,𝑞)

𝑘,𝑙 = arg
(︁
𝐶

(𝑞′,𝑞)
𝑘,𝑙

)︁
is it’s

phase, both of these constants depend solely on the rotation angles α,β. From
the mathematical definition of the latter we found that φ(𝑞′,𝑞)

𝑘,𝑙 = −φ(𝑞,𝑞′)
𝑘,𝑙 ,

from which one can conclude that the studied effect has a nature of a phase
shift in the dynamics of the transition probabilities. It occurs as a result
of interference between the eigenstates of the emitter appearing due to the
interaction with the eletromagnetic modes of the environment.

As the transision of an electron between the excited states of the emitter
can not be measured directly, we also studied how the internal dynamics of
the system with such a broken symmetry affects the measurable quantities:
temporal detected intensity, and the total emitted light spectrum. By
exploiting the eigenstate picture once again, we obtained the following
expressions:

𝐼𝑞0(𝑡) = ⟨ψ(𝑡)|Ê(−)(rd)Ê
(+)(rd)|ψ(𝑡)⟩ ≈ 16π2𝑘40|d|2

⃒⃒
⃒⃒∑︁

𝑗

fj𝑒
−𝑖𝑔𝑗τ

⃒⃒
⃒⃒
2

,

𝑆𝑞0(ω) =

∞∫︁

0

𝑑𝑡2

∞∫︁

0

𝑑𝑡1

[︁
𝑒−𝑖ω(𝑡2−𝑡1)⟨Ê(−)(r, 𝑡2)Ê

(+)(r, 𝑡1)⟩
]︁
≈
⃒⃒
⃒⃒
⃒
∑︁

𝑗

𝑓 𝑞0
𝑗 (rd, ra)

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

,

(5)

where 𝑞0 ∈ {−1,0, + 1} is the label for the initially excited state, rd is the
detector position, δ = ω−ω0 is the detuning from the bare atomic transition
frequency, τ = 𝑡 − |R|/𝑐 is the retarded time, and the vectorial quantities
fj,𝑓

𝑞0
𝑗 (rd, ra) are related to the far-fields produced by each eigenstate 𝑗

(please, see the main text for more details). These functions obey the property
A(𝑞0 = +1) = −A*(𝑞0 = −1), which leads to both intensity, and spectrum
being dependent upon the sign of 𝑞0. Indeed, as one can see from Fig. 4 (b),
and (c), it results in the optical properties of an overall system becoming
dependent upon the orientation of the spin of the initially excited state,
provided that the conditions discussed previously are satisfied.

More than that, it was shown that if one puts an atom with two excited
states (also called a V-type atom) close to a structure made of two plasmonic
anisotropic scatterers (the author proposed prolate ellipsoids, see Fig. 5 (a),
(c)), it is possible to obtain a strong asymmetry in the coupling constants
of transitions |𝑔+,−|/|𝑔−.+| ≫ 1(≪ 1). The first proposed scheme is based
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Figure 5 — (a) A scheme of the system under consideration: a dimer
consisting of two ellipsoidal particles with their long axes being in the
parallel planes, and rotated with respect to each other on angle 2φ0.
V-type atom with rotating transition dipole moments is placed nearby, and
centers of both scatterers and the atom are on the 𝑧-axis. (b) Dependence
of the coupling constant asymmetry on the coordinate of the atom 𝑧0, and
one of the scatterers 𝑧2, here 𝑧1 = 0, φ0 = π/8. λ|| is the wavelength at
which Im [α̃𝑥𝑥(ω)] (polarizability along the long principal axis of the
ellipsoid) is maximal. (c) Another scheme in which both particles and the
atom are in the 𝑥𝑦-plane with two long axes of the scatterers being rotated
independently, while the atom is positioned right in between them at a
distance Δ𝑦. (d) Coupling asymmetry versus orientation angles φ1,φ2. The
atom-scatterers distance is Δ𝑦 = 𝑎𝑥 + λ||/20, where 𝑎𝑥 is the long semiaxis
of each ellipsoid. The black crosses in (b), (d) indicate points of maximal
coupling asymmetry

on a known plasmonic Born-Kuhn model (see Fig. 5 (a)), where the long
axes of the ellipsoids are assumed to be in parralel planes (defined by two
constant values 𝑧1, 𝑧2, for instance). For the sake if simplicity, the centers of
both scatterers, and the atom were taken to be on the 𝑧-axis. The second
scheme (see Fig. 5 (c)) is quasi-2D, so that both ellipsoids and the atom are
in the 𝑥𝑦-plane, and the centers of all three are on the 𝑦-axis. The geometry
in this case is controlled by the distance Δ𝑦 from the atom to the center of
each scatterer, and the rotation angles φ1,φ2. As one can see from Fig. 5
(b), (d) both schemes allow for a strong coupling asymmetry, but the latter is
preferrable as it grants the possibility to easily switch from |𝑔−,+|/|𝑔+−| ≫ 1
to |𝑔−,+|/|𝑔+−| ≪ 1 with a slight change of φ1,φ2. Needless to say that
geometrically the second scheme is simpler, which might be an advantage if
one considers a realistic structure made of a 2D array of such scatterers.

We proceed with the second scheme, and show that it, indeed, allows for
an almost unidirectional excitation transport from state |𝑒−1⟩ to state |𝑒+1⟩
as seen from the excitation transfer dynamics in Fig. 6 (b). Interestingly, the
dynamics for 𝑃+,−(𝑡) can be simply described by the equation we derived in
the second chapter 𝑃+,−(𝑡) = 𝑒−γtot𝑡|𝐿(−1)

𝑁 (|𝑔+,−|𝑡)|2 (for 𝑁 = 2) obtained
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Figure 6 — (a) Scheme of the considered system. Vector k defines the
propagation direction of the external driving laser field. (b) Asymmetry in
the population transfer probabilities 𝑃−,+(𝑡), and 𝑃+,−(𝑡). Parameters were
chosen such that they maximize the coupling asymmetry (indicated by a
black cross in Fig. 5 (d)). (c) Populations of the excited states as a function
of time under the external pumping. Parameters of the pumping plane wave
are chosen such that they maximize the value of |ρ+,+(∞)− ρ−,−(∞)|, and
also provide equal Rabi frequencies for both transitions Ω− = Ω+

for a single excitation transport in a chain of unidirectionally coupled atoms.
This is natural as two transitions in a 𝑉 -type emitter can be thought of as
a pair of interacting two-level atoms, which are located at the same spatial
point and have corresponding transition dipole moments.

Apart from studying vaccum-induced dynamics, we also study the
behavior of the system under the action of an external continuous pumping
laser field. In this situation we, first, demonstrated that the coupling
asymmetry leads to the unequal stationary populations of the excited states
even though the incident plane wave parameters were chosen such that the
corresponding pumping rates are equal (the magnitudes of the respective
Rabi frequencies obey Ω− = Ω+), which is illustrated in Fig. 6 (c).

Another pumping scheme that was considered is the one presented in Fig.
7 (a), where the parameters of the incident plane wave were tuned such that
the total field at the emitter’s position selectively interacts with either σ− or
σ+ transition. Once the interaction is strongly asymmetric |𝑔−,+|/|𝑔+,−| ≫ 1,
for Ω− ̸= 0,Ω+ = 0 case, the atom is pumped from the initial state |𝑔⟩ into
the |𝑒−1⟩ state, and then can undergo a transition to |𝑒+⟩ due to the coupling
𝑔+,−. After a sufficiently long time a stationary population level ρ+,+(𝑡→∞)
is achieved (see solid red curve in Fig. 7 (b)). However, if Ω+ ̸= 0,Ω− = 0, a
negligibly small value of the coupling constant |𝑔+,−| compared to any other
parameter does not allow for the population transfer, and the excited state
on the orthogonal transition remains unpopulated ρ−,−(𝑡) ≈ 0 (see dashed
blue curve in Fig. 7 (b)). The latter essentially means that in this case the
atom behaves as a perfect two-level atom, and that the optical response of
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Figure 7 — (a) The sheme providing the selective pumping of each
transition in a 𝑉 -type emitter. (b) The evolution of excited states
populations on the transition that is orthogonal to the one being under the
action of the laser field. The solid red curve is the population ρ+,+(𝑡) for
the σ− polarization of the total field at the atomic position (right situation
in (a)), while blue dashed is the ρ−,−(𝑡) population for σ+-polarized
pumping (left situation in (a))

the atom+nanostructure system strongly depends on the helicity of the total
field at the atomic position.

In the conclusion the key results of this thesis are highlighted, as well as
the future directions of work are discussed.

1. In the first chapter we have discussed the appearance of strongly
subradiant states at the edge of a Brilluoin zone in subdiffractional
periodic chains of two-level atoms, where the enhancement in lifetimes
of such states was possible due to the mixing of eigenmodes, and the
consequent destructive interference of their constituents. This led to
several distinct features of such states as much faster decrease of the
emission rate with the system size (∼ 𝑁−6.8 instead of a regular ∼ 𝑁−3

dependency), as well as a better eigenstate localization due to the
suppression of dipole moments at the edges of a chain. More than
that, the aforementioned destructive interference is found to lead to a
simultaneous reduction of many multipolar contributions into the far
field radiation for this kind of subradiant state. We also demonstrated
that the presence of an additional interaction channel, apart from
the vacuum dipole-dipole interaction, does not necessarily lead to the
disappearance of this effect, and we have shown this for the case of
atomic chain near a single-mode optical nanofiber.

2. In the second chapter we have revealed a peculiar polynomial temporal
behavior of a single excitation transport in a one-dimensional chain of
atoms, which are unidirectionally coupled through a guided mode. We
have solved the problem analytically for arbitrary system sizes, and
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based on this result, we have also estimated the approximate collective
sub-, and superradiant emission rates. For subradiance it was found
to be different from the case of symmetrically coupled atoms, which
is given by the Dicke theory. In order to reveal the reason for this
discrepancy to appear, we have analyzed the single-excitation dynamics
in the lowest non-vanishing order of perturbation theory, and found
that it happens due to the imperfect destructive interference.

3. In the third chapter we have demonstrated how, by using an anisotropic
photonic structure (metasurface), and by controlling the orientation
of transition dipole moments in an 𝑠 → 𝑝 atom, one can break the
symmetry of forward, and backward quantum-mechanical processess
related to the probabilities for an electron to make a transition from
one excited states to another. We derived analytically the requirements
for the observation of this phenomenon, and also attributed it to the
interference of the eigenstates, which appear as a result of emitter’s
interaction with the electromagnetic modes of the environment. It
is demonstrated that this interference gives rise to a phaseshift in
the transition probability dynamics. We have also shown how these
unequal transition probabilities in such a system affect the measurable
quantities: detected light intensity dynamics, and total emitted light
spectrum.

4. In the third chapter we have also proposed another way to break this
symmetry in transitions by using a simple plasmonic structure - a
dimer made of two asymmetric dipolar matallic scatterers. By properly
tuning the geometry of the system, we have shown that it is possible
to almost completely forbid transitions of an electron in one direction
between the excited states with circularly polarized dipole moments
in a V-type atom. We have also analyzed the dynamics of the system
under the external continuous-wave pumping, and demonstrated that,
for instance, the steady-state populations of excited states can be
unequal due to their asymmetric coupling despite the Rabi frequencies
for corresponding transitions being equal. More than that, it is shown
that in this case the response of the system strongly depends on the
local helicity of the total field at the position of the atom.
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Реферат

Актуальность. Тематика представленной диссертационной работы
имеет значимость для современной и быстроразвивающейся области
исследования под названием квантовая нанофотоника. Данная сфера
исследования совмещает в себе две другие в контексте взаимодействия
света и вещеста, а именно: квантовую оптику [1] и нанофотонику [2].
Исторически, квантовая оптика изначально была посвящена изучению
статистических свойств света [3], а также описанию взаимодействия из
лучения с веществом на уровне одиночных частиц - фотонов и атомов
[4]. Значительное время ученые в этой области занимались исследова
нием излучения, которое распространяется в свободном пространстве
и его взаимодействием с атомами, находящимися либо в вакууме, ли
бо в высокодобротных резонаторах [5]. В свою очередь, в нанофотонике
рассматривается то, каким образом возможно управлять различными
степенями свободы света, и его распространением в различных струк
турах нанофотоники, что стало возможным благодаря существенному
технологическому развитию методов фабрикации таких структур.

На пересечении этих двух областей исследования находятся много
новых и экзотических физических феноменов: как уже открытых, так
и еще неизвестных. В этой связи коллективные эффекты во взаимо
действии света и вещества представляют особый интерес, поскольку
взаимодействие атом-поле может быть значительно усилено за счет ло
кализации излучения вблизи интерфейсов нанофотонных структур. С
этой точки зрения феномены суб- и сверхизлучения [6;7] являются инте
ресными для исследования с возможными приложениями в квантовых
технологиях. Будучи хорошо изученными для случая атомных ансам
блей в свободном пространстве [8; 9], их характерные особенности в
случае наличия взаимодействия посредством мод структур нанофото
ники всё ещё не объяснено полностью для многих случаев. Характер
взаимодействия атома с полем, помимо упомянутого ранее усиления
взаимодействия, также может быть модифицирован путём, например,
контроля за поляризационной степенью свободы. Это может привести к
возникновению хирального взаимодействия [10] между квантовыми излу
чателями и распространяющимися электромагнитными полями: случай,
когда сила связи значительным образом зависит от того, распространя
ется ли волна в прямом или обратном направлении. В предельном случае
это может привести к полностью однонаправленному взаимодействию из
лучателя с модой поля с отсутствием отражения назад, и, следовательно,
однонаправленным взаимодействием между различными излучателями
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через такую моду. Такая зависящая от направления распространения
сила связи атом-поле радикально изменяет оптические свойства интер
фейсов свет-вещество [11–14], а также позволяет наблюдать различные
новые квантово-механические феномены.

Цель исследования. Основная цель данной работы заключается в
исследовании различных проявлений явления интерференции в оптиче
ских свойствах как одиночных квантовых излучателей (атомов), так и
их инсамблей, в случае их взаимодействия с электромагнитными мода
ми различных структур нанофотоники. При этом особое внимание будет
уделено возможности реализовать хиральность такого взаимодействия.

Научные задачи. В соответствие с упомянутой выше целью могут
бысть сформулированы следующие научные задачи:

– Проанализировать коллективные состояния с низкими рациаци
онными потерями в периодических субдифракционных цепочках
двухуровневых атомов, находящихся в вакууме и вблизи диэлек
трического нановолокна.

– Описать количественно и качественно хиральное суб- и сверхизлуче
ние в системе, которая представляет из себя цепочку двухуровневых
атомов, однонаправленно взаимодействующих посредством волно
водной моды.

– Изучить временную динамику и спектральные свойства квантово
го излучателя с вырождением в возбужденном состоянии, который
находится вблизи анизотропной метаповерхности.

– Рассмотреть возможность асимметричной связи циркулярно по
ляризованных дипольных переходов в излучателе с 𝑉 -образной
структурой уровней, который взаимодействует с модами плазмон
ного димера, состоящего из двух асимметричных рассеивателей -
вытянутых эллипсоидальных частиц.

Основные положения, выносимые на защиту:

– В периодических субдифракционных цепочках, состоящих из 𝑁
диполей, существуют собственные моды с низкими оптическими
потерями для определенных значений периода системы, меньших
длины волны, резонансной одиночному диполю. Такое оптимальное
значение периода может быть найдено для большого числа диполей
𝑁 из условия уплощения дисперсии собственных мод на краю зоны
Бриллюэна. Темпы эмиссии таких мод спадают как 𝑁α с α < −6,
в отличие от известного закона 𝑁−3, наблюдаемого для не опти
мального периода. Такие низкие значения радиационных потерь
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являются результатом одновременной минимизации мультиполь
ных вкладов в излучаемое системой поле вплоть до мультиполей
высоких порядков.

– Для 𝑁 двухуровневых излучателей, идеально асимметрично вза
имодействующих через волноводную моду, коллективный темп
спонтанной эмиссии в случае сверхизлучения равен 𝑁Γ𝑔, тогда как
для субизлучения он равен 0 при четных 𝑁 , и Γ𝑔/𝑁 при нечетных
𝑁 . Последний факт является следствием неполной деструктивной
интерференции между различными способами для системы излу
чить фотон.

– При взаимодействии переходов в многоуровневом квантовом из
лучателе через моды анизотропной метаповерхности возможно
добиться асимметрии в динамике вероятностей перехода между воз
бужденными состояниями. Такая асимметрия проявляется только
если локальная ось квантования излучателя наклонена по от
ношению к плоскостям высокой симметрии метаповерхности, а
собственные состояния излучателя, обусловленные его взаимодей
ствием с модами структуры, не являются вырожденными. Эффект
проявляется в виде фазовой задержки в интерференционных вкла
дах во временную динамику вероятностей переходов, и проявляется
также в зависимости детектируемой интенсивности излучения от
времени и в полном излученном системой спектре, что делает обе
эти величины зависящими от ориентации спина в начальном состо
янии излучателя.

– С помощью плазмонного димера, состоящего из двух анизотропных
дипольных рассеивателей (вытянутых эллипсоидальных частиц),
возможно реализовать асимметричную связь циркулярно поляризо
ванных переходов в излучателе с 𝑉 -образной структурой уровней.
Такая асимметричная связь приводит к неравной стационарной
населенности возбужденных уровней даже при внешней накачке,
обеспечивающей равные частоты Раби на обоих переходах. Также
асимметрия взаимодействия переходов приводит к сильной зависи
мости отклика системы от локальной циркулярности полного поля
в точке нахождения атома.

Научная новизна данного исследования заключается в следующем:

– Теоретически изучено образование состояний с большими времена
ми жизни в системе, которая представляет из себя периодическую
цепочку атомов, дипольные моменты переходов которых перпенди
кулярны оси цепочки. Показано, что при правильно подобранном
периоде системы, возможно добиться существенного увеличения
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времени жизни таких состояний, а также то, что время их жизни
растет быстрее, чем было показано ранее другими исследователя
ми для состояний близ края зоны Бриллюэна. Выяснен механизм
образования этих состояний, который заключается во взаимодей
ствии собственных мод системы и деструктивной интерференции
составляющих эти моды вкладов. Взаимодействие собственных мод
оказывается возможным благодаря уплощению дисперсии системы
на краю зоны и возникновению точки её перегиба. Также проведен
мультипольный анализ излучения таких состояний и с его помощью
показано, что для таких долгоживущих состояний происходит одно
временная минимизация многих мультипольных вкладов вплоть до
высоких порядков.

– Рассмотрена задача транспорта одиночного возбуждения в систе
ме атомов, которые однонаправленно взаимодействуют посредством
волноводной моды, и показано, что временная динамика пере
дачи возбуждения носит полиномиальный характер. На основе
данного результата также исследованы излучательные свойства
коллективных одночастичных возбуждений, а именно были впер
вые аналитически получены значения темпов спонтанной эмиссии
для случая суб- и сверхизлучения в такой системе. С помощью
теории возмущений на простой теоретической модели объяснена
причина отличия полученных значений от уже хорошо извест
ных для случая симметричной связи посредством волноводной
моды. Также на примере структуры на основе плазмонного вол
новода продемонстрировано численным моделированием, что для
использования полученных результатов не обязательна идеальная
однонаправленность взаимодействия, достаточна его сильная асим
метричность.

– Теоретически изучен эффект нарушения симметрии между пря
мыми и обратными переходами электрона между возбужденными
уровнями квантового излучателя с дипольно разрешенным 𝑠 ↔ 𝑝
переходом (трехкратное вырождение возбужденного состояния), ко
торый взаимодействует с электромагнитными модами фотонной
структуры. Найдены аналитически и явно сформулированы кри
терии для наблюдения данного эффекта. Также изучено, каким об
разом он проявляется в экспериментально измеряемых величинах,
таких как временная динамика детектируемой интенсивности и пол
ный спектр излученного света. Проведено численное моделирование
временной динамики переходов, детектируемой интенсивности и
спектров для излучателя, который находится вблизи анизотропной
метаповерхности.
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– Также впервые теоретически предсказано, что для излучателя с
двумя циркулярно-поляризованными дипольными моментами пере
ходов (атом с 𝑉 -образной структурой уровней) возможно реализо
вать сильно асимметричное взаимодействие переходов посредством
электромагнитных мод структуры, представляющей из себя плаз
монный димер, который состоит из двух асимметричных дипольных
рассеивателей (вытянутых металлических эллипсоидов). Показано,
что асимметричная связь переходов приводит к однонаправленно
му переносу возбуждения между верхними уровнями излучателя.
Предсказано, что если на систему падает плоская электромагнит
ная волна с параметрами, обеспечивающими одинаковую по силе
накачку обоих переходов (одинаковые соответствующие частоты Ра
би), то в таком случае асимметричное взаимодействие приводит к
неравной стационарной населенности возбужденных уровней, а, зна
чит, спиновой поляризации излучателя. Также в работе показано,
что отклик такой системы сильно зависит от локальной спирально
сти полного электрического поля в точке нахождения излучателя.

Практическая значимость. Выполненные в рамках данного дис
сертационного исследования работы представляют ценность с точки
зрения физики как фундаментальной науки, поскольку в работе рас
сматриваются различные физические эффекты, проясняются механизмы
их возникновения, а также устанавливаются условия для их наблюде
ния. Особый интерес часть из представленных результатов имеют для
таких быстроразвивающихся областей как квантовая электродинамика
волноводов и квантовая нанофотоника. С практической точки зрения
изученные феномены могут послужить фундаментом для разработки
новых устройств квантовой нанофотоники. Например, зависимость от
клика системы от ориентации начального спина электрона в излучателе
может быть потенциально использована для создания невзаимных опти
ческих устройств. Это может быть реализовано, если спин (поляризация)
падающего поля будет также связан с направлением распространения
волны - эффект под названием спиновая блокировка. Знание механизмов
возникновения долгоживущих состояний в одномерных массивах диполь
ных рассеивателей также может быть крайне полезно при разработке и
создании оптических резонаторов, гибридных волноводных структур, и в
приложениях, имеющих отношение к квантовым технологиям, а именно
в квантовых коммуникациях, вычислениях и метрологии.

Достоверность. Степень достоверности результатов проведенных
соискателем исследований основана на использовании общепринятых
теоретических подходов, явном указании использованных с целью
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получения аналитических результатов приближений. Помимо этого,
полученные результаты согласуются с аналогичными результатами,
полученными ранее другими исследователями, при рассмотрении необ
ходимых пределов. Некоторые из рассматриваемых на примере простых
моделей эффектов были позднее подтверждены при численном моде
лировании для более реалистичных структур коллегами соискателя,
но данные результаты не вошли представленную диссертацию. Также
достоверность результатов основана на их аппробации путем представ
ления докладов на международных научных конференциях, семинарах,
публикации статей в международных рецензируемых изданиях.

Аппробация работы. Аппробация научных результатов исследова
ния подтверждена 9 публичными выступлениями на всероссийских и
международных конференциях за последние 3 года.

Исследования, проводимые соискателем, также были отмечены раз
личными фондами и получали финансовую поддержку на их проведение
в форме различных грантов и стипендий, например: стипендия им.
Остроградского посольства Франции в России на стажировку в лабора
тории Кастлера-Бросселя, (Университет Сорбонны, Париж, Франция),
гранты Российского Фонда Фундаментальных Исследований (грант
«мол_а»), грант PhD Student Фонда Развития Теоретической Физики
и Математики «БАЗИС».

Личный вклад автора в данную работу состоит в создании теорети
ческих моделей, получении аналитических рузельтатов, анализе этих ре
зультатов, в объяснении изучаемых физических эффектов, нахождении
механизмов их возникновения, а также в выполнении сопутствующих
численных вычислений. Автор не только внес основной вклад в реше
ние рассматриваемых задач, но также принимал самое непосредственное
участие в их постановке и формулировке.

Предлагаемые к защите положения полностью отражают персональ
ный вклад автора в работу.

Публикации. Основные работы по данной диссертации опубликова
ны в 7 научных статьях, из которых 7 опубликованы в рецензируемых
изданиях, индексируемых Web Of Science и Scopus, 7 в журналах из
списка Высшей Аттестационной Комиссии. Из этих 7 публикаций 4
опубликованы в периодических изданиях American Physical Society, а
остальные 3 в виде рецензируемых трудов конференций.

Объём и структура работы. Диссертация состоит из 3-х глав и
4-х приложений. Полный объём диссертационной работы составляет 247
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страниц, включая 34 рисунка. Список литературы содержит 192 наиме
нования.
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Основное содержание работы:

Возрастающий интерес к тематике взаимодействия квантовых излу
чателей посредством или с модами различных нанофотонных структур
был вызван значительными успехами в экспериментальной реализации
подобных систем. Для примера, стало возможным организовывать ато
мы в одномерные [15], двумерные [16], и трехмерные [17] упорядоченные
массивы контролируемым путем. В то же время квазиодномерные си
стемы представляют особый интерес как одна из возможных платформ
реализации интерфейса свет-вещество в контексте области исследований
под названием волноводная квантовая электродинамика (ВКЭД) [18;19]
- современной и быстроразвивающейся области знания, в которой уже
были продемонстрированы экспериментально многие выдающиеся ре
зультаты, например, Брэгговское отражение света от порядка тысячи
атомов [20], генерация одиночных фотонов [21], а также наблюдение кол
лективных эффектов вроде субизлучения и сверхизлучения [22], и многое
другое.

Также появилось новое направление исследований под названием
хиральная квантовая оптика [10], в которой интерес представляют
квантовые излучатели, асимметрично взаимодействующие с фотонными
модами, распространяющимися в различных направлениях. Такая асим
метрия может появляться, например, как результат наличия ненулевой
поперечной компоненты плотности оптического спина [23]. Данная сфера
исследований особо важна для создания и развития устройств нанофо
тоники, которые функционируют на уровне нескольких фотонов, таких
как: оптические циркуляторы [13] и диоды [12] для одиночных фотонов,
оптические переключатели на основе одиночного атома [13], источники
одиночных фотонов с контроллируемыми свойствами на основе кванто
вых точек и волноводов [24], и многих других.

Как альтернатива атомам и квантовым точкам, полупроводниковые
двумерные материалы также являются многообещающей платформой
для изучения хиральных взаимодействий [25], в них хиральность обес
печивается наличием циркулярно поляризованных переходов между
спиновыми состояниями долинных электронов. Значительный прогресс
был продемонстрирован в возможности взаимодействия экситонов в та
ких двумерных материалах с модами плазмонных волноводов [26], а
также метаповерхностей [27–29]. Метаповерхности можно также назвать
фотонными эквивалентами двумерных полупроводниковых материалов,
и для них уже были продемонстрированы довольно гибкие возможности
в управлении их оптическими свойствами.
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(a) (b) (c)

Рисунок 1 — (a) Абсолютные значения амплитуд вероятности для
атома быть возбужденным в самом долгоживущем собственном
состоянии в зависимости от номера атома 𝑛 для периода системы
Δ𝑧 = 0.3λ0 (синим), и оптимального периода Δ𝑧sub (красным). (b)
Разложение собственного состояния из (a) по базису функций решения
задачи в приближении взаимодействия только ближайших соседей
𝐶𝑘ψ

(𝑘). (c) Разложение полного темпа излучения состояния Γ𝑗 на
вклады Векторных Сферических Гармоник разного порядка 𝑗 в
зависимости от периода Δ𝑧. Особое внимание на отмеченную точку
Δ𝑧sub и то, каким образом вблизи от этого значения одновременно
много вкладов Γ𝑗 имеют локальные минимумы

Все указанное выше подтверждает, что квантовые излучатели, кото
рые взаимодействуют с электромагнитными модами структур нанофото
ники, представляют из себя универсальный инструмент не только для
изучения экзотических эффектов во взаимодействии света и вещества с
точки зрения чисто фундаментальной науки, но также являются много
обещающей платформой для разработки будущих оптических устройств,
функционирующих на уровне нескольких частиц.

Ниже представлен короткий обзор результатов, представляющих ос
нову диссертации.

В первой главе мы рассматриваем субрадиационные состояния (с
большими временами жизни) в системе, представляющей из себя ан
самбль двухуровневых атомов, упорядоченных в виде периодического
субдиффракционного одномерного массива. Было установлено, что в та
кой системе существуют определенные значения периода, для которого
некоторые собственные состояния, лежащие близко к краю зоны Брил
люэна, имеют сильно уменьшенный темп спонтанной эмиссии (см. Рис.
2 (a)), причем подобные состояния были найдены только для случая, ко
гда дипольные моменты ориентированы перпендикулярно оси цепочки.
Было показано, что эти состояния имеют необычный закон изменения
темпа спонтанной эмиссии с числом атомов 𝑁 , а именно, темп спадает
значительно быстрее, чем было известно ранее для подобных систем -
γ ∼ 𝑁−6.88 в отличие от известного закона γ ∼ 𝑁−3 (см. Рис. 2 (b)). Пу
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Рисунок 2 — (a) Темпы эмиссии собственных состояний системы в
зависимости от периода для 𝑁 = 10 двухуровневых атомов с поперечно
ориентированными дипольными моментами, цвет обозначает среднюю
величину корреляций между дипольными моментами ближайших
соседей. (b) Зависимость темпа эмиссии от 𝑁 для некоторого
фиксированного периода (синим цветом, Δ𝑧 = 0.3λ0), и для
оптимального периода, позволяющего получить самое долгоживущее
состояние (красным). (c) Дисперсия собственных мод в бесконечной
цепочке атомов для тех же значений периода, что в (b). Как видно,
дисперсия становится более плоской для Δ𝑧opt

тём рассмотрения бесконечной периодической цепочки вместо конечной,
было получено трансцендентное уравнение, которое определяет точное
предельное значение периода, для которого наблюдается самое долгожи
вущее состояние. Оказалось, что это значение связано с ситуацией, при
которой дисперсия собственных мод становитя плоской вблизи края зоны
Бриллюэна: вместо привычного для таких систем ∼ (β−π)2 поведения,
дисперсия имеет зависимость ∼ (β−π)4 от обезразмеренного волнового
числа β = 𝑘𝑧Δ𝑧 (см. Рис. 2 (c)). В литературе данный эффект известен
как Вырожденный Край Зоны (ВКЗ), и он впервые был теоретически
предсказан для фотонных кристаллов [33].

Кроме того, было установлено, что соответствующее собственное
состояние (распределение возбуждения между атомами, или, что эквива
лентно, распределение дипольного момента по цепочке) для таких сильно
субрадиационных состояния значительно более локализовано (см Рис. 1
(a)) по сравнению с типичными состояниями на краю зоны для бо́льших
периодов. Было эмпирически установлено, что сильно субрадиацион
ное состояние может быть хорошо приближено двумя доминирующими
вкладами в виде состояний из базиса решения аналогичной одномер
ной задачи, но с учетом взаимодействия только ближайших соседей
(см. Рис. 1 (b)), а именно, оно может быть приближено функцией вида
∼ 𝐶𝑁 sin

(︀
π𝑁𝑛
𝑁+1

)︀
+ 𝐶𝑁−2 sin

(︁
π(𝑁−2)𝑛
𝑁+1

)︁
. Интересно, что эти два доминиру

щих вклада интерферируют деструктивно, поскольку Re [𝐶𝑁𝐶𝑁−2] < 0,
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потому уменьшение темпа эмиссии может быть объяснено именно та
кой деструктивной интерференцией. Также была объяснена взаимосвязь
между образованием долгоживущих состояний на краю зоны и вырож
дением. Поскольку дисперсия для некоторого периода становится более
плоской, тогда соответствующие собственные состояния, лежащие близ
ко к краю зоны, имеют очень близкие по значению собственные частоты
(действительные части собственных чисел задачи). Однако, состояния
с номерами 𝑁 , 𝑁 − 2, которые имеют одинаковую симметрию по отно
шению к отражению относительно геометрического центра цепочки, не
могут иметь одинаковые значения собственных частот. Соответствующие
энергетические уровни этих состояний будут расталкиваться, а вблизи
точки сильного расталкивания собственные вектора будут замешивать
ся (Рис. 1 (b), нижний график). Для определенного значения периода
эти состояния замешаны в таком виде, что одно из них оказывается еще
более безызлучательным вследствие уже упомянутой деструктивной ин
терференции.

Также было показано, что у данного субизлучательного состояния
имеется еще одно интересное свойство, которое может быть выявлено,
если осуществить для него мультипольную декомпозицию темпа спон
танной эмиссии. Путем разложения полного темпа излучения на вклады
Векторных Сферических Гармоник (ВСГ) различных порядков 𝑗 в ви
де Γ =

∑︀
𝑗

Γ𝑗, и построив их как функции периода системы Δ𝑧, можно

увидеть из Рис. 1 (c), что в области близ Δ𝑧sub функции Γ𝑗 имеют локаль
ные минимумы для многих 𝑗. В рассмотренном примере для цепочки из
𝑁 = 10 атомов это происходит для всех Γ𝑗 вплоть до 𝑗 = 10. Такая си
туация не является типичной, поскольку обычно уменьшение мощности,
излучаемой системой в дальнее поле, обычно связано с подавление низ
ших мультиполей, которые и дают основной вклад в величину полного
темпа эмиссии Γ. Причина по которой одновременно много вкладов Γ𝑗

имеют минимум для такого состояния может быть легко объяснена, ес
ли вспомнить, что данное состояние может быть приближенно описано
выражением ∼ 𝐶𝑁 sin

(︀
π𝑁𝑛
𝑁+1

)︀
+𝐶𝑁−2 sin

(︁
π(𝑁−2)𝑛
𝑁+1

)︁
. Для системы из доста

точно большого числа атомов 𝑁 ≫ 1, функции sin
(︀
π𝑁𝑛
𝑁+1

)︀
и sin

(︁
π(𝑁−2)𝑛
𝑁+1

)︁

довольно похожи. Следовательно, мультипольные составы полей, излуча
емых системой с такими распределениями дипольных моментов, также
являются похожими. Если принять во внимание, что Re [𝐶𝑁𝐶𝑁−2] < 0,
то становится понятным, что одновременная минимизация Γ𝑗 оказыва
ется возможной именно благодаря деструктивной интерференции этих
вкладов.
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Рисунок 3 — (a) Транспорт одиночного возбуждения в системе атомов,
однонаправленно (хирально) взаимодействующих посредством
волноводной моды. (b)-(c) Динамика коллективного одночастичного
состояния Дике для случая субизлучения (b), и сверхизлучения (c).
Сплошные линии показывают точное решение, а штрихованные -
экспоненты с найденным темпом эмиссии Γ(0) в показателе. Динамика
темпа эмиссии только в неволноводные излучательные моды 𝑒−Γ𝑟𝑡

изображена точечной черной линией. Для всех графиков было
положено, что Γ𝑔 = 10,Γ𝑟 = 1

В первой главе преимущественно рассматривается возникновение
сильно субизлучательных состояний в периодических цепочках двух
уровневых атомов, которые связаны через вакуумное диполь-дипольное
взаимодействие. С первого взгляда может показаться, что рассмотрен
ный эффект может быть исключительным свойством взаимодействия
рассмотренного типа, и что наличие других каналов взаимодействия
между атомами может привести к исчезновению этих состояний. Однако,
как показано более подробно в основной части диссертационной работы,
это не так по крайней мере для рассмотренного дополнительного канала
- взаимодействия излучателей посредством одной фундаментальной вол
новодной моды оптического нановолокна. Дополнительно показано, что
в такой системе присутствуют не только описанные выше субизлучатель
ные состояния, но и состояния двух тругих типов: 1) субизлучательные
состояния на первом Брэгговском резонансе для волноводной моды, а
также 2) субизлучательные состояния, которые появляются в результа
те интерференции между двумя имеющимися каналами взаимодействия
(через вакуумную диполь-дипольную связь и посредством волноводной
моды). Рассмотрен характер изменения темпа эмиссии для состояний
данных трёх типов, и то, как они проявляют себя в таких оптических
свойствах системы, как однофотонные коэффициенты прохождения и
отражения.

Во второй главе автор рассматривает коллективное излучение в
системе, состоящей из 𝑁 двухуровневых атомов, которые однонаправлен
но взаимодействуют с одной волноводной модой. Однонаправленность
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взаимодействия атома с модой может быть обусловлена, например, спин
орбитальным взаимодействием для света [23; 34] в поверхностно-лока
лизованной распространяющейся волне, что в свою очередь приводит
к зависимости локальной спиральности (направления вращения) поля
от направления распространения волны: распространяющиеся вперед
и назад моды в случае одномерной системы будут иметь противопо
ложные спиральности. В результате моды, которые распространяются
в противоположных направлениях, будут по-разному взаимодейство
вать с излучателем, который обладает циркулярно-поляризованным
дипольным моментом активного перехода, если дипольный момент ори
ентирован в пространстве должным образом по отношению к полю моды
[35].

На первом шаге была решена задача транспорта одиночного возбуж
дения в такой системе, аналитическое решение которой было получено
в следующем виде:

𝐶𝑘(𝑡) = 𝑒−Γtot𝑡/2+𝑖φ𝑘,1𝐿
(−1)
𝑘−1 (Γ𝑔𝑡), (6)

где 𝐶𝑘(𝑡) - амплитуда вероятности того, что атом с номером 𝑘 возбуж
ден в момент времени 𝑡, Γtot = Γ𝑔 + Γ𝑟 - это полный темп спонтанной
эмиссии, состоящий из темпа излучения в волноводные Γ𝑔 и неволновод
ные (излучательные) моды Γ𝑟, φ𝑘,1 отвечает за фазу распространения,
которую получил фотон при движении от атома 1 к атому 𝑘, и 𝐿

(−1)
𝑘−1 (𝑥)

- обобщенные полиномы Лагерра порядка 𝑘 − 1 с индексом −1. Соот
ветствующие вероятности 𝑃𝑘(𝑡) = |𝐶𝑘(𝑡)|2 показаны на Рис. 3 (a) для
первых 4 атомов. Как видно, одна из особенностей динамики возбужде
ния в такой системе заключается в том, что решение записывается не в
виде комбинации гиперболических и тригонометрических функций, как
было бы в случае симметричного взаимодействия атомов, а имеет полино
миальный характер в результате наличия вырождения в спектре задачи.
Также можно сказать, что количество актов поглощения-излучения вы
ражается через порядковый номер излучателя 𝑘 в цепочке как 𝑘 − 1,
что является прямым следствием математических свойств обобщенных
полиномов Лагерра 𝐿

(−1)
𝑘−1 (𝑥).

Помимо рассмотрения модельной задачи с идеально асимметричным
взаимодействием между атомами, для которого оказывается возможным
точно аналитически решить задачу транспорта одиночного возбуждения,
также была изучена и более реалистичная система. С этой целью в ка
честве волноводной структуры был рассмотрен плазмонный волновод из
серебра, который поддерживает распространяющийся плазмон-поляри
тон, и для которого возможно реализовать сильный эффект спиновой
блокировки (спин-орбитального взаимодействия света). Несмотря на
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то, что для такой системы невозможно реализовать идеально однона
правленное распространение возбуждения среди атомов посредством
плазмон-поляритона, в работе показано, что степень асимметрии взаимо
действия может достигать величины порядка и больше 10 для атомов,
находящихся достаточно далеко друг от друга. С помощью формализма
резольвенты Гамильтониана системы [4] найдены вероятности передачи
возбуждения от первого атома остальным, а также произведено срав
нение этих результатов с аналитическими выражениями, полученными
ранее для модельной задачи с использованием соответствующих пара
метров системы. При сравнении также было произведено усреднение по
случайным отклонениям в положениях атомов вдоль плазмонного вол
новода, и показано, что динамика, которую описывает выражение (6),
находится в хорошем соответствии с результатами, полученными для ме
таллического волновода, даже не смотря на неидеальность асимметрии
связи атомов.

Имея решения задачи транспорта одиночного возбуждения, можно
найти также и динамику любого другого состояния с не более чем одним
возбуждением в системе. В этом контексте особый интерес представля
ют состояния, которые демонстрируют эффекты суб- и сверхизлучения,
поскольку при определенных условиях в случае симметричного возбуж
дения известно, что они демонстрируют уменьшение или увеличение
темпа эмиссии, соответственно. Если система изначально находится в
симметричном состоянии Дике вида |𝐷⟩ =

∑︀𝑁
𝑘=1

1√
𝑁
|𝑒𝑘⟩|𝑔⟩𝑁−1, тогда

можно показать, что:

𝐶sub(𝑡) =
𝑒−Γtot𝑡/2

𝑁

𝑁∑︁

𝑘=1

(𝑁 − (𝑘 − 1))(−1)𝑘−1𝐿(−1)
𝑘−1 (Γ𝑔𝑡),

𝐶sup(𝑡) =
𝑒−Γtot𝑡/2

𝑁
𝐿
(1)
𝑁−1(Γ𝑔𝑡), (7)

где 𝐶sub/sup(𝑡) - это амплитуды вероятности для системы остаться в со
стоянии |𝐷⟩, когда любые два ближайших атома излучают фотоны в
противофазе или синфазно, соответственно. Даже не смотря на то, что
динамика в этом случае полиномиальная, и не имеет вид экспоненты,
мы по-прежнему можем найти темп эмиссии системы на малых време
нах: 𝑃|𝐷⟩(𝑡) ≈ 1 − Γ(0)𝑡 + ...

Было показано, что приближенный темп эмиссии в волноводную моду
для случая сверхизлучения равен Γ

(0)
𝑔 = 𝑁Γ𝑔 (как и в случае симметрич

ного взаимодействия), в то время как для случая субизлучения он равен
Γ
(0)
𝑔 = Γ𝑔

1−(−1)𝑁
2𝑁 (вместо 0, как в случае симметричной связи атомов).

Как видно, хиральный субизлучательный темп эмиссии зависит от того,
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является ли полное число излучателей в системе 𝑁 четным или нет. Бы
ла выяснена причина наличия такой зависимости, а именно, показано,
что это происходит по причине неполной деструктивной интерференции
между различными реализациями того, как система может излучить фо
тон, и является прямым следствием однонаправленности взаимодействия
излучателей.

На Рис. 3 (b) можно увидеть, что для коллективного субрадиацион
ного излучения различие между точным решением в виде полинонов из
Ур. (7) (верхняя строчка) и экспонентой 𝑒−Γ

(0)𝑡 тем меньше, чем больше
размер системы 𝑁 . Это позволяет заключить, что для систем из доста
точно большого числа атомов субрадиационный темп эмиссии адекватно
описывает временную динамику системы. Однако, как видно из Рис. 3
(с), это не вполне так для сверхизлучения: для больших 𝑁 экспонента
𝑒−Γ

(0)𝑡 и выражение из Ур. (2) (нижняя строчка) естественным образом
близки для малых значений Γ𝑔𝑡, тогда как для более поздних времен есть
конечная вероятность того, что система поглотит излученный ранее фо
тон. Такое поведение напрямую связано с математическими свойствами
функции 𝐿

(1)
𝑁−1(𝑥), поскольку она имеет 𝑁 − 1 действительный положи

тельный корень, а, значит, имеется 𝑁 − 1 актов излучения-поглощения
фотона. Тем не менее, из этих 𝑁 − 1 актов только самый первый виден
явно, тогда как все последующие имеют крайне малое значение вероят
ности в локальном максимуме по причине наличия экспоненты 𝑒−Γtot𝑡,
отвечающей за спонтанную эмиссию.

В третьей главе рассматривается задача переноса возбуждения
между возбужденными состояниями квантового излучателя с дипольно
разрешенным 𝑠 → 𝑝 переходом, когда излучатель находится в непо
средственной близости от нанофотонной структуры (см. Рис. 4 (a)) -
анизотропной метаповерхности. Было показано, что при определенных
условиях, перенос возбуждения отличается в прямом и обратном на
правлении: 𝑃𝑞,𝑞′(𝑡) ̸= 𝑃𝑞′,𝑞(𝑡). В качестве примера были взяты состояния
𝑞,𝑞′ ∈ −1,+ 1, для которых было получено:

𝑃−,+(𝑡)− 𝑃+,−(𝑡) = 𝑓(α,β)
(𝑥,𝑦),(𝑦,𝑧),(𝑧,𝑥)∑︀

(𝑘,𝑙)

𝑒(𝑔
′′
𝑘+𝑔′′𝑙 )𝑡 sin ((𝑔′𝑘 − 𝑔′𝑙) 𝑡) ,

𝑓(α,β) = 1
8 sin(2α) sin(2β) sin(β), (8)

где 𝑔′𝑘,𝑔
′′
𝑘 связаны с частотами собственных состояний и модифициро

ванными темпами эмиссии, соответственно, а α,β - углы, задающие
ориентацию локальной оси квантования излучателя (и, следовательно,
ориентацию дипольных моментов). Из уравнения выше следует, что
асимметрия в транспорте 𝑃−,+(𝑡) ̸= 𝑃+,−1(𝑡) появляется тогда, когда ди
польные моменты переходов излучателя ориентированы произвольным
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образом по отношению к направлениям высокой симметрии структуры,
а также, когда наноструктура локально полностью анизотропна. Первое
означает, что локальная ось квантования излучателя 𝑧′ (эквивалентно,
дипольный момент π-поляризованного перехода) не должна лежать ни
в одной из плоскотей, образованных главными осями метаповерхности.
Математически это означает следующее ограничение на значения углов:
α ̸= π

2𝑚, и β ̸= π
2𝑚
′, где 𝑚,𝑚′ - целые числа. Фраза же “локально

полностью анизотропна” значит, что с точки зрения излучателя все 3
главные направления структуры (метаповерхности) должны быть физи
чески не эквивалентными, или, что 𝑔′𝑘 ̸= 𝑔′𝑙 для любых 𝑘 и 𝑙. Последнее
утверждение также можно сформулировать в такой форме: никакие два
собственных состояния системы не должны иметь одинаковые частоты.

В работе также получены выражения для вероятности перехода си
стемы между возбужденными уровнями в представлении собственных
состояний. Особый интерес здесь представляют интерференционные
вклады, которые имеют следующий вид:

𝑃
(𝑘,𝑙)
𝑞′,𝑞 (𝑡) = 2

⃒⃒
⃒𝐶(𝑞′,𝑞)

𝑘,𝑙

⃒⃒
⃒ cos

[︁
(𝑔′𝑘 − 𝑔′𝑙)𝑡−φ(𝑞′,𝑞)

𝑘,𝑙

]︁
𝑒(𝑔

′′
𝑘+𝑔′′𝑙 )𝑡, (9)

где 𝐶
(𝑞′,𝑞)
𝑘,𝑙 комплекснозначная величина, φ(𝑞′,𝑞)

𝑘,𝑙 = arg
(︁
𝐶

(𝑞′,𝑞)
𝑘,𝑙

)︁
- её фаза,

причем обе величины являются функциями только углов поворота ло
кальной оси квантования излучателя α,β. Из явных выражений для этих
функций можно выявить следующее свойство φ(𝑞′,𝑞)

𝑘,𝑙 = −φ(𝑞,𝑞′)
𝑘,𝑙 , из кото

рого можно заключить, что рассматриваемый эффект является ничем
иным как фазовым сдвигом в динамике вероятностей перехода, который
появляется как результат интерференции собственных состояний излуча
теля, обусловленных его взаимодействием с электромагнитными модами
окружения.

Поскольку переходы электрона между возбужденными уровнями из
лучателя не являются напрямую наблюдаемыми, также было изучено
то, каким образом подобное нарушение симметрии во внутренней дина
мике излучателя влияет на измеряемые величины: временной профиль
детектируемой интенсивности излучения, а также полный излученный
системой спектр. С помощью использования представления собственных
состояний были получены следующие выражения для данных величин:
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Рисунок 4 — (a) Схематическое изображение рассматриваемой
системы: атом с трехкратно вырожденным возбужденным состоянием
находится вблизи нанофотонной структуры (анизотропной
метаповерхности). Дипольные моменты переходов здесь произвольно
ориентированы в пространстве. Временная динамика интенсивности
(b), и полный излученный спектр системы (c) для атома, который в
начальный момент времени находился в состоянии |𝑒𝑞0⟩. Красные линии
и маркеры соответствуют случаю изотропной метаповерхности, а синие
- анизотропной. В последнем случае как интенсивность, так и спектры
отличаются для различных начальных состояний 𝑞0

𝐼𝑞0(𝑡) = ⟨ψ(𝑡)|Ê(−)(rd)Ê
(+)(rd)|ψ(𝑡)⟩ ≈ 16π2𝑘40|d|2

⃒⃒
⃒⃒∑︁

𝑗

fj𝑒
−𝑖𝑔𝑗τ

⃒⃒
⃒⃒
2

,

𝑆𝑞0(ω) =

∞∫︁

0

𝑑𝑡2

∞∫︁

0

𝑑𝑡1

[︁
𝑒−𝑖ω(𝑡2−𝑡1)⟨Ê(−)(r, 𝑡2)Ê

(+)(r, 𝑡1)⟩
]︁
≈
⃒⃒
⃒⃒
⃒
∑︁

𝑗

𝑓 𝑞0
𝑗 (rd, ra)

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

,

(10)

где 𝑞0 ∈ {−1,0,+ 1} - индекс состояния, в котором в начальный момент
времени находился излучатель, rd - положение детектора, δ = ω−ω0 -
отстройка частоты детектора от невозмущенной частоты перехода из
лучателя, τ = 𝑡 − |R|/𝑐 время наблюдения интенсивности с учетом
запаздывания, а векторные величины fj, и 𝑓 𝑞0

𝑗 (rd, ra) связаны с генери
руемыми собственным состоянием с индексом 𝑗 в дальней зоне полями
(детали можно найти в основном тексте). Данные векторные функции
имеют следующее свойство A(𝑞0 = +1) = −A*(𝑞0 = −1), что приводит
к тому, что как интенсивность, так и спектр зависят от знака величины
𝑞0. Действительно, как показывают расчеты, представленные на Рис. 4
(b), (c), интенсивность и спектр начинают зависеть от знака проекции
спина начального состояния излучателя, если упомянутые ранее усло
вия, вытекающие из выражения (8), выполнены.

Помимо рассмотренной ранее системы, в которой атом находится
вблизи анизотропной метаповерхности, также было показано, что если
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Рисунок 5 — (a) Рассматриваемая система: димер, состоящий из двух
частиц-эллипсоидов, длинные полуоси которых лежат в параллельных
плоскостях и повернуты друг относительно друга на угол 2φ0. Атом с
𝑉 -образной структурой уровней и циркулярно поляризованными
дипольными моментами находится вблизи димера, причем центры
обоих частиц и атом лежат на оси 𝑧. (b) Зависимость асимметрии в
константах связи от координаты атома 𝑧0 и одной из частиц 𝑧2
(координата другой предполагается равной нулю 𝑧1 = 0), угол поворота
длинных полуосей φ0 = π/8. λ|| - это длина волны, при которой
максимально значение Im [α̃𝑥𝑥(ω)], где α̃𝑥𝑥 - компонента
поляризуемости эллипсоида вдоль длинной полуоси. (c) Другая схема,
в которой обе частицы и атом лежат в плоскости 𝑥𝑦, а длинные
полуоси каждого эллипсоида ориентированы произвольно, в то время
как атом находится посреди отрезка, соединяющего центры частиц на
равном от каждой из них расстоянии Δ𝑦. (d) Зависимость асимметрии
в константах связи от углов поворота длинных полуосей φ1,φ2.
Расстояние Δ𝑦 = 𝑎𝑥 + λ||/20, где 𝑎𝑥 - величина длинной полуоси
эллипсоида. Черными крестами на (b), (d) отмечены точки
максимальной асимметрии в константах связи

атом со структурой уровней 𝑉 -типа находится вблизи плазмонного ди
мера, состоящего из анизотропных рассеивателей (в качестве последних
были взяты вытянутые эллипсоиды), то оказывается возможным полу
чить сильную асимметрию в константах взаимодействия циркулярно
поляризованных переходов |𝑔+,−|/|𝑔−.+| ≫ 1(≪ 1). Одна из рассмот
ренных геометрий такой системы основана на известной плазмонной
модели Борна-Куна [36–38] (см. Рис. 5 (a)), когда длинные полуоси
эллипсоидов предполагаются находящимися в различных параллель
ных плоскостях (например, заданных двумя постоянными координатами
𝑧1, 𝑧2). Для простоты центры обоих рассеивателей и атом предполага
ются находящимися на одной оси (оси 𝑧). Вторая схема (Рис. 5 (c))
является квази-двумерной, так как для неё длинные полуоси обоих эл
липсоидов и атом лежат в одной плоскости (𝑥𝑦), а центры частиц и атом
на оси 𝑦. Геометрия в таком случае меняется расстоянием атом-рассеи



44

Рисунок 6 — (a) Схема рассматриваемой системы, вектор k здесь
показывает направление падения внешнего накачивающего поля. (b)
Асимметрия в вероятностях переноса возбуждения 𝑃−,+(𝑡), и 𝑃+,−(𝑡).
Параметры выбраны таким образом, чтобы максимизировать
асимметрию связи переходов (отмечено черным крестом на Рис. 5 (d)).
(c) Населенности возбужденных состояний как функции времени при
наличии внешней накачки. Параметры накачивающего поля подобраны
таким образом, чтобы максимизировать разницу стационарных
населенностей уровней |ρ+,+(∞)− ρ−,−(∞)|, и чтобы соответствующие
частоты Раби на обоих переходах были равны Ω− = Ω+

ватели Δ𝑦, и углами, задающими ориентации длинных полуосей φ1,φ2

эллипсоидов. Как можно видеть из Рис. 5 (b), (d) обе схемы позволяют
получить сильную асимметрию в константах связи, но последняя являет
ся более интересной, так как в ней возможно осуществить переключение
из режима |𝑔−,+|/|𝑔+−| ≫ 1 в режим |𝑔−,+|/|𝑔+−| ≪ 1 лишь небольшим
изменением углов φ1,φ2. В то же время такая схема является более про
стой геометрически, что может быть её преимуществом при создании,
например, реалистичной структуры типа метаповерхность на основе дву
мерного периодического массива анизотропных рассеивателей.

На примере структуры, представленной на Рис. 5 (c), показано, что
с её помощью действительно возможно реализовать практически одно
направленный перенос возбуждения из состояния |𝑒−1⟩ в состояние |𝑒+1⟩
как видно из динамики передачи возбуждения на Рис. 6 (b). Стоит отме
тить, что вероятность 𝑃+,−(𝑡) описывается выражением, которое было
получено во второй главе 𝑃+,−(𝑡) = 𝑒−γtot𝑡|𝐿(−1)

𝑁 (|𝑔+,−|𝑡)|2 для задачи
транспорта одиночного возбуждения в цепочке из двух (𝑁 = 2) од
нонаправленно взаимодействующих атомов. Это объясняется тем, что
переходы в 𝑉 -атоме можно представить как два взаимодействующих
двухуровневых атома, находящихся в одной точке пространства и имею
щих соответствующие дипольные моменты переходов.

Помимо изучения свободной динамики системы, индуцированной ва
куумом, также был рассмотрен случай, когда присутствует внешнее
накачивающее классическое поле. В этом случае было продемонстрирова
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Рисунок 7 — (a) Схема по селективной накачке каждого из двух
переходов в излучателе с 𝑉 -образной структурой уровней. (b)
Временная динамика населенностей возбужденных состояний на
переходах, ортогональных тем, на которых действует внешнее
накачивающее поле. Сплошная красная линия для населенности ρ+,+(𝑡)
при σ− накачке (правая схема в (a)), синяя штрихованная линия для
ρ−,−(𝑡) населенности при σ+ накачке (левая схема в (a))

но, что асимметрия во взаимодействии переходов приводит к неравным
стационарным населённостям возбужденных уровней, не смотря на то,
что параметры накачки подбирались таким образом, чтобы сила накачки
на каждом переходе была одинаковой (равны соответствующие частоты
Раби Ω− = Ω+), что продемонстрировано на Рис. 6 (c).

В работе также рассматривается еще одна схема накачки, показанная
на Рис. 7 (a). В ней параметры падающей плоской волны таковы, что пол
ное поле в точке нахождения излучателя селективно взаимодействует
либо с σ−, либо с σ+ переходом. При сильной асимметрии взаимодей
ствия |𝑔−,+|/|𝑔+,−| ≫ 1 и накачке с параметрами Ω− ̸= 0,Ω+ = 0,
атом переходит из начального состояния |𝑔⟩ в состояние |𝑒−1⟩, после чего
есть ненулевая вероятность перехода системы в |𝑒+1⟩ в силу конечности
соответствующей константы связи 𝑔+,−. Следовательно, по прошествии
достаточного количества времени устанавливается стационарное значе
ние населенности ρ+,+(𝑡→∞) (сплошная красная кривая на Рис. 7 (b)).
Однако, если накачка имеет параметры Ω+ ̸= 0,Ω− = 0, по причине
малости величины константы связи |𝑔+,−| по сравнению со всеми дру
гими параметрами в системе, отсутствует перенос населенности между
возбужденными уровнями, и вероятность нахождения системы в воз
бужденном состоянии на ортогональном переходе пренебрежимо мала
ρ−,−(𝑡) ≈ 0 (штрихованная синяя линия на Рис. 7 (b)). Это означает, что
в таком случае излучатель ведет себя как двухуровневая система, и что
оптические свойства системы в целом сильно зависят от спиральности
полного поля в точке нахождения атома.
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В заключении перечислены основные результаты данной диссерта
ционной работы, а также обсуждаются возможные будущие направления
исследований.

1. В первой главе мы рассмотрели возникновение сильно субизлу
чательных состояний, возникающих на краю зоны Бриллюэна, в
субдиффракционных периодических цепочках двухуровневых ато
мов, где увеличение времени жизни этих состояний происходит по
причине взаимодействия собственных мод и последующей деструк
тивной интерференции составляющих собственные моды вкладов.
Это приводит к наличию у этих состояний некоторых специфи
ческих свойств, таких, например, как значительно более быстрое
уменьшение темпа спонтанной эмиссии с увеличением размера си
стемы (∼ 𝑁−6.8 вместо известной ∼ 𝑁−3 зависимости), а также
более сильная локализация собственной моды за счет уменьше
ния дипольных моментов на краях цепочки. Также, упомянутая
ранее деструктивная интерференция приводит к одновременному
уменьшению многих мультипольных вкладов в дальнопольное из
лучение изучаемых субизлучательных состояний. Показано, что
наличие дополнительного канала взаимодействия между атома
ми, помимо вакуумного диполь-дипольного взаимодействия, не
приводит к исчезновению рассматриваемого эффекта, что было
продемонстрировано на примере цепочки атомов вблизи оптическо
го одномодового нановолокна.

2. Во второй главе изучена полиномиальная динамика транспорта
одиночного возбуждения в одномерной цепочке двухуровневых
атомов, которые однонаправленно взаимодействуют посредством
волноводной моды. Данная задача решена аналитически для про
извольного числа атомов, и на основании этого результата также
оценены величины темпа коллективного суб- и сверхизлучения
в одночастичном приближении. Для субизлучения темп эмиссии
в общем случае оказывается отличным от такового для случая
симметричного взаимодействия между атомами, предсказываемого
теорией Дике. Для того, чтобы объяснить возникающее отли
чие была проанализирована динамика системы в одночастичном
приближении в низшем нетривиальном порядке теории возмуще
ний, и показано, что это отличие связано с наличием неполной
деструктивной интерференции между различными возможными
реализациями процесса излучения фотона системой.

3. В третьей главе продемонстрировано, каким образом с помощью
анизотропной фотонном структуры (метаповерхности), и осуществ
ления контроля за ориентацией дипольных моментов переходов в
𝑠 → 𝑝 атоме, оказывается возможным нарушить симметрию меж
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ду прямыми и обратными квантово-механическими процессами,
которые связанны с переходом электрона из одного возбужден
ного состояние в другое. Аналитически выведены критерии для
наблюдения данного эффекта, а также показано, что он связан
с интерференцией собственных состояний системы, которые воз
никают за счет взаимодействия излучателя с электромагнитными
модами окружения. Продемонстрировано, что данная интерферен
ция приводит к наличию фазового сдвига в динамике вероятностей
перехода. Помимо этого показано, каким образом различные ве
роятности переходов в прямом и обратном направлении в такой
системе отражаются в измеряемых величинах: динамике детекти
руемой интенсивности и полном излученном системой спектре.

4. В третьей главе также предложен альтернативный способ нару
шить симметрию в вероятностях перехода системы между состо
яниями с помощью структуры на основе плазмонного димера,
состоящего из двух асимметричных дипольных рассеивателей. Пу
тем должного выбора геометрии системы, продемонстрирована
возможность практически полностью запретить переходы между
возбужденными уровнями излучателя 𝑉 -типа в одном из на
правлений. Была также проанализирована динамика системы под
действием внешнего накачивающего поля и показано, что стацио
нарные населенности возбужденных уровней в такой системе могут
быть различны, даже не смотря на равные частоты Раби для обоих
переходов. Помимо этого показано, что отклик системы на внеш
нее накачивающее поле сильно зависит от локальной спиральности
полного поля в точке нахождения излучателя.

Публикации:

Результаты, представленные в данной диссертационной работе, опуб
ликованы в следующих статьях:

I. Extremely subradiant states in a periodic one-dimensional atomic array /
Kornovan D. F., Corzo N. V., Laurat J., Sheremet A. S. // Phys. Rev.
A. — 2019. — Dec. — Vol. 100. — P. 063832. — URL: https://link.aps.org/
doi/10.1103/PhysRevA.100.063832.

II. Noninverse dynamics of a quantum emitter coupled to a fully anisotropic
environment / Kornovan D. F., Petrov M. I., Iorsh I. V. //



48

Phys. Rev. A. — 2019. — Sep. — Vol. 100. — P. 033840. — URL:
https://link.aps.org/doi/10.1103/PhysRevA.100.033840.

III. Strong coupling and non-reciprocity in the dynamics of a V-atom placed
near an anisotropic metasurface / Kornovan D. F., Petrov M. I., Iorsh
I. V. // 2018 12th International Congress on Artificial Materials for
NovelWave Phenomena (Metamaterials). — 2018. — Aug. — Pp. 228–230.

IV. Temporal dynamics of a quantum emitter with multiple excited states in
the vicinity of an anisotropic metasurface / Kornovan D. F. , Toftul
I. D., Chebykin A. V., Petrov M. I., Iorsh I. V. — Vol. 1092. — IOP
Publishing, 2018. — sep. — P. 012063. — URL:
https://iopscience.iop.org/article/10.1088/1742-6596/1092/1/012063.

V. Transport and collective radiance in a basic quantum chiral optical model
/ Kornovan D. F., Petrov M. I., Iorsh I. V. // Phys. Rev. B. — 2017. —
Sep. — Vol. 96. — P. 115162. — URL: https://link.aps.org/doi/10.1103/
PhysRevB.96.115162.

VI. Light interaction and quantum transport in atomic chain chirally coupled
to a waveguide / Kornovan D. F., Sheremet A. S., Iorsh I. V., Petrov M.
I. // 2017 11th International Congress on Engineered Materials Platforms
for Novel Wave Phenomena (Metamaterials). — 2017. — Aug. — Pp.
262–264.

VII. Collective polaritonic modes in an array of two-level quantum emitters
coupled to an optical nanofiber / Kornovan D. F., Sheremet A. S.,
Petrov M. I. // Phys. Rev. B. — 2016. — Dec. — Vol. 94. — P. 245416. —
URL: https://link.aps.org/doi/10.1103/PhysRevB.94.245416.



49

Introduction

Below we provide a literature overview along with discussions of topics
covered in each chapter as well as the brief motivation to study each of them.

The first chapter of this thesis is devoted to the study of optical
properties of periodic one-dimensional arrays of two-level atoms with dipole
moments transverse to the array axis as shown in Fig. 0.1 (a). More
specifically, we are going to focus on the states lying close to the edge of
the first Brillouin zone (Fig. 0.1 (b)), which are known to be long-lived or
subradiant [6], when the period of the system is less than a half of the resonant
wavelength 𝑎 < 0.5λ0 (λ0 = 2π𝑐/ω0).

Figure 0.1 — (a) Top figure - a pictorial representation of a 1D array of
𝑁 = 10 two-level atoms regularly spaced with a period equal to 𝑎. Black
arrows represent the associated classical dipole moments for a state of

interest. Bottom figure - probability for each atom to be excited for this
state, note how the amplitudes of the dipole moments are suppressed close
to the edges. (b) Frequencies (left axis) and lifetimes (right axis) of each

eigenstate in the system versus the associated wavenumber, note that only
a half of the Brilluoin zone is shown due to the symmetry of the problem.

Bright red solid line, and dark red open circles denote the dispersions for an
infinite and finite (𝑁 = 10) arrays, correspondingly, solid black vertical line
is the lightline, blue squares are the corresponding lifetimes of all states for

a finite array. The state of interest at the band edge is identified by an
ellipse

Optical properties of dipole arrays arranged in one-dimensional chains
have been studied extensively for a very long time already and one of the
first work related to this subject touched the effect of retardation on optical
properties of excitons in 1D [39]. Later on a huge interest to dipolar chains has
been gained due to the promising applications in plasmonics, where arrays of
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metallic nanoparticles were supposed to serve as a nanoscale waveguide for
light allowing for a deep subwavelength localization of the electromagnetic
field [40–42]. In this regard it became extremely important to better
understand the optical properties of polarization modes in particle chains,
especially the dispersion of eigenmodes, their radiative lifetimes [43–45], as
well as the propagation of excitations [43; 46; 47]; many important results of
these theoretical studies were exhaustively summarized in [48; 49]. It is also
interesting to mention that the appearance of very narrow lattice resonances
was predicted for infinite arrays of dipolar scatterers [50] as a result of
calcellation of a single particle radiation losses by the imaginary part of the
interaction through the radiation. Afterwards this was numerically shown
for finite plasmonic nanoparticle arrays [51], and later it was experimentally
confirmed that by tuning the system parameters one can control the widths
of plasmonic resonances [52] owing to the aforementioned effect.

However, there is a major drawback of plasmonic systems - the presence of
relatively large inevitable Ohmic losses, which can limit the applicability of
them in real devices. This is why an alternative approach was also considered,
for example, the one being based upon the use of optically resonant dielectric
particles with high refractive index [53]. For linear arrays of such particles
an efficient waveguiding with strong subwavelength transverse localization
(comparable to plasmonic systems) was numerically predicted [54], as well as
the possibility to exploit not only the electric dipole resonance, but also
the magnetic one [55]. Waveguiding in dielectric nanoparticle chains was
also shown experimentally in radiofrequencies [56], optical, and near-infrared
domains [57]. One of very interesting theoretical results shown for this kind of
systems was that the quality factors of guiding modes close to the edge of the
Brillioun zone demonstrate a qubic growth with the system size ∼ 𝑁 3, and
it was explained through a quantum-mechanical analogy of optical guiding
modes to localized states in a quantum well [30].

The interaction of dipole scatterers can be studied not only in the
framework of classical physics, part of which plasmonics and nanophotonics
are, but also in the area of quantum, and atomic optics. This is quite
natural as all atoms of the same chemical element are identical by nature,
and, moreover, when a particular dipole-allowed transition in an atom
is considered, the characteristic size of an atom is much smaller than
the optical wavelength. Owing to this, atomic ensembles also present an
appealing subject to study. A number of theoretical studies have been
devoted to quantum light-matter interactions in the simplest cases like a
pair of atoms put in free space and interacting through the electromagnetic
field modes [58; 59]. Later on theoretical studies of regular one-dimensional
atomic arrays in free space were also conducted [60–62], with promising
applications in many-body physics [63], atomic clocks [64], generation of long
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lived subradiant [6] states [65], etc. Even though atoms are quite different
from classical dipoles as electrons in them obey the Fermi statistics, if one
excites atoms weakly, they behave very similar to classical dipolar scatterers.
In this regard, it is also worthy to mention early theoretical works by Vadim
Markel [50; 66;67] related to dielectric, and plasmonic particle arrays, which
nevertheless grasp many important phenomena in such systems along with
important theoretical approaches to the problem.

Despite the fact that direct confirmation of the theoretical predictions
in experiment is quite challenging in atomic optics, some fascinating results
were demonstrated. For instance, the interaction between two ions, and their
super- and subradiance [68], as well as the collective effects like a cooperative
Lamb-shift for a 1D array of Sr+ ions of length up to 9 [69] were reported.
Working with neutral atom rather than ions presents a challenging problem,
especially when one wants to deterministically position them in space by
loading minima of the optical potential with a single atom per site [70].
Advances in the experiments allowed to routinely create 1D [71;72], 2D [16;
70;73–75], and 3D [17;76] arrays made of individual atoms as well as arbitrary
3D structures [17]. This opens up a whole plethora of possibilities in studying
light-matter interaction in the quantum domain experimentally, promising
many future breakthroughs yet to be demonstrated.

Figure 0.2 — A pictorial representation of atoms being trapped close to an
optical nanofiber. Standing wave formed by a red-detuned attractive laser

along with the repelling blue-detuned laser allow to create a set of
periodically spaced local minima in which at most a single atom per

minimum can be localized. In real experiments a perfect loading of all
minima with atoms is not possible due to the collisional blockade [77]

Optical trapping of atoms is possible not only in free space, but also in
the vicinity of different photonic structures. In the context of 1D systems
optical nanofibers present a special interest. Compared to a common optical
fiber, a nanofiber has a diameter of several hundred of nanometers, and
operates in a single mode regime. Trapping atoms in the vicinity of it becomes
possible by making use of two trapping lasers with opposite detunings from
the atomic resonance [78; 79] (“repelling” and “attracting” lasers), due to
the broken azimuthal symmetry of the field profile for specific modes [80],
as well as owing to the standing waves created for the trapping laser (see
Fig. 0.2), it is possible to localize atoms in all three dimensions, and fill in
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each minima of the optical potential with at most one atom [81; 82]. Atoms
localized close to a nanofiber present a realization of the so-called Waveguide
Quantum Electrodynamical (WQED) system - a theoretical concept, which
has been developed for many years already [18;83–95]. In such systems atoms,
in opposition to Cavity QED, interact not with a completely localized cavity
mode, but rather with a mode allowed to propagate along the waveguide.
An important feature of such systems is the ability to realize long-range
interactions between artificial [96] or real [22] atoms through the guided
photons, allowing to observe phenomena like coherent [97], and large Bragg
reflection from just a thousand atoms [20], superradiance [22], a possibility
to generate single photons from a collective atomic state [21], and others.
We want also to mention that in the field of WQED not only regular
optical nanofibers are used, but also alternative systems like photonic crystal
waveguides [98; 99], or hollow-core optical fibers, where, unlike for regular
fibers, the atoms are trapped inside of the structure [100; 101].

All of the above confirms that systems of interacting quantum emitters
arranged in a one-dimensional periodic chain is a very appealing object for
theoretical studies as such systems can find potential applications in many
areas of physics simultaneously. With regard to this particular thesis, in
the first chapter we are going to demonstrate that by simply tuning
the period of the array one can achieve a significant further increase in
the lifetime of subradiant states at the edge of the Brillouin zone than was
known before, and in this regime some optical properties of these modes will
be noticeably modified due to the interaction between the normal modes.
More specifically, we will show that the known scaling law of the inverse
lifetime (or, equivalently, emission rates) does not follow the aforementioned
∼ 𝑁−3 dependence shown in many previous works [30–32; 102], but rather
demonstrates a much faster decrease rate. We will also discuss how these
states are manifested in the scattering cross section spectra. We are going
to relate the appearance of long-lived modes to the band-edge dispersion
becoming flat by considering an infinite periodic dipole chain, and we will
find analytically the asymptotic value of the corresponding optimal period
for which this band-edge state appears. We will also show that for such
states a peculiar phenomena appears - simultaneous reduction of multipolar
contributions up to a high multipole order. Additionally, we will also show
that such states are preserved even in the presence of an additional interaction
channel through a guided mode of the optical nanofiber (apart from the
free-space dipole-dipole interaction responsible for the appearance of these
subradiant states).

In the second chapter we will discuss some features of the system
consisting of 𝑁 two-level atoms, which are unidirectionally coupled with
each other through a single guided mode. Namely, we will study how a single
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excitation behaves in time in such a system (see Fig. 0.3 (a)), and also look
at the collective emission in a single excitation domain, more precisely, we
want to study sub- and superradiance (see Fig. 0.3 (b)).

Figure 0.3 — (a) Schematic representation of a single-excitation transport
problem in a chain of 𝑁 two-level atoms, which are unidirectionally coupled
to a guided mode propagating along the waveguide. Here Γg is the emission

rate into the guided mode, Γr is for the emission rate into non-guided or
radiation modes. (b) A problem of a collective emission for the same system,
but now a single excitation is equivalently distributed between all 𝑁 atoms

Unidirectional coupling of emitters through a guided mode presents an
extreme case of asymmetric or chiral coupling. The asymmetry in the
atom-atom coupling is a direct consequence of chirality in the atom-guided
photon interaction, and the latter means that the strength of atom-photon
interaction may significantly depend on the direction of photon propagation
as well as the polarization of the active transition in the emitter. This
asymmetry appears due to the spin-orbit interaction of light [34] or spin
Hall effect of light [23], which couples the linear momentum (wavevector
direction) with the local spin density (the local polarization of light). This can
be superficially explained for a lightfield in a waveguide in the following way.
The field in a waveguide freely propagates along it, but it is tightly confined
in the transverse direction. The result of this confinement of the lightfield is
that there is a phaseshift of ±π/2 between the longitudinal and transverse
components of the electric field. Such a phaseshift results in the electric field
vector rotation, and this rotation, unlike in the plane wave case, happens in
the plane that is not perpendicular to the propagation direction: a situation
sometimes called a photonic wheel [103]. The sign of the aforementioned
phaseshift simply depends on whether the field propagates in the forward or
backward direction, leading to a spin-momentum locking [35], which makes
the local helicity of the guided mode being dependent on the propagation
direction. One can conclude that when studying the light-matter interaction,
the propagation direction of light controls the way it couples with matter.
Now if at a given frequency emitter has a dominant active transition with a
rotating dipole moment, it turns out that its optical response is dependent
on the direction from which the photon is coming, and this principle lies in
the heart of a vast area of research called chiral quantum optics [10].
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In the field of theory many novel physical effects have been predicted so far
in this regard, to mention a few: an asymmetric scattering, and directional
spontaneous emission [104], and the existence of a lateral Casimir-Polder force
for an atom near a single mode nanofiber [105], as well as a vacuum-dielectric
interface [106]; an improved spontaneous entanglement generation between
the two atoms chirally coupled through the guided mode [107]; formation of
dimer states in a one-dimensional chain of atoms [108], and many more.

However, such systems are of interest not just for fundamental physics, but
they also promise interesting applications. When it comes to experimental
realization, there are different platforms on which one can realize a chiral
light-matter interface. One of such platforms is based on ultracold atomic
ensembles optically trapped in the vicinity of a nanofiber [81], which we
discussed previously. For such systems many application-focused results were
demonstrated, including the creation of an optical circulator [12;109] from a
atom-cavity-waveguides system [14], optical isolator based both on a single
atom and atomic ensemble in the vicinity of a nanofiber [13], etc.

Even though ultracold atomic ensembles present an interesting and
versatile tool for experimentalists in quantum optics, it is still more of
a proof-of-principle platform as the complexity of the experimental set
up prevents it from being a suitable candidate for a realistic quantum
nanophotonic device with the possibility of on-chip integration. For this
reason alternative systems are also studied in this regard, for instance, the
ones based on quantum dots rather than atoms. For this kind of set-up a
control over emission direction with laser field polarization has been shown
[110] for two crossed waveguides, as well as deterministic photon-emitter
coupling for a quantum dot on a surface of a photonic crystal waveguide [24].
Deterministic here means that: I) the probability for an emitter to launch
the photon into the guided mode is close enough to unity [111]; II) due to the
directionality in the scattering process, the photon is predominantly emitted
into a desired direction instead of having only 50% efficiency of this process
in a non-chiral case (see Fig. 0.4). This feature is of specific importance for
practical applications, for instance, a high directionality of the spontaneous
emission is of big importance for the development of on-demand single photon
sources.

It is also important to mention that chiral quantum optical systems present
a possible realization of so-called cascaded quantum systems [112;113], where
the output of a given system is fed into the input of the other one. This is in
some sense equivalent to a unidirectional propagation as the photon scattered
by an emitter is passed further to the next one, and can be re-absorbed, and
re-emitted again without any back-reflection. More than that, theoretical
studies of light-matter interaction in a one-dimensional case, where atoms are
coupled only to a single mode [83;114;115] (sometimes referred to as a chiral
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Figure 0.4 — Illustration of atom-guided mode interaction regimes. (a) A
two-level atom with a linear dipole moment symmetrically couples to

forward and backward propagating modes, therefore, the propability to
emit a photon into a desired direction is 50%. (b) When the transition
dipole moment is a rotating one, it is possible to couple selectively to a
forward-propagating mode, for instance, which leads to a 100% of the

radiation emitted into the guided mode to propagate into a desired direction

mode) were also of interest much before the spin-orbit interaction of light and
spin-momentum locking were even discussed as such modes naturally appear
after, for instance, a proper change of basis in the subspace of photonic
states [87; 93; 116–118].

As was mentioned above, such a broken symmetry in the way emitter
interacts with the propagating photons may alter significantly how different
physical phenomena are manifested. One of such collective effects are the
sub-, and superradiance, both of these phenomena were a subject of a large
amount of studies for a long time both in theory [6–9; 115; 119–125] and
experiments [22;68;126–133] for different kinds of systems. As was discussed
previously by researchers [10;134] chirality, indeed, should alter the way how
a system that was initially put into a collective sub- or superradiant state
decays in comparison with the case of symmetric interaction. However, this
was only stated as a matter of fact, and not described neither qualitatively,
nor quantitatively by finding the chiral emission rates. This is exactly what
is going to be covered in the second chapter: we will derive the values of
sub- and superradiant single-excitation chiral emission rates, and will explain
the appearing discrepancies with the case of symmetric interaction, where
appropriate.

The third chapter of this thesis is also devoted to the subject
of chiral coupling. However, instead of considering how distant atoms
with rotating dipole moments can be asymmetrically coupled through the
electromagnetic modes of the environment, and what kind of consequences
such an asymmetric interaction has, we will study chiral interaction of
circularly polarized transitions inside a single quantum emitter. The interest
to this problem began to raise in the scientific community with the
appearance of the pioneer work by Girish Agarwal [135], where he proposed
the following idea. Imagine an atom with two excited states with closely lying
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transition frequencies and circularly polarized transition dipole moments (it
can be a V-type atom, for example, as shown in Fig. 0.5). If such an atom
is placed into free space, these two transitions are orthogonal, which means
that the transition rate for an electron to be transferred from one excited
state to the other is zero (Fig. 0.5, (a)). This is a direct consequence of
the isotropy of free space, or, mathematically it can be directly linked to
the fact that the classical electromagnetic local Green’s tensor for the free
space is proportional to a 3 × 3 unit tensor. However, if one puts an atom
close to an interface between two different media then the isotropy of space is
broken, and, therefore, the two transitions can be coupled (Fig. 0.5, (b)). This
phenomenon was named Anisotropic Vacuum-Induced Interference (AVI),
and the consequence of this effect is that the population can be transferred
between the excited states even in the absence of any external pumping
laser field.

Figure 0.5 — An example of a system, where one can observe the AVI. (a)
A V-type atom with two excited states |𝑒−1⟩, |𝑒+1⟩ with corresponding
rotating transition dipole moments d±1 = ∓ |d|√

2
(ex ± 𝑖ey) that are not

coupled in free space due to isotropy as 𝑥, and 𝑦 directions are equivalent,
only the spontaneous emission from both of the excited states is present.
(b) The same V-atom, but put in the vicinity of a nanostructure. Apart

from the spontaneous emission there is coupling between the states due to
the AVI effect (𝑥, and 𝑦 are not equivalent anymore) characterized by

constants 𝑔−1,+1, 𝑔+1,−1, and this coupling leads to the population transfer
between the states. Note that it is assumed that both transition dipole

moments rotate in the 𝑥− 𝑦 plane

After this, many theoretical works were devoted to the studies of this effect
for different kinds of photonic, and plasmonic structures: AVI for an atom in
a planar multilayer dielectric medium [136], a strong enhancement of the AVI
effect owing to the use of left-handed materials [137] or plasmonic structures
[138; 139], etc. Much later G. Agarwal along with S. Hughes [140] discussed
another interesting consequence of this effect: the possibility to enhance or,
more importantly, suppress the emission rate of an atom due to constructive
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or destructive interference between the decay channels. AVI also led to the
unusual spectral properties of a V-type emitter under the external pumping:
instead of the Mollow triplet [141] appearing for a two-level atom, a much
richer spectrum is observed due to the dressing of the field-driven exciting
states by the electromagnetic vacuum. Even though in this paper S. Hughes,
and G. Agarwal proposed a set-up with a potential experimental realization,
and they have used experimentally feasible parameters in their model, to
our knowledge, there is no confirmed direct observation of this phenomenon.
However, we must say that the anisotropic spontaneous emission rate, for
instance, has been reported by Peter Lodahl’s team [142] for a quantum dot
put on a two-dimensional photonic crystal. The reason for the lack of an
experimental demonstration is due to the requirement to get into the strong
coupling regime when the active transitions are interacting strong enough
to achieve a sufficient level splitting between the dressed states, leading to
the energy exchange between the bare states of the emitter. This can be
realized when a quantum emitter is positioned very close to the surface of
the structure compared to the corresponding resonant wavelength. However,
in this case surface interactions like Casimir-Polder interactions [143; 144],
surface thermal noise and etc. might play a very significant role, and make
it extremely challenging to perform such an experiment.

In order to overcome these difficulties, it was proposed to enhance the
AVI even when the emitter is positioned in the far-field region from the
structure surface [145] by using a specifically designed array of antennas
with a subwavelength size (an optical metasurface), which plays a role of
a “mirror” for an emitting dipole. It was shown theoretically that in this
set-up a population transfer on the order of 1% is achievable even if the
emitter is positioned 20 resonant wavelengths away from the structure. Later
on metasurfaces of other designs were proposed to generate spontaneous
coherence between different states of excitons in novel two-dimensional
materials [146], and between the ground states of a λ-type atom [147].
The metasurface mentioned above [148; 149] is a two-dimensional version
of a metamaterial [150; 151] - an artificially created medium made of
subwavelength optical photonic and/or plasmonic elements called meta
atoms. The use of such meta-atoms along with their proper arrangement
allows to achieve optical properties not found in natural materials, for
instance, the ability to shape the profile of lightfields at a deep-subwavelength
scale.

In sharp contrast to previous studies, we have also shown in the third
chapter that the interaction betweeen the excited states due to the AVI effect
can be asymmetric, and even unidirectional - a subject that has not been
discussed at all up to now. One can formulate the goal in the following way: we
want the probabilities of an electron to make transitions between the excited
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Figure 0.6 — (a) The two quantum mechanical states of the system, which
are coupled due to some interaction between them. Our primary goal is to

achieve inequality in the transition probabilities 𝑃2←1 ̸= 𝑃1←2. (b) An
example of a system, where one can achieve asymmetry in transitions: a

4-level atom with a triple degeneracy in the excited state, which is placed in
the vicinity of an anisotropic metasurface so that the dipole transitions
become coupled due to the AVI effect. (c) Another example of a system

allowing to achieve this kind of asymmetry: a V-type atom with 2 excited
states, which interact through the electromagnetic modes of a structure - a

plasmonic dimer made of asymmetric particles

states in one and in the opposite directions to become unequal 𝑃−1,+1 ̸=
𝑃+1,−1. We will demonstrate that there are at least two ways of doing so. The
first way is to consider interaction with the modes of a nanophotonic structure
that is locally fully anisotropic, which means that not just two, but all three
directions are physically not equivalent (Fig. 0.6 (b)). Another important
requirement is that one has to consider an arbitrary orientation of transition
dipole moments with respect to highly symmetric directions characterizing
the structure. The second way physically looks very similar to what has
been discussed in the previous chapter: we will present an example of a
very simple structure based on a pair of anisotropic scatterers (Fig. 0.6 (c)),
which allows to completely forbid transitions of an electron in one direction,
which means that the corresponding coupling constant zero: 𝑔−1,+1 = 0. We
will also discuss how both of these effects can be, in principle, observed in
the experiment.
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1. Extreme subradiance in subdiffractional periodic dipolar chains

1.1 Single-photon scattering on a two-level atom chain in free
space: theoretical framework

Figure 1.1 — 𝑁 two-level atoms with resonance transition frequency ω0,
and transition dipole moment d are arranged in a periodic one-dimensional
chain along the ez direction. The period Δ𝑧 is such that it is smaller than a
half of a resonant wavelength λ0 = 2π𝑐/ω0, (shown in green) where 𝑐 is the

speed of light

In this chapter, we want to study optical properties of a very simple system
(see Fig. 1.1): an ensemble of 𝑁 two-level atoms, which are arranged in a one
dimensional periodic chain along a given direction (let us call it the 𝑧-axis).
Atoms are characterized by transition dipole moments d, and resonance
frequency ω0, or, equivalently, by a resonant wavelength λ0 = 2π𝑐/ω0. It is
known [43] that there are two principally important types of modes in 1D
chains of dipole scatterers: the ones with dipole moments being transverse or
longitudinal to the chain axis, and we will consider only these two cases from
now on. We are also going to study only the case, when the spacing between
the atoms is smaller than a half of a resonance wavelength Δ𝑧 < λ0/2 as
in this subdiffractional regime the subradiant states appear with linewidths
being much smaller than that of an isolated single atom, and these subradiant
states will be of special interest for us. This can be easily understood if one
views this system as a diffraction grating, then with such a spacing between
the atoms there are no open diffraction channels, therefore, radiation losses
into the far-field can be highly suppressed.

Here we will not only study the polarization eigenmodes in such a chain,
but also how they affect the spectral properties of the system, for instance,
the single photon scattering cross-section. Therefore, we need to discuss how
a single photon of the field mode scatters off 𝑁 two-level atoms, so that the
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initial, and the final states in the scattering process can be written as: |𝑙⟩ =
|𝑔⟩⊗𝑁 |1µ⟩, |𝑘⟩ = |𝑔⟩⊗𝑁 |1µ′⟩. The index µ = (k, 𝑠) here indicates the field
mode with the wavevector k, and polarization 𝑠, |𝑔⟩⊗𝑁 in |𝑙⟩, and |𝑘⟩ indicates
that for both initial, and final state all 𝑁 atoms are in the ground state.

The process of photon scattering is described by the 𝑇 -matrix, or
transition matrix [4], which has the form:

𝑇 = 𝑉 + 𝑉 �̂�(𝐸 + 𝑖0)𝑉 , (1.1)

where �̂�(𝐸) =
1

𝐸 − �̂�
is the resolvent operator of the full Hamiltonian

�̂� consisting of the unperturbed part �̂�0, and perturbation 𝑉 . We
consider two-level atoms with dipole-allowed |𝑔⟩ ↔ |𝑒⟩ transition, so that
the unperturbed Hamiltonian is written as �̂�0 =

∑︀
k,𝑠 ℏωk,𝑠�̂�

†
k,𝑠�̂�k,𝑠 +∑︀𝑁

𝑗=1 ℏω0 (|𝑔⟩⟨𝑔|)⊗𝑁−1 |𝑒𝑗⟩⟨𝑒𝑗|, and the perturbation in the dipole
approximation reads as 𝑉 = −∑︀𝑁

𝑖=1 d̂𝑖Ê(r𝑖), with d̂𝑖 = 𝑑𝑖,𝑒𝑔σ̂
+
𝑖 + 𝑑𝑖,𝑔𝑒σ̂

−
𝑖

being the operator of dipole moment for atom 𝑖, and Ê(r𝑖) here is the field
operator calculated at the corresponding atomic position r𝑖.

Instead of finding the resolvent operator �̂� exactly on the whole Hilbert
space of the problem, one can rather calculate the corresponding projection
of this operator onto the relevant Hilbert subspace [4]:

𝑃�̂�(𝐸)𝑃 = 𝑃
1

𝐸 − �̂�0 − Σ̂(𝐸)
𝑃 ,

Σ̂(𝐸) = 𝑉
1

𝐸 − �̂�
𝑉 , (1.2)

where 𝑃 is the corresponding projector, and Σ̂ is the level-shift operator (also
called the self-energy part). The subspace onto which the resolvent has to be
projected can be easily found from the form of the initial and final states, and
the outer perturbation operators 𝑉 entering the definition of the 𝑇 -matrix in
Eq. (1.1). The right 𝑉 operator absorbs the incoming photon from mode µ,
and simultaneously excites one out of 𝑁 atoms, while the right 𝑉 operator de
excites one atom, creating an out-going photon in the mode µ′. Therefore, the
projection operator is equal to: 𝑃 =

∑︀𝑁
𝑖=1 |𝑒𝑖⟩|𝑔⟩𝑁−1|{0µ}⟩⟨{0µ}|⟨𝑔|⊗𝑁−1⟨𝑒𝑖|.

The level-shift operator Σ̂, as can be seen from Eq. (1.2), provides
the modification of the unperturbed Hamiltonian spectrum �̂�0 due to the
interaction 𝑉 . In the lowest (2nd order) of perturbation theory, this operator

can be written as Σ̂(𝐸) ≈ 𝑉
(︁
𝐸 − �̂�0

)︁−1
𝑉 . We also study near-resonant

scattering, which means that the frequency of the incoming photon ω is
very close to the resonance frequency of the corresponding atomic transition
ω0. In this regard, we can assume that Σ̂(𝐸) is a slowly varying function of
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its argument (𝐸 = ℏω ≈ ℏω0), and treat it as a quantity independent of
the energy of the incoming photon, taking it at the frequency of the atomic
transition Σ̂(𝐸) ≈ Σ̂(ℏω0). One can see from Eq. (1.2) that the level-shift
operator has to be also found only in the subspace of states corresponding
to 𝑃 , where it is equal to [152; 153]:

Σ𝑛,𝑛(ℏω0) = ℏ
(︁
Δvac

L − 𝑖
γ0

2

)︁

Σ𝑚,𝑛(ℏω0) = −d𝑚,𝑒𝑔

[︂
𝑘20𝑒

𝑖𝑘0𝑅

𝑅

(︂(︂
1 +

𝑖𝑘0𝑅− 1

𝑘20𝑅
2

)︂
I

+
R⊗R

𝑅2
· 3− 3𝑖𝑘𝑅− 𝑘2𝑅2

𝑘2𝑅2

)︂]︂
d𝑛,𝑔𝑒. (1.3)

In the above Δvac
L is the vacuum Lamb shift, γ0 =

4|d|2ω3
0

3ℏ𝑐3 is the spontaneous
emission rate for a two-level atom put in free space, 𝑘0 = ω0/𝑐 is the resonant
wavenumber, R = |r𝑖 − r𝑗| is the distance between the atoms i and j, I is
the 3× 3 unit matrix, and ⊗ is the outer (dyadic) product. This is nothing
else than a classical dipole-dipole interaction of atomic transitions through
the electromagnetic field, which can be fully described by the classical
electromagnetic Green’s tensor [152]. Here Σ𝑛,𝑛 physically corresponds to
the interaction of the atomic transition with itself in a given atom, and the
real part of this interaction energy ℏΔvac

L is formally divergent as naturally
comes from the properties of the vacuum classical electromagnetic Green’s
tensor. This quantity, as usually, is considered to be already included into
the definition of the atomic transition frequency ω0.

In free space scattering it makes sense to characterize the process by the
total scattering cross section, which can be found through the optical theorem
as [153]:

σtot = −
2V
ℏ𝑐

Im 𝑇𝑖𝑖(𝐸𝑖 + 𝑖0), (1.4)

where V is the quantization volume. We mentioned before that Σ̂ alters the
eigenstates of �̂�0, and the new eigenstates of the system are of collective
nature. Therefore, it makes sense to rewrite the optical theorem so that it
accounts for this fact and expresses the cross section as a sum of contributions
from each eigenstate. To do this, first notice that from Eq. (1.2) it is obvious
that both matrices Σ, and 𝐺 have the same set of eigenvectors, as 𝐸 −
𝐻0 is a diagonal matrix. Let ΛΣ be the matrix Σ in the eigenbasis, and 𝑆
is the corresponding transformation matrix to this eigenspace, then Σ =
𝑆ΛΣ𝑆

−1. Having that, and the form of the electric field operator �̂�(r) =
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∑︀
k,𝑠 𝑖
√︁

2πℏω
V
(︀
�̂�k,𝑠ek,s𝑒

𝑖kr − ℎ.𝑐.
)︀
, we can rewrite Eq. (1.4) as:

σtot(Δ) =
𝑁∑︁

𝑗=1

σ𝑗(Δ) = −3πℏγ0
𝑘20

Im
𝑁∑︁

𝑗=1

𝑓𝑗
ℏΔ− λ𝑗

,

𝑓𝑗 =
[︀(︀
𝑒−𝑖kr1, ..., 𝑒−𝑖krN

)︀
𝑆{:,𝑗}

]︀
·
[︁
[𝑆−1]{𝑗,:}

(︀
𝑒𝑖kr1, ..., 𝑒𝑖krN

)︀𝑇]︁
, (1.5)

here 𝑆{:,𝑗} denotes the 𝑗th column of the matrix 𝑆, 𝑓𝑗 is the complex
valued oscillator strength amplitude of the eigenstate 𝑗. In its definition,(︀
𝑒𝑖kr1, ..., 𝑒𝑖krN

)︀
comes from the phase that an incoming photon imprints

on each atomic eigenstate (similarly for the out-going photon), therefore,
𝑓𝑗 is proportional to the overlap between the photon and the eigenstate 𝑗.

The normalization is such that
𝑁∑︀
𝑗=1

𝑓𝑗 = 𝑁 , which means that there are 𝑁

collective states in total. We want to note that expressions similar to those in
Eq. (1.5) were first derived for a collection of classical dipole scatterers [154].

The expansion Eq. (1.5) allows to express the contribution of each
eigenstate to the total cross section, and such contributions can be written as:

σtot(Δ) =
∑︁

𝑗

σ𝑗(Δ) = −3πℏγ0
𝑘20

∑︁

𝑗

𝑓
′
𝑗λ
′′ + 𝑓

′′
𝑗

(︀
ℏΔ− λ′𝑗

)︀

(ℏΔ− λ′𝑗)2 + λ′′2𝑗
, (1.6)

in the above prime sign indicates the real part of the quantity, while the
double prime - the imaginary part. Now we can clearly see that each σ𝑗(Δ)
consists of two terms: Lorentzian-shaped term proportional to 𝑓

′
𝑗 (dissipative

term), and asymmetric term proportional to 𝑓
′′
𝑗 (dispersive term). The

dispersive term appears as a result of interaction between the atoms, which
can be illustrated by the following example. Consider a simple case with
𝑁 = 1, then 𝑓 = 1, and 𝑓

′′
= 0, so the total scattering cross section for an

isolated atom takes the form σ1a(Δ) =
3πγ0
𝑘20

γ0/2

Δ2 + γ20/4
, with the resonant

value equal to σ1a(0) = 6π𝑘−20 , as expected. The same spectral profile will be
obtained if one considers a collection of non-interacting atoms (spaced very
far from each other) - the cross section will be a sum of contributions from
each atom σ𝑁a(Δ) = 𝑁σ1a(Δ). However, for 𝑁 > 1, in case of interacting
atoms, 𝑓𝑗 might have both real and imaginary parts (apart from some very
specific cases), therefore, leading to the appearance of asymmetrical peaks
in the spectrum.

There is another reason to use the expansion presented in Eq. (1.5). As
Equations (1.4), (1.2) suggest, in order to find the value of σtot(ω) at a
particular frequency, one has to invert the operator ℏω−�̂�0−Σ̂(ℏω0), which
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Figure 1.2 — (a), (b) Spontaneous emission rates γ𝑗/γ0 for the case of
𝑁 = 3 atoms versus the period Δ𝑧/λ0. Blue dashed, green dashed-dotted,
and red dotted lines correspond to three states with different values of the

nearest-neighbor correlation function Eq. (1.9). (c), (d) The total cross
sections as well as σ𝑗(Δ) contributions, calculated for the periods Δ𝑧 giving

the minimal γ𝑗/γ

is an 𝑁 ×𝑁 matrix for 𝑁 two-level atoms. Instead, if one diagonalizes the Σ
matrix first (finds both eigenvalues, and eigenvectors), the total cross section
can be easily found with the help of Eq. (1.5). For large atomic ensembles this
might be an important trick to use in order to save the computational time.

1.2 An example of 𝑁 = 3 atoms in a chain

Now let us proceed by looking in-details at the case of 𝑁 = 3 atoms, for
which the matrix of the level-shift operator has the form:

Σ =

⎛
⎝
−𝑖γ0/2 Σ1 Σ2

Σ1 −𝑖γ0/2 Σ1

Σ2 Σ1 −𝑖γ0/2

⎞
⎠ , (1.7)
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where Σ1 expresses the coupling of the nearest neighbors (atoms 1-2, and
2-3), while Σ2 is related to the interaction of the next nearest neighbors
(atoms 1-3). The eigenvalues for this matrix can be readily written:

λ1 =
1

2

(︂
−𝑖γ0 + Σ2 +

√︁
8Σ2

1 + Σ2
2

)︂
,

λ2 = −𝑖γ0/2− Σ2, (1.8)

λ3 =
1

2

(︂
−𝑖γ0 + Σ2 −

√︁
8Σ2

1 + Σ2
2

)︂
.

In order to characterize the corresponding eigenvectors, there is an illustrative
measure introduced in [61]:

⟨𝑓 𝑗
𝑖,𝑖+1⟩ =

1

𝑁 − 1

𝑁∑︁

𝑖=1

cos(φ𝑗
𝑖+1 −φ𝑗

𝑖 ), (1.9)

with φ𝑗
𝑖 = arg

[︁
𝑐𝑗𝑖

]︁
being the phase of the probability amplitude for atom 𝑖 in

eigenstate 𝑗 to be excited. As these probability amplitudes can be classically
interpreted as the values of dipole moments, the quantity above is an average
correlation between all nearest neighbors in a chain, hence the name - nearest
neighbor correlation function. It is equal to +1, when all dipole moments are
parallel, and −1, when any two nearest neighbors are anti-parallel.

The spontaneous emission rates given by γ𝑗 = −2Im [λ𝑗], as Eq. (1.9)
suggests, are illustrated in Fig. 1.2 (a), and (b), where (a), and (b) correspond
to the case of transition dipole moments being perpendicular or parallel to
the chain (transverse, and longitudinal modes of the system [43]). Note that
for the transverse case, there is a specific period Δ𝑧, for which the local
minimum of γ𝑗/γ0 is achieved for the mode with ⟨𝑓𝑗,𝑗+1⟩ ≈ −1. For the
longitudinal case there is also a similar minimum, but much less pronounced,
and it appears for a different value of the period. As seen from Fig. 1.2 (c), and
(d), these states are present in the scattering cross section spectra as sharp
asymmetric peaks, and this asymmetry is the result of an anti-symmetric
part ∼ 𝑓

′′
𝑗 giving a significant contribution to the cross section.

1.3 Subradiance for larger arrays

In the previous part we observed that there is a state with a reduced
emission rate achieved at a specific period of the system Δ𝑧 for 𝑁 = 3 two
level atoms, in this part we will discuss what happens as if we consider a larger
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Figure 1.3 — (a), (b) Spontaneous emission rates γ𝑗/γ0 for 𝑁 = 10
different eigenstates as a function of the array period Δ𝑧 for transversal (a),
and longitudinal (b) modes. Red arrow points at the global minimum of the

emission rate, and the corresponding optimal period. (c) The total cross
section (dashed black) σtot for the transverse orientation of the dipole
moments and an array period shown by the red arrow in (a), which is
approximately Δ𝑧 ≈ 0.23λ0. The inset shows the region near the most

subradiant state more in-detail

number of atoms 𝑁 . We can expect that as the number of atoms increases,
the collective effects become more pronounced. Indeed, as can be seen from
Fig. 1.3, now the relative reduction of the emission rate (subradiance) is
much larger for 𝑁 = 10 than we observed previously for 𝑁 = 3. By
comparing the Figures 1.3 (a) and (b) we can also see that for larger arrays the
difference between the transverse and longitudinal modes becomes very clear:
for longitudinal modes there is no such optimal period that would allow for
the significant reduction of the linewidth for any mode of the system, γ𝑗/γ0
as functions of Δ𝑧 look rather smooth with no pecularities/dips whatsoever.

Interestingly, for transversal modes, there are many peaks corresponding
to subradiant states, all of which appear for periods, roughly speaking, Δ𝑧 <
λ0/4, while for λ0/4 < Δ𝑧 < λ0/2 emission rates demonstrate a quite smooth
behavior similarly to longitudinal modes. Obviously, for Δ𝑧 > λ0/2 there is
no subradiance as the array is not subdiffractional anymore, and all of the
collective states have significantly larger values of γ𝑗.

As an example, in Fig. 1.3 (c) we present cross section spectrum, and its
eigenstate expansion, for a system period corresponding to a minimal possible
γ𝑗/γ0 (specified by a red arrow in Fig. 1.3 (a)). As in 𝑁 = 3 case, there is a
distinct sharp and quite asymmetric peak as an evidence of the subradiant
state. However, we should note that a large amplitude in σtot near the spectral
position of this peak is a result of several overlapping resonances, leading to
a large cross section value.

One of the important characteristics of optical states with small emission
rate is how does this quantity scale with the system size 𝑁 . It was known
already that for a subdiffraction chain of dielectric particles the modes at
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the band-edge (and, therefore, the smallest value of the nearest-neighbor
correlation function ⟨𝑓𝑗,𝑗+1⟩) demonstrate the quality factors scaling ∼ 𝑁 3

[30]. During recent years this question was also revisited in the context of
atomic optics, where it has been shown theoretically that the linewidths
of subradiant states close to the edge of the Brillouin zone decrease as ∼
𝑁−3 [31; 32; 155].

However, in these studies researchers did not try to optimize the emission
rate, they rather tried to understand the general behavior of such states. It
turns out that if one properly tunes only a single parameter - the period
Δ𝑧 - it immediately becomes possible to achieve a much smaller value of
γ𝑗 (as in Fig. 1.3 (a)). The emission rate scales as ∼ 𝑁−6.88 in contrast to
a known ∼ 𝑁−3 scaling law, as can be seen from Fig. 1.4 (a). This faster
decaying scaling law is possible to achieve due to a proper tuning of the
period for each 𝑁 , as seen from Fig. 1.4 (b). For large enough number of
atoms 𝑁 ≫ 1, the value of this optimal period saturates, reaching the one
close to Δ𝑧sub ≈ 0.241λ0. We will clarify on why the asymptotic optimal
period has this exact value, and derive it precisely later.

As we know from Eq. (1.5), in the scattering problem, apart from the
eigenenergies λ𝑗, we also need to know the oscillator strength amplitudes 𝑓𝑗.
As can be seen from Fig. 1.4 (c), the absolute value of this quantity |𝑓𝑗|
follows a quite similar behavior to the observed before for γ𝑗(𝑁), but with
some additional “oscillations”. This difference from a simple ∼ 𝑁α behavior
comes from a varying overlap between the incoming 𝑧-propagating photon,
and the collective eigenmode as 𝑁 increases. By having a closer look, one
can see that the distance between the local minima of 𝑓𝑗(𝑁) is close to be
Δ𝑁 = 4 in the case of the optimized period Δ𝑧sub. The reason for this can
be easily understood from the following: for large enough 𝑁 , as 𝑁 increases
further, the phase structure of a given collective mode does not change too
much, however, the total phase acquired by a photon propagating along the
chain grows linearly with 𝑁 . Therefore, as Δ𝑧sub ≈ 0.241λ0 for large 𝑁 (as
the period is close to 0.25λ0), we can expect that the oscillating part will
have a half-period approximately equal to Δ𝑁 = 4 as Δ𝑁Δ𝑧sub/λ0 ≈ π.

Now that we have discussed how do different quantities vary with 𝑁 , it
makes sense to analyze the limit of an infinite chain 𝑁 →∞, as in this case
some things can be found analytically due to the periodicity of the system.
Indeed, as we will show in the next part, the analysis of polarization waves
dispersion will clarify certain things about the appearance of these highly
subradiant states.
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Figure 1.4 — (a) Scaling laws for the emission rates γ𝑗/γ0 of the most
subradiant states with the number of atoms 𝑁 ; blue open squares - the
period of the system is fixed, and equal to Δ𝑧 = 0.3λ0, red open circles -

the period of the system is optimized for each 𝑁 , α is the coefficient
specifying the characteristic scaling with 𝑁 (γ𝑗 ∼ 𝑁α), light blue, and light
red solid lines demonstrate the corresponding fitting curves ∼ 𝑁α. (b) The
array periods Δ𝑧 used in (a) versus the number of atoms 𝑁 , note that the

red open circles approach the value close to Δ𝑧sub ≈ 0.241λ0 for large
𝑁 ≫ 1. (c) The absolute value of the corresponding oscillator strength
amplitude |𝑓𝑗|. Pay attention to oscillations, and to a general behavior

quite similar to γ𝑗/γ0

1.4 Infinite dipole chain limit

It is very instructive to consider the limit of an infinite dipolar chain,
namely, the dispersion of polarization waves in it. This problem has been
studied extensively in the past [43–45; 48; 156], and the key result can be
represented in the following form:

1 +
α(ω)

Δ𝑧3
Σ̃(ω, 𝑘𝑧) = 0,

Σ̃(ω, 𝑘𝑧) = Li3(𝑒𝑖(𝑘+𝑘𝑧)Δ𝑧) + Li3(𝑒𝑖(𝑘−𝑘𝑧)Δ𝑧)−
𝑖𝑘Δ𝑧

[︁
Li2(𝑒𝑖(𝑘+𝑘𝑧)Δ𝑧) + Li2(𝑒𝑖(𝑘−𝑘𝑧)Δ𝑧)

]︁
−

(𝑘Δ𝑧)2
[︁
Li1(𝑒𝑖(𝑘+𝑘𝑧)Δ𝑧) + Li1(𝑒𝑖(𝑘−𝑘𝑧)Δ𝑧)

]︁
, (1.10)

where α(ω) is a dipole polarizability of an individual scatterer (a two-level
atom in our case), Σ̃(ω, 𝑘𝑧) is a dipole sum for transversally oriented dipole
moments, this sum takes into account interactions between the scatterers,
𝑘𝑧 is the wavenumber of the polarization wave along the chain. Li𝑛(𝑥) is
a polylogarithm function. Strictly speaking, one has to numerically find
self-consistent complex-valued solutions to the equation above. However,
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recall that we consider two-level atoms in free space, and in this case the
semiclassical polarizability can be written as [157]:

α(ω) = − 3

2𝑘30

γ0/2

(ω−ω0) + 𝑖γ0/2
. (1.11)

This function has a very narrow peaked response in the frequency range close
toω0, as usually for atomsω0 ≫ γ0 by many orders of magnitude. Therefore,
outside of this frequency range atoms respond to the external fields weakly.
Mathematically, we can think of it as α(ω) cuts off a very narrow spectral
range around ω0 in Eq. (1.10), while the dipole sum can be taken exactly
at the resonance frequency Σ̃(ω, 𝑘𝑧) ≈ Σ̃(ω0, 𝑘𝑧). Such an approximation
assumes that Σ̃(ω, 𝑘𝑧) is a slowly varying function of ω around ω0, and
does not vary significantly in the range of several γ0 around the resonance
frequency, which is why it can be simply assumed to be constant.

Now we multiply both sides of Eq. (1.10) by α−1(ω), and also take the real
part of the result, and after that we can finally write the explicit analytical
form for the dispersion relation:

Δ

γ0
=

3

4𝑘30Δ𝑧3
Re
[︂
Li3(𝑒𝑖(𝑘0+𝑘𝑧)Δ𝑧) + Li3(𝑒𝑖(𝑘0−𝑘𝑧)Δ𝑧)−

𝑖𝑘0Δ𝑧
[︁
Li2(𝑒𝑖(𝑘0+𝑘𝑧)Δ𝑧) + Li2(𝑒𝑖(𝑘0−𝑘𝑧)Δ𝑧)

]︁

− (𝑘0Δ𝑧)2
[︁
Li1(𝑒𝑖(𝑘0+𝑘𝑧)Δ𝑧) + Li1(𝑒𝑖(𝑘0−𝑘𝑧)Δ𝑧)

]︁ ]︂
.

Recall that previously we mostly concentrated on looking at the modes with
⟨𝑓𝑗,𝑗+1⟩ ≈ −1, which means that nearest dipole moments are almost perfectly
anti-parallel. For an infinite chain it corresponds to the band edge, where
𝑘𝑧 = π/Δ𝑧, so, let us expand the dispersion Equation (1.6) near this point
in powers of (β − π), where β = 𝑘𝑧Δ𝑧:

Δ

γ0
= 𝑐2(β0) · (β− π)2 + 𝑐4(β0) · (β− π)4 + ...

𝑐2(β0) = 4Ln
[︂
2

⃒⃒
⃒⃒cos

(︂
β0

2

)︂⃒⃒
⃒⃒
]︂
+
β0 (−β0 + sin (β0))

cos2
(︁
β0

2

)︁ , (1.12)

where β0 = 𝑘0Δ𝑧. The 𝑐2 coefficient as a function of a dimensionless
parameter β0 is plotted in Fig. (1.5) (a), from which one can see that there
is a point at which 𝑐2 = 0, and it corresponds to a period approximately
equal to Δ𝑧opt/λ0 ≈ 0.2414.... This value agrees nicely with our previous
numerical finding presented in Fig. 1.4 (b).

One can compare the dispersion curves plotted in Fig. 1.5 (b) for a period
of Δ𝑧 = 0.3λ0 (where 𝑐2 ̸= 0, quadratic behavior), and for the optimal
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Figure 1.5 — (a) 𝑐2(β) coefficient from Eq. (1.12) versus β0/π = 𝑘0Δ𝑧/π.
Red circle specifies the point of 𝑐2(β0) = 0. (b) Dispersion curves for a

regular period Δ𝑧 = 0.3λ0 (blue line), and for an optimal period,
corresponding to 𝑐2(β0) coefficient being equal to zero (red line). The inset

shows more in-detail the behavior of two curves near the band edge

period (𝑐2 = 0, quartic behavior). As can be seen from the inset figure,
in the latter case the dispersion curve is much flatter close to the band
edge. This situation, when dispersion of waves behaves in such a way, is
called Degenerate Band Edge (DBE) [33]. It was studied a lot for photonic
crystals, where researchers introduced additional degrees of freedom into the
system (bianisotropy of layers of the material, non-trivial unit cell, etc.) in
order to achieve the regime, when the eigenmodes close to the band edge
become degenerate, hence the name of the effect. However, in our system
we have a single dipole in a unit cell, but unlike in photonic crystals studied
in [33], where layers exchange plane-wave like lightfields, dipoles interact with
each other through a dipole-dipole interaction (Eq. (1.3)), which is of more
peculiar form than the interaction through the exchange of plane waves. We
can speculate a little that such a peculiar behavior of the interaction potential
with Δ𝑧 allows one to achieve degeneracy despite the unit cell being trivial.

Even though by considering the infinite chain limit (𝑁 →∞) we were able
to obtain the explicit equation for the limiting value of an optimal period,
we still can not directly relate it to the reduced radiation losses. This is due
to a simple fact that such an infinite subdiffractional Δ𝑧 < λ0/2 chain is not
allowed to emit any radiation into the far-field due to the absence of open
diffraction channels, which is why now we come back to the consideration of
a finite dipole chain, and the analysis of the mode profile.
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1.5 The eigenstate structure

Up to now we did not discuss in details how do the eigenstates of the
problem look like. The reason for this is that the eigenvectors of a 𝑁 × 𝑁
matrix Σ(ℏω0) from Eq. (1.3) can not be found exactly. However, it does
not mean that we can not approximate them by using some ansatz. The
matrix Σ is complex symmetric, and, in general, the eigenvectors are also
complex-valued. Nevertheless, we can take the solution to the same problem,
but with the Tight-Binding Approximation (TBA) being introduced, where
only nearest-neighbor interactions are taken into account. This leads to a
tridiagonal form of Σ(ℏω0) matrix, and the following analytical form of the
eigenvectors:

ψ(𝑘)
𝑛 =

√︂
2

𝑁 + 1
sin

(︂
π𝑘

𝑁 + 1
𝑛

)︂
, (1.13)

where 𝑘 = 1..𝑁 enumerates the eigenstates, while 𝑛 = 1..𝑁 enumerates
the atoms. The state with 𝑘 = 1 corresponds to a state closest to the band
center, and with the minimal corresponding wavenumber 𝑘(1)𝑧 = π

Δ𝑧
1

𝑁+1 , while
𝑘 = 𝑁 is related to a state which is the closest to the band-edge with 𝑘

(𝑁)
𝑧 =

π
Δ𝑧

𝑁
𝑁+1 . Even though, generally speaking, the nearest-neighbor approximation

is not valid here, these functions describe the eigenstate qualitatively (not
quantitatively) pretty well at least in some range of periods Δ𝑧. Probably,
this is a result of the fact that dipole-dipole interaction in free space decays
with the distance between the dipoles: the slowest decreasing component is
the far-field one, which behaves as ∼ 1/𝑅 with the distance between the
atoms 𝑅. However, if one analyzes the structure of the subradiant state with
the minimal γ𝑗/γ0, it becomes clear that it has a significantly different profile
from a regular band-edge state as seen from Fig. 1.6 (a).

Further insight can be gained if one simply analyzes the structure of
this state. For this, one can use the functions ψ(𝑘)

𝑛 from Eq. (1.13) as an
orthonormal basis, and expand any eigenstate in it. As the basis functions
ψ(𝑘) are purely real, then the real, and imaginary parts of the expansion
coefficients are simply related to the real, and imaginary parts of the
expanded eigenvector 𝑣𝑘. The real, and imaginary parts of the corresponding
coefficients 𝐶𝑘 =

(︀
ψ(𝑘)

)︀T · 𝑣𝑁 are presented in Fig. 1.6 (b), where 𝑣𝑁 is the
eigenvector of the state closest to the band-edge (the smallest ⟨𝑓𝑗,𝑗+1⟩ ≈ −1).
As one can see, for a period Δ𝑧 = 0.3λ0 the real part of 𝑣𝑁 can be very well
approximated by a single function ψ(𝑁), while the imaginary part of 𝑣𝑁 does
not reveal any simple structure in this basis. Moreover, Re 𝐶𝑁 ≈ +1, while
Re 𝐶𝑘 ̸=𝑁 , and Im 𝐶𝑘 are much smaller (≪ 1). When the system period is
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Figure 1.6 — (a) The absolute values of the probability amplitudes |𝑐𝑛| for
atom 𝑛 to be excited in a state with the smallest decay rate: blue squares -
Δ𝑧 = 0.3λ0, red circles - Δ𝑧sub. The number of atoms here is 𝑁 = 20. (b)
Expansion coefficients 𝐶𝑘 of the corresponding states in a basis of states
ψ(𝑘) given by Eq. (1.13). The real part is in red, while the imaginary part is

in blue

equal to Δ𝑧sub, then there are two dominant components to the real part of
𝑣𝑁 : 𝐶𝑁 , and 𝐶𝑁−2. Interestingly, these two coefficients are of opposite signs,
which can be interpreted as the presence of destructive interference between
the contributions of these components. Indeed, one can show explicitly that
the emission rate of a state 𝑘 = 𝑁 (when the period is close to Δ𝑧sub)
described by the eigenvector 𝑣𝑁 ≈ 𝐶𝑁ψ

(𝑁) + 𝐶𝑁−2ψ(𝑁−2) is equal to:

γ𝑁 = −2
ℏIm

[︁
𝑣†𝑁 · Σ · 𝑣𝑁

]︁
≈ γ̃𝑁 + γ̃𝑁−2 + γ̃𝑁−2,𝑁 ,

γ̃𝑁 = −2
ℏ |𝐶𝑁 |2

(︀
ψ(𝑁)

)︀T · ImΣ ·ψ(𝑁),

γ̃𝑁−2 = −2
ℏ|𝐶𝑁−2|2

(︀
ψ(𝑁−2))︀T · ImΣ ·ψ(𝑁−2),

γ̃𝑁−2,𝑁 = −4
ℏRe [𝐶𝑁−2𝐶*𝑁 ]

(︀
ψ(𝑁)

)︀T · ImΣ ·ψ(𝑁−2), (1.14)

where γ̃𝑁 , γ̃𝑁−2 can be interpreted as contributions to the emission rate from
basis states ψ(𝑁), and ψ(𝑁−2), and γ̃𝑁−2,𝑁 is the interference term. One can
show that from the properties of Σ it follows that γ̃𝑁 , γ̃𝑁−2 > 0, while for
the interference term γ̃𝑁−2,𝑁 < 0 as a result of Re [𝐶𝑁−2𝐶*𝑁 ] < 0.

The question is: why do eigenstates of the system near specific values of the
period turn out to have two significant components in the basis ofψ(𝑘) instead
of a single one? The reason for that can be understood if we revisit Fig. 1.3
(a), paying special attention to the behavior of eigenstates near these values of
Δ𝑧. This is illustrated in Fig. 1.7, where in (a) one can see that as the period
Δ𝑧 is altered, the two modes specified by arrows approximately exchange the
values of the correlation function ⟨𝑓𝑗,𝑗+1⟩. Simultaneously, from (b) it is seen
that it corresponds to a region of repulsion of the corresponding energy levels.
One can say that two states 𝑘 = 𝑁 , and 𝑘 = 𝑁 − 2 experience an avoided
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Figure 1.7 — Emission rates (a), and frequency shifts (b) for 4 modes with
the smallest values ⟨𝑓𝑗,𝑗+1⟩ as a function of period Δ𝑧/λ0 near the point of

minimal emission rate similar to one specified in Fig. 1.3 (a). Here the
number of atoms is 𝑁 = 20

crossing (or anticrossing) [158] near Δ𝑧sub, which leads to the mixing of these
states. At a certain value of period Δ𝑧 they are mixed in such a way that
one of these states becomes extremely subradiant (Δ𝑧sub/λ0 ⩾ 0.238). The
reason why do states 𝑁 , and 𝑁 − 2 are interacting rather than 𝑁,𝑁 − 1 is
well understood. As our interaction is a symmetric dipole-dipole interaction
(described by a complex symmetric matrix Σ), and as the system is periodic,
then any eigenvector 𝑣𝑘 is either symmetric or antisymmetric with respect to
the reflection around the geometrical center of the system, and it is known
that level repulsion during a sweep of a single parameter appears for states
with the same symmetry. One can also see this from Fig. 1.6 (b), where for
even band-edge state with index 𝑁 = 20, only 𝐶𝑘 with even 𝑘 are non-zero.
However, if only modes 𝑁 , and 𝑁 − 2 were interacting, then we would have
observed a local maximum in γ𝑗/γ0 for a state 𝑘 = 𝑁 − 2 near Δ𝑧sub as a
result of conservation of the sum of linewidths. In fact, there is a much less
significant interaction with modes 𝑁−4, 𝑁−6, ..., but it is not evident from
Fig. 1.7, and was confirmed by us numerically.

With all that being said let us also to discuss another interesting property
of these states, which is related to the multipolar content of their far-field
radiation.
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1.6 Multipolar analysis

Let us analyze the far-fields emitted by these subradiant states. This can
be done if we think about atoms as simple classical dipole scatterers as
once we are provided with the eigenvector characterizing the state of interest
(with label 𝑘), we can immediately assign the dipole moment to each atom
according to the following simple rule: dn = 𝑐

(𝑘)
𝑛 |d| (recall that 𝑐

(𝑘)
𝑛 is the

probability amplitude for atom 𝑛 to be excited in a state 𝑘). Now we can
find the field produced by the system at point r ̸= rn in such a state as:

E(r,ω0) = 4π𝑘20

𝑁∑︁

𝑛=1

G0(r, rn,ω0)dn. (1.15)

In order to perform the spherical multipole expansion of the field E(r,ω0),
we can use the Green’s tensor expressed through Vector Spherical Harmonics
(VSH) [159]:

M𝑗,𝑚(r, 𝑘) = ∇× r𝑗𝑗(𝑘𝑟)𝑌𝑗,𝑚(θ,φ),

N𝑗,𝑚(r, 𝑘) =
1

𝑘
∇×M𝑗,𝑚(r, 𝑘),

G0(r, r
′,ω) = −er ⊗ er

𝑘2
δ(r− r′) + 𝑖𝑘

∞∑︁

𝑗=1

+𝑗∑︁

𝑚=−𝑗

1

𝑗(𝑗 + 1)
×

×
{︃
M

(1)
j,m(𝑘, r)⊗Mj,−m(𝑘, r′) +N

(1)
j,m(𝑘, r)⊗Nj,−m(𝑘, r′), if 𝑟 > 𝑟′,

Mj,m(𝑘, r)⊗M
(1)
j,−m(𝑘, r

′) +Nj,m(𝑘, r)⊗N
(1)
j,−m(𝑘, r

′), if 𝑟 < 𝑟′,

(1.16)

where 𝑗𝑗(𝑥) are spherical Bessel functions of order 𝑗, 𝑌𝑗,𝑚(θ,φ) are spherical
harmonics, and superscript (1) means that spherical Bessel function 𝑗𝑗(𝑘𝑟)
has to be replaced with the spherical Hankel function ℎ(1)(𝑘𝑟).

The exact expression for the Green’s tensor through VSH depends upon
how the field point r is located with respect to the source point r′. As our
goal is to compute the total power radiated into the far-field, we can say that
the field point is far away from any dipole |r| ≫ |rn|, and, therefore, we can
pick the corresponding form of the expansion. By plugging the chosen form
of the Green’s tensor into Eq. (1.15) we obtain:

E(r,ω0) =
∞∑︁

𝑗=1

+𝑗∑︁

𝑚=−𝑗

𝑁∑︁

𝑛=1

(︃
𝑎
(𝑛)
𝑗,𝑚

𝑖N
(1)
j,m(𝑘0, r)√︀
𝑗(𝑗 + 1)

+ 𝑏
(𝑛)
𝑗,𝑚

𝑖M
(1)
j,m(𝑘, r)√︀
𝑗(𝑗 + 1)

)︃
, (1.17)

where 𝑎
(𝑛)
𝑗,𝑚, 𝑏

(𝑛)
𝑗,𝑚 are the complex-valued scalars being the scalar products of

right dyads entering the Green’s tensor, and 𝑛th particle dipole moment.
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Now we proceed by calculating the period-averaged Poynting vector and
the total normalized power radiated into far-field:

⟨S⟩ = 𝑐

8π
Re [E(r,ω0)×H*(r,ω0)] ,

Γ =
𝑃

𝑃1
=

lim
𝑟→∞

∫︀ ∫︀
⟨S⟩ · nr 𝑟

2 𝑑Ω

lim
𝑟→∞

∫︀ ∫︀
⟨S1⟩ · nr 𝑟2 𝑑Ω

, (1.18)

with 𝑃1 = 𝑐|d|2𝑘40/3 being the power radiated by a single dipole d (𝑐 is the
speed of light), integration is done over a spherical surface of radius 𝑟, and
nr is a unit vector normal to this spherical surface.

We can rewrite Eq. (1.18) by doing some algebraic manipulations, which
will lead us to (see A.1 in Appendix for details):

Γ =
3

8π

1

|d|2𝑘6
∞∑︁

𝑗=1

+𝑗∑︁

𝑚=−𝑗

(︀
|𝑎𝑗,𝑚|2 + |𝑏𝑗,𝑚|2

)︀
, (1.19)

with 𝑎𝑗,𝑚 =
𝑁∑︀
𝑙=𝑛

𝑎
(𝑛)
𝑗,𝑚, 𝑏𝑗,𝑚 =

𝑁∑︀
𝑙=𝑛

𝑏
(𝑛)
𝑗,𝑚. Eq. (1.19) describes how does a VSH

with given (𝑗,𝑚) contributes to the total emission rate Γ. However, in a very
general case there is a problem that with increasing 𝑗 the total number of
harmonics grows quadratically. Therefore, one might want to rather look at

contributions of harmonics with a given 𝑗: Γ =
∞∑︀
𝑗=1

Γ𝑗.

We have to make one important note on the multipole expansion made
above: there is a degree of freedom in choosing the coordinate system origin,
and its orientation. The expansion coefficients 𝑎𝑗,𝑚, 𝑏𝑗,𝑚 depend upon this
choice. Of course, it does not affect the observable quantities like Γ, but alters
the contributions Γ𝑗, and, therefore, it has an effect on how does

∑︀𝑗max
𝑗=1 Γ𝑗

converge with 𝑗max. As our system is periodic, and quasi-1D, it makes sense to
put the origin of a spherical coordinate system right at the center of our chain.
Moreover, as we show in A.2, when the chain is parallel to the 𝑧-axis, only
VSH with 𝑚 = −1,+ 1 contribute to the emission rate. There is also a rule
of thumb on how to pick the value of 𝑗max: as for the mode with the smallest
value of nearest-neighbor correlation function ⟨𝑓𝑗,𝑗+1⟩ the neighboring dipoles
are almost π out-of-phase, our 𝑗max has to be at least equal to the total
number of dipoles 𝑁 . This is because the spherical harmonic with a given 𝑗
changes sign at most 𝑗 times when moving along either azimuthal or polar
direction. Therefore, we have, at least, to take all spherical harmonics up
to this one into account as it represents the symmetry of the state being
expanded.

The result of the multipole expansion for a chain oriented along the
𝑧-axis is presented in Fig. 1.8. At each value of the period Δ𝑧 we find
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Figure 1.8 — Total value of the emission rate for a state with the smallest
value of ⟨𝑓𝑗,𝑗+1⟩ function as well as contributions Γ𝑗 of different order 𝑗

versus the system period Δ𝑧 for 𝑁 = 6 (a), and 𝑁 = 10 (b) dipole
scatterers. Δ𝑧sub is the period when the minimal emission rate is achieved
state (identified by arrows). Note how many harmonics 𝑗 have overlapping

local minima very close to Δ𝑧sub in case (b)

all 𝑁 eigenstates, and corresponding spontaneous emission rates, then we
pick the state with the smallest value of the nearest-neighbor correlation
function ⟨𝑓𝑗,𝑗+1⟩. For this state we perform the multipole expansion, and
plot contributions of VSH of different orders 𝑗. As one can see from Fig. 1.8
(a), for 𝑁 = 6, when the total emission rate Γ has a minimum at Δ𝑧sub,
contributions from different VSH Γ𝑗 also experience local minima in the
vicinity of Δ𝑧sub point, but this happens up to VSH with 𝑗 = 4. As the
number of dipoles is increased to 𝑁 = 10, from Fig. 1.8 (b) we can see that
near the Δ𝑧sub point many contributions simultaneously experience minima.

This is a little bit surprising as, usually, the far-field radiation is reduced
by canceling contributions from the lowest order multipoles (for instance,
an electric dipole contribution might be suppressed) as they, commonly,
the dominant ones. However, many multipolar contributions up to a high
order tend to be minimized in our system. The reason for this can be
well understood if we recall that near this point the eigenstate is well
approximated by a superposition of ψ(𝑁), and ψ(𝑁−2) (Eq. (1.13)). For large
enough values of 𝑁 ≫ 1, these two modes do not differ too much, therefore,
they have quite similar multipolar contents of the radiated far-fields. Recall
that the relative expansion coefficients 𝐶𝑁 , 𝐶𝑁−2 differ in phase almost by π
resulting in the destructive interference not just for an overall state, and the
respective emission rate, but also for every contribution Γ𝑗.
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Figure 1.9 — Schematic representation of the system under consideration.
1D array of two-level atoms with period Δ𝑧 at a distance Δρ from the
nanofiber surface. The nanofiber has radius ρ𝑐. Red arrows represent

approximately the distribution of atomic dipole moments in the subradiant
mode under study. The radius ρ𝑐 is chosen such that there is only the

fundamental guided mode HE11 at the transition frequency ω0

1.7 Single photon scattering for an atomic array close to an
optical nanofiber: theoretical framework

Previously we studied the collective subradiant states of an atomic chain
in free space, where the atom-atom interaction was only provided through
the vacuum field modes. It might be interesting to see what happens if there
is an additional interaction channel, for instance, atoms can interact through
the guided mode of some structure, which is schematically represented in
Fig. 1.9. As before, we have a periodic array of two-level atoms, but now it
is placed in the vicinity of a single-mode optical nanofiber, which is one
of common platforms to study light-matter interaction in the context of
Waveguide Quantum Electrodynamics (WQED).

We need to modify the theoretical approach used before so that it can
adequately describe the scattering in a new set-up. The scattering process,
in general, can be described by the so-called 𝑆 matrix given by [4]:

𝑆𝑘𝑙 = δ𝑘𝑙 − 2π𝑖𝑇𝑘𝑙(𝐸𝑙 + 𝑖0)δ(𝐸𝑘 − 𝐸𝑙), (1.20)

where 𝑙, and 𝑘 label the the asymptotic initial, and final states,
correspondingly. In our problem the asymptotic scattering states are
|𝑙⟩ = |𝑔⟩⊗𝑁 |1µ⟩, |𝑘⟩ = |𝑔⟩⊗𝑁 |1µ′⟩, where µ,µ′ are fully describing the
incoming, and the outgoing state of a photon. 𝑇𝑘𝑙(𝐸𝑙 + 𝑖0) is the matrix
element of the transition matrix (1.1), which has the same form as before:

𝑇 = 𝑉 + 𝑉 𝑃�̂�(𝐸 + 𝑖0)𝑃𝑉 ≈ 𝑉 + 𝑉 𝑃
1

𝐸 − �̂�0 − Σ̂(ℏω0)
𝑃𝑉 . (1.21)
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This form of the transition matrix suggests the two modifications relative to
the vacuum case: (𝐼) we have to modify the matrix elements of the outer 𝑉
operators as now they absorb/emit not a free space photon, but a photon of a
given mode µ,µ′ of the nanostructure; (𝐼𝐼) we also have to modify the matrix
of a level-shift operator Σ(ℏω0). The latter, as is suggested in Eq. (1.3), can
be found quite easily as all we have to do is to construct the scattered part
of the classical electromagnetic Green’s tensor for a waveguide of a circular
cross-section, which can be found in A.4.

Regarding the outer 𝑉 operators, we will only consider a photon from
guided modes, and in order to describe the field in this case we can employ the
scheme proposed in [160;161] in which the electric field operator is equal to:

Ê(r) =
∑︀

µ Ẽ
(µ)(r)�̂�µ + ℎ.𝑐.,

Ẽ(µ)(r) = 𝑖
√︁

2πℏωµ

L ε(µ)(ρ,φ)𝑒𝑖𝑓βµ𝑧+𝑖𝑝𝑙φ. (1.22)

where βµ is the propagation constant of mode µ, and this index describes
fully the eigenmode µ = (η, 𝑓, 𝑙, 𝑝), where η describes the mode profile, and
as we study the scattering of a photon from the fundamental guided mode
HE11, this profile is fixed for a given set of parameters of the fiber, and we
fix this index from now on, and can omit mentioning it, in principle. Here
ε(µ)(ρ,φ) is the electric field amplitude, L is the quantization length, 𝑓 and 𝑙
label the direction of propagation (+1-forward,−1-backward), and the mode
angular momentum (non-negative integer, for the fundamental guided mode
HE11 from now on we fix 𝑙 = 1, and omit this index also), respectively, while
𝑝 = ± defines the direction of the electric field vector rotation (helicity).
The electric field is assumed to be periodic in the 𝑧-direction, therefore,
βµ,𝑙L = 2π𝑛𝑙, where 𝑛𝑙 is a non-negative integer number. The normalization
condition for the electric field amplitude of a given mode is defined by:

2π∫︁

0

∞∫︁

0

|ε(µ)(ρ,φ)|2𝑑φρ𝑑ρ = 1. (1.23)

Other relevant details on the mode functions are given in Appendix A.3.
Now we can write the explicit form of the outer operators 𝑉 entering

Eq. (1.21) as:

⟨𝑒𝑎,{0}|𝑉 |𝑔𝑎, 1µ⟩ = −𝑖
(︁
d𝑎,𝑒𝑔 · ε(µ)(ρ𝑎,φ𝑎)

)︁√︂2πℏωµ

L
𝑒𝑖𝑓βµ,𝑙𝑧𝑎+𝑖𝑝φ𝑎

⟨𝑔𝑏, 1µ′|𝑉 |𝑒𝑏, {0}⟩ = 𝑖
(︁
ε(µ

′)*(ρ𝑏,φ𝑏) · d𝑏,𝑔𝑒

)︁√︂2πℏωµ′

L
𝑒−𝑖𝑓

′βµ′,𝑙′𝑧𝑏−𝑖𝑝′φ𝑏.

(1.24)



78

We will come back to the equations above a bit later.
Let us rewrite the definition of the scattering matrix from Eq. (1.20) by

including the summation over all values of 𝑛𝑙′ for the final field state, and set
the quantization length to infinity L → ∞ (but keeping it as L formally),
making the propagation constant βµ′ continuous. Formally, this limit can be

performed by the following substitution
∑︀
𝑛𝑙′
→ L

2π

∞∫︀
0

𝑑βµ′,𝑛𝑙′

𝑑ω
𝑑ω. After that,

the following form of the 𝑆 matrix is obtained:

𝑆𝑓 ′,𝑝′;𝑓,𝑝 = δ𝑓 ′,𝑝′;𝑓,𝑝 − 𝑖
L

𝑐ℏ · 𝑑𝑘/𝑑βµ′
𝑇𝑓 ′,𝑝′;𝑓,𝑝(𝐸). (1.25)

In order to have a nice and simple form of the 𝑆 matrix we, as usually, will
employ the picture of collective atomic states (eigenstates of the level-shift
operator matrix Σ(ℏω0)). Previously we considered the atomic chain in the
vacuum, which led to a complex symmetric matrix Σ(ℏω0). However, when
atoms interact through the surface localized modes of some nanostructure,
this matrix might not be complex symmetric, in general. It means that such
matrix might have different left and right eigenvectors. From now on we will
simply pick the right eigenvectors:

Σ(𝐸0)𝑣
(𝑟)
𝑗 = λ𝑗𝑣

(𝑟)
𝑗 ,

(𝑆(𝑟))−1
1

𝐼ℏΔ− Σ(ℏω0)
𝑆(𝑟) =

1

𝐼ℏΔ− ΛΣ
, (1.26)

in the above 𝑆(𝑟) is the transformation matrix to the corresponding eigenspace
with 𝑣(𝑟) vectors as it’s columns, Δ is the detuning from the bare atomic
resonance frequency ω0, and ΛΣ is a diagonalized Σ.

Now we come back to Eq. (1.24), for which we will assume that µ′ =
µ (𝑓 ′ = 𝑓, 𝑙′ = 𝑙,𝑚′ = 𝑚), and that all atoms are at the same distance
from the surface of the structure, and all transition dipole moments have
the same orientation. In this case, all complex-valued matrix elements (1.24)
have the same absolute value, but differ by phase. These matrix elements
can be expressed through the spontaneous emission rate for an atom into the
forward-propagating guided mode:

γ(𝑓)𝑤𝑔 =
∑︁

𝑚

2π|d𝑒𝑔ε
(𝑓=+1,𝑙=1,𝑚)(ρ,φ)|2𝑘0 · 𝑑β/𝑑𝑘

ℏ
=

∑︁

𝑚

3π|n𝑒𝑔ε
(𝑓=+1,𝑙=1,𝑚)(ρ,φ)|2𝑑β/𝑑𝑘

2𝑘20
γ0,
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and, finally, for diagonal matrix elements 𝑆µ,𝑓,𝑚;µ,𝑓,𝑚, corresponding to the
transmission coefficient, we can write:

𝑆𝑖𝑖 = 1− 𝑖ℏγ(𝑓)𝑤𝑔

∑︁

𝑗

𝑓
(𝑡)
𝑗

ℏΔ− λ𝑗
, (1.27)

Now the scattering matrix element has a form very similar to the one obtained
before for the scattering cross section in free space in Eq. (1.5), and 𝑓

(𝑡)
𝑗

is, again, a complex-valued constant. The assumptions mentioned before
allowed us to define 𝑓

(𝑡)
𝑗 as dimensionless quantities. However, if atoms, for

instance, have different coupling strengths to the guided mode, or atoms have
multilevel structure, then Eq. (1.27) can be quite easily generalized, altering
the physical meaning of 𝑓 (𝑡)

𝑗 constants.
Eq. (1.27) provides the coefficient, which relates the field amplitudes of

an incoming, and outgoing photon. For the field intensity, we have to simply
take 𝑇 = |𝑆𝑖𝑖|2, which can be expressed as:

|𝑆𝑖𝑖|2 = 1 + 2ℏγ(𝑓)𝑤𝑔

𝑁∑︁

𝑗=1

[︃
η
(𝑡)
𝑗 λ
′′
𝑗 + ξ

(𝑡)
𝑗

(︀
ℏΔ− λ′𝑗

)︀

(ℏΔ− λ′𝑗)2 + λ′′2𝑗

]︃
,

η
(𝑡)
𝑗 = 𝑓

(𝑡)′

𝑗 −
𝑁∑︁

𝑖=1

ℏγ(𝑓)𝑤𝑔 Im

[︃
𝑓
(𝑡)
𝑗 (𝑓

(𝑡)
𝑖 )*

λ𝑗 − λ*𝑖

]︃
,

ξ
(𝑡)
𝑗 = 𝑓

(𝑡)′′

𝑗 +
𝑁∑︁

𝑖=1

ℏγ(𝑓)𝑤𝑔Re

[︃
𝑓
(𝑡)
𝑗 (𝑓

(𝑡)
𝑖 )*

λ𝑗 − λ*𝑖

]︃
, (1.28)

where we have used a similar trick as in the derivation of Eq. (3.32). As before,

the parts proportional to 𝑓
(𝑡)
𝑗 (𝑓

(𝑡)
𝑖 )*

λ𝑗−λ𝑖 are related to the interference between the
states 𝑖, and 𝑗.

In a very similar fashion, one can also find the reflection coefficient both
for field amplitudes:

𝑆𝑏𝑓 = −𝑖ℏ
√︁
γ
(𝑓)
𝑤𝑔γ

(𝑏)
𝑤𝑔

∑︁

𝑗

𝑓
(𝑟)
𝑗

ℏΔ− λ𝑗
, (1.29)
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and for field intensities:

|𝑆𝑏𝑓 |2 =
∑︁

𝑖,𝑗

ℏ2γ(𝑓)𝑤𝑔γ
(𝑏)
𝑤𝑔

𝑓
(𝑟)
𝑗 (𝑓

(𝑟)
𝑖 )*

(ℏΔ− λ𝑗)(ℏΔ− λ*𝑖 )
=

2ℏγ(𝑓)𝑤𝑔

𝑁∑︁

𝑗=1

(︁
η
(𝑟)
𝑗 λ

′′
𝑗 + ξ

(𝑟)
𝑗 (ℏΔ− λ′𝑗)

)︁

(ℏΔ− λ′𝑗)2 + λ′′2𝑗
,

η
(𝑟)
𝑗 = −ℏγ(𝑏)𝑤𝑔 Im

𝑁∑︁

𝑖=1

[︃
𝑓
(𝑟)
𝑗 (𝑓

(𝑟)
𝑖 )*

λ𝑗 − λ*𝑖

]︃
, ξ

(𝑟)
𝑗 = ℏγ(𝑏)𝑤𝑔 Re

𝑁∑︁

𝑖=1

[︃
𝑓
(𝑟)
𝑗 (𝑓

(𝑟)
𝑖 )*

λ𝑗 − λ*𝑖

]︃
.

(1.30)

In the very beginning of this section, we defined the field operator in
Eq. (1.22) for a guided mode described by the field distribution µ, direction
of propagation 𝑓 , orbital angular momentum 𝑙, and polarization rotation
direction 𝑝. The latter assumed that we work in the basis of quasi-circularly
polarized modes possessing the cylindrical symmetry of the field distribution
[80]. However, by combining the two modes with opposite values of 𝑙 (+𝑙,−𝑙)
with proper relative phases, one can also describe quasi-linearly polarized
modes with broken azimuthal symmetry (see A.3 for details).

1.8 Decay rates and their scaling

We begin by studying how would the emission rate scaling laws of
subradiant states would change if the additional interaction channel through
the guided mode is present, which is shown in Fig. 1.10. Notice that the usual
subradiant states studied before for the free space case are still present (type
1 states, marked by red arrows) for transverse case, but not for longitudinal
case, as expected. In addition to that, there are two more local minima,
which we will discuss now in brief.

Type 2 states (green arrows) are easily explainable as the corresponding
period is approximately equal to βHE11

Δ𝑧 ≈ π/2, which is the first Bragg
resonance for the fiber mode. Usually, when 𝑁 two-level atoms are coupled
only through a single guided mode, right at the Bragg resonance there is 1
superradiant state, and 𝑁 − 1 subradiant states [162], which are completely
dark in the absence of coupling to any other modes but the guided one.
However, as now there is interaction through the free space modes also, they
are characterized by some finite emission rates. There are also states of type 3,
which appear as a result of interference between the two interaction channels:
through the free space modes and the guided mode.
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Figure 1.10 — (a), (b) Collective emission rates γ𝑗/γ0 for a periodic array
of 𝑁 = 75 atoms placed near the nanofiber at a distance Δρ = ρ𝑐 from the

surface, where ρ𝑐 is the fiber radius. The transition dipole moments are
either perpendicular (a) or parallel (b) to the fiber axis. The relevant

parameters are: ρ𝑐 = 0.25λ0, and ε = 2.1. Color, as before, specifies the
values of the nearest-neighbor correlation function Eq. (1.9). (c)-(d):

Scaling laws for local minima in (a)-(b) with 𝑁 . Linear fits are in solid
lines. In all of the calculations, only the fundamental guided mode HE11

was taken into account.

By inspecting the scaling laws presented in Fig. 1.10 (c), (d), we can see
that type 1 states demonstrate a quite similar behavior as for the free space
case with some additional "oscillations". For type 2, and 3 we can say that for
sufficiently large 𝑁 they follow ∼ 𝑁α law (or, at least, can be approximated
by this curve in a certain range of 𝑁).

Note that in order to speed up the calculations only a single guided mode
of the waveguide was taken into account, the contributions from radiation
modes, and near-fields was ignored. This was done as for (c), and (d) this
would be very time consuming to find the optimal periods at large 𝑁 .
Therefore, in (a), and (b) the regions of small Δ𝑧 should not be relied upon
as in this regime the ignored modes might contribute significantly.

The overall picture presented in Fig. 1.10 (a), (b) strongly depends upon
the strength of atom-waveguide mode coupling γ(𝑤𝑔), and the value of the
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Figure 1.11 — (a), (b), (c) Transmission and reflection spectra for 𝑁 = 71
(a), 𝑁 = 35, 𝑁 = 69 (b), and 𝑁 = 202 (c). (d), (e), (f) - values of the

transmission and reflection spectra 𝑇SR, 𝑅SR at the corresponding
subradiant state resonance frequency as functions of 𝑁 . Each column

corresponds to a subradiant state of a distinct type: (a), (d) - type 1, (b),
(e) - type 2, and (c), (f) - type 3. The transition dipole moments of all

atoms were assumed to be aligned perpendicularly to the fiber axis, and the
system period Δ𝑧 for each 𝑁 is tuned such that the subradiant state of a
given type is prominent. All other relevant parameters are the same as for

Fig. 1.10

propagation constant of the guided mode βHE11
. During the calculations the

parameters were chosen such that they approximately correspond to typical
ones in the experiments with cold atoms and nanofibers: γ(𝑤𝑔) ≪ γ0, while
βHE11

≈ 1.06𝑘0. This set of parameters allowed us to easily identify all three
types of subradiant states discussed before.

1.9 Transmission and reflection spectra

It is also interesting to study how do these 3 types of subradiant states
affect the optical response of the system. For a specific system under study,
which is a quasi-1D system, the transmission and reflection spectra are of
interest. This is summarized for the transverse case in Fig. 1.11.
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For subradiant states of type 1 (d) the resonant values of 𝑇,𝑅 are
oscillating as functions of 𝑁 , and system switches from being transparent
(with 𝑇 ⩾ 0.75, and very small values of 𝑅) or opaque (with 𝑇 ⩽ 0.1,
𝑅 ≈ 0.1). The period of these oscillations is approximately equal to Δ𝑁 ≈ 4,
and they have the same nature as those discussed earlier in Fig. 1.4 (c) for
|𝑓𝑗| in free space. This is due to oscillating overlap between the incoming
photon, and the corresponding eigenstate. In Fig. 1.11 (a) a very sharp peak
corresponding to the most subradiant state is shown by a bright red arrow,
and for this figure 𝑁 = 71 was chosen to observe the maximal possible
transmission as seen from (d).

As can be seen from (b), and (e) for type 2 states the spectra look very
different from the previous situation. The system period now corresponds to
the first Bragg resonance, and one can expect to see a very large values of
𝑅, and very small 𝑇 . Indeed, for small atom number 𝑁 this is true, however,
as 𝑁 grows, the subradiant state becomes more and more prominent. At
the corresponding resonance frequency, the system undergoes a transition
from being very reflective (𝑅 ≈ 1, 𝑇 ≈ 0) to partially transparent (𝑅 ≈
0, 𝑇 ≈ 0.75) more or less monotonically with growing 𝑁 . In general, one
can say that the spectra can be well approximated by two terms: a very
broad Bragg resonance (which is a superradiant state), and a very sharp
line due to the subradiant state: 𝑇 ≈ 1 + 𝑇sup + 𝑇sub, 𝑅 ≈ 𝑅sup + 𝑅sub.
Therefore, for large enough number of atoms 𝑁 the system switches from
being reflective to partially transparent in a very narrow frequency range
near the subradiant state resonance frequency. This situation is very similar
to what happens under the Electromagnetically Induced Transparency (EIT)
[163] conditions, but appears without use of the second (control) lightfield,
here the transparency is rather a result of the destructive interference between
the collective atomic modes.

For type 3 states, as can be seen from (c), and (f), right at the subradiant
resonance frequency for the considered parameters both 𝑅, and 𝑇 are rather
small (do not exceed 0.1), and in the spectra it can be observed as a narrow
peak with a relatively small amplitude.

From the above we can conclude that subradiant states discussed in
this chapter do not immediately disappear if additional interaction channel
through a single guided mode is present. Moreover, it allowed to make other
subradiant states observable like ones at the first Bragg resonance, and a
new - the third type of long-lived states.
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1.10 A scientific statement

– In periodic subdiffractional chains consisting of 𝑁 dipoles there exist
modes with low radiation losses at a particular separation distance
much smaller than the resonant wavelength of an individual dipole. This
optimal period for large 𝑁 can be found from the flat-band condition
right at the band-edge. The radiation losses of such modes decrease as
𝑁α with α < −6, contrary to a well known 𝑁−3 behavior observed for
non-optimal period. These extremely low radiation losses are a result of
simultaneous minimization of multipolar contributions to the radiated
field up to high multipolar order.
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2. Chiral transport, sub- and superradiance in an array of
two-level emitters unidirectionally coupled through a guided
mode

In the previous chapter we discussed optical properties of one-dimensional
atomic arrays in case of a symmetric dipole-dipole interaction between
the atoms: be it interaction only through the free-space modes or with
the additional interaction channel through a single guided mode. Now, we
will switch topic to the discussion of atoms in a 1D geometry, which are
unidirectionally (chirally) coupled through a single guided mode.

2.1 Single excitation transport in a one-dimensional array of
unidirectionally coupled two-level emitters: polynomial dynamics

The goal of this chapter is to study chiral sub- and superradiance in a single
excitation domain, and the natural first step is to look at the problem of a
unidirectional transport of a single excitation between the two-level emitters
(see Fig. 2.1).

Figure 2.1 — A set of 𝑁 two-level quantum emitters, which are one-way
coupled through a single mode of a waveguiding structure. Each atom is

assumed to be identical, characterized by its position along the waveguide
𝑧𝑗, and is coupled to a guided mode with the corresponding spontaneous

emission rate Γ𝑔. However, any atom can also emit a photon into
non-guided (radiation) modes, to which it is coupled with a rate Γ𝑟

Here we will assume that all two-level atoms are identical (have equal
bare transition frequencies ω𝑗 = ω0), and has a coordinate 𝑧𝑗 along the
waveguide. The formal mathematical description for a problem of two-level
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emitters interacting through the modes of a general dispersive, and absorptive
environment has been extensively covered in the works by D.-G. Welsch with
co-authors [164;165], and we are not going to cover this paritcular theory here
in details. However, in the Appendix B.1 we demonstrate that by starting
with the full master equation [165–168] on a density matrix ρ𝑠(𝑡) for the
atomic subsystem, one can obtain an equivalent set of equations that we
consider below.

In the weak atom-field coupling regime, a set of ordinary differential
equations for the probability amplitudes for each atom 𝑗 to be excited at
time 𝑡 is written as:

�̇�𝑗(𝑡) = −
Γtot

2
𝐶𝑗(𝑡) +

∑︁

𝑘 ̸=𝑗

𝐺𝑗𝑘𝐶𝑘(𝑡), (2.1)

where 𝐺𝑗𝑘 = 𝑖
4πω2

𝑘

ℏ𝑐2
deg,jG(rj, rk,ω𝑘)dge,k is the dipole-dipole coupling

constant, ω𝑘 is the transition frequency of the kth atom with the Lamb shift
included, deg,j is the transition dipole moment for atom 𝑗, and G(rj, rk,ω𝑘)
is the classical electromagnetic Green’s tensor of the problem, while Γtot =
Γg + Γr is the total spontaneous emission rate of an individual atom, which
includes both emission into the guided mode and into the radiation modes. In
case of a single guided mode to which emitters are coupled unidirectionally,
we can define the emitter-emitter coupling constant as:

𝐺𝑗𝑘 =

{︃
−Γ𝑔𝑒

𝑖𝑘g|𝑧𝑗−𝑧𝑘|, for 𝑗 > 𝑘,

0, otherwise,
(2.2)

here we assumed that all atoms are positioned at the same distance from
the waveguide, so that the coupling strength of each atom with the guided
mode is the same, and equal to Γ𝑔. 𝑘g here is the propagation constant of
the guided mode, and the exponent accounts for the accumulation of phase
by a photon propagating from atom 𝑘 to atom 𝑗.

Note that the system Eq. (2.1) can also be obtained by using the following
effective non-hermitian Hamiltonian:

�̂�eff = −𝑖
𝑁∑︁

𝑗=1

Γtot

2
|𝑒𝑗⟩⟨𝑒𝑗|+

∑︁

𝑗,𝑘
𝑗>𝑘

𝑖𝐺𝑗𝑘|𝑒𝑗⟩⟨𝑒𝑘|, (2.3)

by simply plugging it into the Shrodinger equation 𝑖ℏ
𝑑|Ψ⟩
𝑑𝑡

= �̂�eff|Ψ⟩, where

|Ψ⟩ =
𝑁∑︀
𝑗=1

𝐶𝑗(𝑡)|𝑒𝑗⟩, with |𝑒𝑗⟩ = |𝑒𝑗⟩|𝑔⟩⊗𝑁−1 being the state with only atom

𝑗 excited, while the rest are in the ground state.



87

Eq. (2.1) can be represented in a simple matrix form:

Ċ(𝑡) = M ·C(𝑡),

M =

⎛
⎜⎜⎝

−Γtot/2 0 ... 0
𝑔𝑒𝑖φ21 −Γtot/2 ... 0
... ... ... ...

𝑔𝑒𝑖φ𝑁1 𝑔𝑒𝑖φ𝑁2 ... −Γtot/2

⎞
⎟⎟⎠ ; C(𝑡) =

⎛
⎜⎜⎝

𝐶1(𝑡)
𝐶2(𝑡)
...

𝐶𝑁(𝑡)

⎞
⎟⎟⎠ , (2.4)

with 𝑔 = −Γ𝑔, φ𝑗𝑘 = 𝑘g |𝑧𝑗 − 𝑧𝑘|, C is the column-vector with 𝑁 entries of
probability amplitudes of each atom to be excited, M is the 𝑁 × 𝑁 lower
triangular matrix due to the unidirectionality of interaction. The formal
solution of Eq. (2.4) can be given by simply finding the matrix exponent
of M. However, this matrix is not diagonalizable as it has an eigenvalue
λ = −Γtot/2 with the algebraic multiplicity 𝑁 , while there is only a single
eigenvector v =

(︀
0, 0, ..., 1

)︀𝑇 . This eigenvector physically corresponds to
a situation, when we excite the rightmost atom, and it simply exponentially
decays with the decay rate of an isolated atom 𝑃𝑁(𝑡) = |𝐶𝑁(𝑡)|2 = 𝑒−Γtot𝑡 as
there is no other excited atom on the left from which it can absorb the photon.

The solution to Eq. (2.4) can be written as:

C(𝑡) = 𝑒−Γtot𝑡/2𝑒B𝑡C0, (2.5)

with B = M+
Γtot

2
I, and C0 is the initial condition vector, which is in our

case equal to C0 =
(︀
1, 0, ..., 0

)︀𝑇 (only the first atom is excited initially).
As there is no eigendecomposition for matrix M (and, consequently, for
matrix B), one has to find all necessary generalized eigenvectors to span
the whole CN space, and we also need to find the Jordan normal form of
B, which reads as:

JB =

⎛
⎜⎜⎜⎜⎝

0 1 0 ... 0
0 0 1 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0

⎞
⎟⎟⎟⎟⎠

. (2.6)

As was pointed out before, we need to construct the full Jordan basis as
soon as there is only one eigenvector for this matrix: v1 = (0, 0, ..., 1). The
rest of the vectors needed to construct the full Jordan basis can be found by
repeatedly solving Bfj = fj−1, where fj are the generalized eigenvectors, and
f0 = v1 is a regular eigenvector. Solving for this, we can find the following
transformation matrix S, it’s inverse S−1, and the exponent of B in the
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Jordan basis:

S =⎛
⎜⎜⎜⎜⎝

0 0 0 ... (−1)𝑁+𝑖+𝑗+1𝐶0
𝑁−2𝑒

−𝑖φ𝑁,1

0 0 0 ... (−1)𝑁+𝑖+𝑗+1𝐶1
𝑁−2𝑒

−𝑖φ𝑁,2

... ... ... ... ...
0 𝑒−𝑖φ𝑁,𝑁−1 −𝑒−𝑖φ𝑁,𝑁−1 ... (−1)𝑁+𝑖+𝑗+1𝐶𝑁−2

𝑁−2𝑒
−𝑖φ𝑁,𝑁−1

1 0 0 ... 0

⎞
⎟⎟⎟⎟⎠

,

S−1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 ... 1
𝐶0

𝑁−2𝑒
𝑖φ𝑁,1 𝐶0

𝑁−3𝑒
𝑖φ𝑁,2 𝐶0

𝑁−4𝑒
𝑖φ𝑁,1 ... 0

... ... ... ... ...
𝐶𝑁−2

𝑁−2𝑒
𝑖φ𝑁,1 𝐶𝑁−3

𝑁−3𝑒
𝑖φ𝑁,2 0 ... 0

𝐶𝑁−2
𝑁−2𝑒

𝑖φ𝑁,1 0 0 ... 0

⎞
⎟⎟⎟⎟⎠

,

𝑒𝑔𝑡JB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑔𝑡
(𝑔𝑡)2

2!
...

(𝑔𝑡)𝑁−1

(𝑁 − 1)!

0 1 𝑔𝑡 ...
(𝑔𝑡)𝑁−2

(𝑁 − 2)!
... ... ... ... ...
0 0 0 ... 𝑔𝑡
0 0 0 ... 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.7)

where 𝐶𝑘
𝑛 are the binomial coefficients. For the sake of clarity one can write

explicitly the matrix elements of 𝑆 as:

𝑆𝑚,𝑛 =

{︃
𝑒−𝑖φ𝑁,𝑚(−1)1+𝑚+𝑛+𝑁𝐶𝑁−1−𝑚

𝑛−2 , if 𝑚 ̸= 1,

δ𝑁,𝑚, if 𝑛 = 1.
(2.8)

By substituting the above matrices into C(𝑡) = 𝑒−Γtot𝑡/2S𝑒𝑔𝑡JBS−1C0,
it can be found that the probability amplitude for atom 𝑁 being excited

as 𝐶1
𝑁(𝑡) =

𝑒−Γtot𝑡/2𝑒𝑖φ𝑁,1

(𝑁 − 1)!

∑︀𝑁−1
𝑗=0 𝐿(𝑁 − 1, 𝑗)(−Γ𝑔𝑡)

𝑗, where 𝐿(𝑛, 𝑘) are so

called Lah numbers [169] known in combinatorics. For Lah numbers there is
a relation which connects them with the generalized Laguerre polynomials

of order minus one in the following way: 𝐿(−1)
𝑁 (𝑥) =

1

𝑁 !

∑︀𝑁
𝑗=0 𝐿(𝑁, 𝑗)(−𝑥)𝑗.

Using this relation we can write the answer in a simple and compact form:

𝐶1
𝑁(𝑡) = 𝑒−Γtot𝑡/2+𝑖φ𝑁,1𝐿

(−1)
𝑁−1(Γ𝑔𝑡). (2.9)

The correctness of the obtained result can be easily checked by substituting
this solution into the equation for the (𝑁+1)-th emitter in the chain 𝐶1

𝑁+1(𝑡),
and making use of the relation

∫︀ 𝑥

0 𝐿
(α)
𝑁 (𝑥)𝑑𝑥 = 𝐿

(α−1)
𝑁+1 (0)− 𝐿

(α−1)
𝑁+1 (𝑥).

Let us elaborate more on the physical meaning of Eq. (2.9). When looking
at the probability of each atom to be excited 𝑃𝑁(𝑡) = |𝐶1

𝑁(𝑡)|2 the phase
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factor 𝑒𝑖φ𝑁,1 vanishes, so that the behaviour of emitter 𝑁 does not depend
upon how exactly all emitters are located along the 𝑧-axis. Moreover, the
Laguerre polynomial 𝐿(−1)

𝑛 (𝑥) has 𝑛 zeros on the real axis, which means that
𝑃𝑁(𝑡) has 𝑁 − 1 zeros (see Fig. 2.2), and, therefore, 𝑁 − 1 local maxima.
This physically means that atom 𝑁 undergoes 𝑁−1 events of the absorption
with the subsequent emission.

We should note that a similar result to Eq. (2.9) was first obtained in
[170] when studying the propagation of a pulse through a set of two-level
atoms at the edge of a topological photonic crystal, which also allowed for
unidirectionality. In this work the polynomial dynamics was imprinted on
the envelope of a single photon pulse.

P
j(
t)

Figure 2.2 — The probabilities for different emitters to be excited 𝑃𝑗(𝑡)
versus dimensionless time 𝑡Γ𝑔 shown for first 𝑁 = 4 emitters. We set

Γ𝑔 = 10, Γ𝑟 = 1

In this section, we have studied the problem of a single excitation transport
in a chain of two-level emitters unidirectionally coupled through a guided
mode. We have shown that this system shows quite a peculiar polynomial
dynamics, and the number of emission/absorption cycles for each emitter is
directly linked to it’s ordinal number in a chain. In the next part we will
use this result to study what kind of collective behavior a single excitation
that is shared between all of 𝑁 atoms can demonstrate in the case of sub-,
and superradiance.
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2.2 Collective chiral emission: sub- and superradiance in a single
excitation domain

Now having Eq. (2.9), one can find the probability amplitude of the
transition from a general initial state to some final state, both of which are
in the single excitation domain, by calculating the following:

𝐶(𝑡) = Cfinal
†U(t)Cinit, (2.10)

here 𝑈𝑘,𝑙(𝑡) = 𝑒−Γtot𝑡/2𝐿
(−1)
𝑘−𝑙 (Γ𝑔𝑡)𝑒

𝑖φ𝑘,𝑙 for 𝑘 ⩾ 𝑙, and 𝑈𝑘,𝑙(𝑡) = 0 otherwise:

U(𝑡) = 𝑒−Γtot𝑡/2·
⎛
⎜⎜⎜⎜⎜⎝

𝐿
(−1)
0 (Γ𝑔𝑡) 0 0 ... 0

𝐿
(−1)
1 (Γ𝑔𝑡)𝑒

𝑖φ2,1 𝐿
(−1)
0 (Γ𝑔𝑡) 0 ... 0

𝐿
(−1)
2 (Γ𝑔𝑡)𝑒

𝑖φ3,1 𝐿
(−1)
1 (Γ𝑔𝑡)𝑒

𝑖φ3,2 𝐿
(−1)
0 (Γ𝑔𝑡) ... 0

... ... ... ... ...

𝐿
(−1)
𝑁−1(Γ𝑔𝑡)𝑒

𝑖φ𝑁,1 𝐿
(−1)
𝑁−2(Γ𝑔𝑡)𝑒

𝑖φ𝑁−1,1 𝐿
(−1)
𝑁−3(Γ𝑔𝑡)𝑒

𝑖φ𝑁−2,1 ... 𝐿
(−1)
0 (Γ𝑔𝑡)

⎞
⎟⎟⎟⎟⎟⎠

.

(2.11)

One can see that U(𝑡) is a lower triangular matrix, it’s 𝑈𝑘,𝑙(𝑡) element
represents the probability amplitude for the 𝑘-th atom to be excited at 𝑡,
while initially at 𝑡 = 0 only the 𝑙-th atom was excited; Cinit, and Cfinal are
the column vectors of initial, and final states, and as we want to study the
evolution of a given state in time - we set Cfinal = Cinit. A further worthy
simplification can be made if we restrict our consideration to periodic chains
of emitters leading to φ𝑘,𝑙 = (𝑘− 𝑙)φ, while for the initial state the phase of
each probability amplitude is proportional to the respective atom number:

Cinit =
1√
𝑁

(︀
1, 𝑒𝑖ψ, 𝑒2𝑖ψ, ...𝑒(𝑁−1)𝑖ψ

)︀𝑇
. (2.12)

Both φ and ψ are assumed to be real here, and their difference is responsible
for how in-phase the lightfields emitted by two neighboring emitters are. In
this case it can be found that:

𝐶(𝑡) =
𝑒−Γtot𝑡/2

𝑁

𝑁∑︁

𝑘=1

(𝑁 − (𝑘 − 1))𝑒𝑖(𝑘−1)ξ𝐿(−1)
𝑘−1 (Γ𝑔𝑡), (2.13)

with ξ = φ−ψ (a more general solution one can find in Appendix B.2). As
a next step, we find the actual probability 𝑃 (𝑡) = |𝐶(𝑡)|2, and expand it up
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to the lowest non-trivial order in 𝑡, obtaining (some details are given in B.2):

𝑃 (𝑡→ 0) ≈ 1−Γ(0)𝑡 = 1−Re

[︃
Γtot + 2Γ𝑔

𝑒𝑖ξ
(︀
𝑁 + 𝑒𝑖𝑁ξ −𝑁𝑒𝑖ξ − 1

)︀

𝑁 (𝑒𝑖ξ − 1)
2

]︃
𝑡 =

1− Γtot − Γ𝑔
𝑁 + cos(𝑁ξ)− 1−𝑁 cos ξ

2𝑁 sin2(ξ/2)
, (2.14)

where Γ(0) is the spontaneous emission rate at small times, which is shown
as a function of ξ in Fig. 2.3 (a). First of all, this function is symmetric
(ξ → −ξ), and periodic (with period 2π), therefore, we can restrict our
analysis to the domain ξ ∈ [0,π] without loss of generality. In this domain,
it has 𝑁 extrema in total. When 𝑁 is even, the number of maxima is equal
to the number of minima, and for ξ = π this function has the minimum
(subradiance). Interestingly, that all other minima approach exactly the same
value as the minimum at ξ = π. However, for odd 𝑁 , ξ = π point is the
local maximum, not the minimum. As expected, for both even and odd 𝑁
the point ξ = 0 is the global maximum, corresponding to a situation when
all atoms emit in-phase (superradiance).

Figure 2.3 — (a) Spontaneous emission rate Γ(0) at small times defined in
Eq. (2.14). Blue and red lines correspond to 𝑁 = 5, and 𝑁 = 8 cases. Here
it is assumed that Γ𝑟 = Γ𝑔 = 1. (b) Collective superradiant dynamics for

the ξ = π case: exact answer for 𝑁 = 11 (𝑁 = 101) - solid light red (blue),
𝑒−Γ

(0)𝑡 functions for 𝑁 = 11 (𝑁 = 101) - dashed dark red (blue). In open
black circles the 𝑒−Γr𝑡 function is presented. (c) Same as (b), but for the

case of subradiance (ξ = 0). For (b), and (c) we took Γr = 0.1Γ𝑔

From the above, we can say that it makes sense to consider only cases of
ξ = 0, and ξ = π in order to obtain the maximal (superradiance), and the
minimal (subradiance) possible Γ(0), correspondingly. For these two situations
we have:

Γ(0) =

⎧
⎨
⎩
Γtot + Γ𝑔(𝑁 − 1) = Γ𝑟 +𝑁Γ𝑔, if ξ = 2π𝑚;

Γtot −
2𝑁 − 1 + (−1)𝑁

2𝑁
Γ𝑔 = Γ𝑟 +

1−(−1)𝑁
2𝑁 Γ𝑔, if ξ = π(2𝑚+ 1).

(2.15)
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One can recall that Γ𝑟 is a spontaneous emission rate into non-guided
modes (radiation modes), and it naturally enters the answer for Γ(0) as a
separate term. The remaining part of Γ(0) is the collective emission rate
into the guided mode. For the ξ = 2π𝑚 case we obtain the same 𝑁 -times
enhancement of the emission rate as the original model of Dicke predicts [6].
However, for ξ = π(2𝑚+1) case the situation is more subtle. Once there are
even number of atoms, we get Γ(0) = Γ𝑟, so, the emission into a guided mode
is totally suppressed. However, if 𝑁 is odd, the suppression is not complete,

and we have Γ(0) = Γ𝑟+
Γ𝑔

𝑁
, and the emission into a guided mode is finite, and

decreses with the system size 𝑁 . So, unlike the completely symmetrical case
of atom-atom interaction through the guided mode, whether there are even or
odd number of atoms makes a difference. Naturally, as 𝑁 →∞, Γ(0) → Γ𝑟.

It is also interesting that for the in-phase case it is possible to find the
dynamics of the Dicke state as a simple, and nice expression:

𝐶𝐷(𝑡) = ⟨𝐷|�̂�(𝑡)|𝐷⟩ =
𝑁∑︁

𝑘=1

𝑘∑︁

𝑗=1

𝑒−Γtot𝑡/2

𝑁
𝐿
(−1)
𝑗−1 (Γ𝑔𝑡) =

𝑒−Γtot𝑡/2

𝑁
𝐿
(1)
𝑁−1(Γ𝑔𝑡), (2.16)

where |𝐷⟩ = 1√
𝑁

𝑁∑︀
𝑗=1

|𝑒𝑗⟩ is the symmetric Dicke state. In the above we have

used two times the relation
𝑁∑︀
𝑙=0

𝐿
(α)
𝑙 (𝑥) = 𝐿

(α+1)
𝑁 (𝑥) mentioned before. The

dynamics is again described by a generalized Laguerre polynomial, but of the
order α = 1. Needless to say that one can expand the modulus squared of
this function, and obtain exactly the same value for Γ(0) in Eq. (2.15). For the
subradiant emission, the simplest answer we managed to obtain is represented

by Eq. (2.13): 𝐶(𝑡) =
𝑒−Γtot𝑡/2

𝑁

𝑁∑︀
𝑘=1

(𝑁 − (𝑘 − 1))(−1)𝑘+1𝐿
(−1)
𝑘−1 (Γ𝑔𝑡).

During the derivation of these coefficients, we have implicitly used the
perturbation theory in the lowest non-vanishing order in terms of emitter
emitter excitation transfer, and one may ask - was it a good approximation?
Do these results make any sense? This question is especially important
as from the very first obtained result (Eq. (2.9)) we understood that the
dynamics of this highly degenerate system is non-exponential, but rather a
polynomial one. The results presented in Fig. 2.3 (b) will help us to clarify
this point. First of all, if we regard Γ(0) as a spontaneous emission rate, one
may ask: whether it makes sense to approximate the probability dynamics as
𝑃 (𝑡) = 𝑒−Γ

(0)𝑡? Recall that we have, in general, two channels of decay in our
problem: into the radiation modes, and into the guided mode. For both super-
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and subradiance cases the decay into the first channel is equal to Γr, while
for the second one in case of subradiance we have ∼ 0, and for superradiance
it is ∼ 𝑁Γ𝑔. Let us take the limit of strong radiation losses Γ𝑟 ≫ 𝑁Γ𝑔 > Γ𝑔,
in this case the interaction between emitters can be discarded, because if a
given atom is excited, then it is much more likely that it emits a photon into
the radiation modes rather then into the guided one, after which it might
be absorbed by another atom. Therefore, for both super- and subradiance
we will have approximately the same temporal dynamics ≈ 𝑒−Γ𝑟𝑡, which is
why we will not consider this case.

We can expect that in the opposite case, when the emission into the guided
mode is dominant (so that Γ𝑟 ≪ Γ𝑔 < 𝑁Γ𝑔), there might be some deviation
between the exact answer in terms of generalized Laguerre polynomials, and
exponential functions 𝑒−Γ

(0)𝑡. Indeed, as can be seen from Fig. 2.3 (b) for a
rather small number of emitters 𝑁 = 11, the difference between the exact
answer and the exponential (solid bright and dashed dark red curves) is quite
significant even for relatively small time arguments. However, as one increases
the number of emitters to 𝑁 = 101, this discrepancy becomes quite small,
and both curves (solid bright and dark dashed blue) naturally approach the
𝑒−Γr𝑡 function.

For superradiance (ξ = 0 case) the exponential fit is also not in a perfect
agreement with the exact results. However, for both small, and large 𝑁 it is
at least in a good agreement for small 𝑁Γ𝑔𝑡, but for large 𝑁Γ𝑔𝑡 the difference
is evident. Moreover, there is a region of a very small population growth in
between 0.025 < 𝑡Γ𝑔 < 0.1 (𝑁 = 101 case, blue curves), which appears due
to a small probability for the system to re-absorb the photon emitted before.
From the mathematical properties of the generalized Laguerre polynomials
it is known that for non-negative α, 𝐿(α)

𝑁 (𝑥) has 𝑁 real roots on the positive
𝑥-axis, therefore, there are, actually, several local maxima, but only the first
one is prominent as the outer exponent 𝑒−Γtot𝑡 strongly suppresses the rest
of them. Therefore, one can conclude that for a symmetric Dicke state the
dynamics consists of successive emissions, and re-absorptions of the photon.

Now we can have a look at the results presented in Eq. (2.15) from a
slightly different point of view, which will provide us with a simple pictorial
explanation of these results.

For this let us now fix the initial state to be a symmetric Dicke state,

as before, which is of the form |Ψinit⟩ = |𝐷⟩ =
1√
𝑁

𝑁∑︀
𝑗=1

|𝑒𝑗⟩, and derive the
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probability amplitude of the excitation being only at emitter 𝑘 at time Δ𝑡:

⟨𝑒𝑘|�̂�(Δ𝑡)|Ψinit⟩ =

1√
𝑁

⎛
⎜⎜⎝

0
...
1𝑘
...

⎞
⎟⎟⎠

𝑇

⎛
⎜⎜⎜⎜⎜⎜⎝

1− Γtot

2
Δ𝑡 0 ... 0

±Γ𝑔Δ𝑡 1− Γtot

2
Δ𝑡 ... 0

... ... ... ...

±Γ𝑔Δ𝑡 −Γ𝑔Δ𝑡 ... 1− Γtot

2
Δ𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ =

⎧
⎪⎪⎨
⎪⎪⎩

1√
𝑁

(︂
1− Γtot

2
Δ𝑡+ mod(𝑘 − 1,2) Γ𝑔Δ𝑡

)︂
, if ξ = π(2𝑚+ 1);

1√
𝑁

(︂
1− Γtot

2
Δ𝑡− 2(𝑘 − 1)Γ𝑔Δ𝑡

)︂
, if ξ = 2π𝑚.

(2.17)

an upper sign is for ξ = π(2𝑚 + 1) (subradiance), and a lower one is for
ξ = 2π𝑚 (superradiance). As we consider a small time argument expansion,
it is also assumed that ΓtotΔ𝑡 ≪ 1, so that this expansion is valid.

Through the obtained transition amplitudes, we can find the probabilities
that emitter 𝑘 is excited: 𝑃𝑒𝑘(Δ𝑡) = |⟨𝑒𝑘|�̂�(Δ𝑡)|Ψinit⟩|2, and we can expand
this as 𝑃𝑒𝑘(Δ𝑡) ≈ 1

𝑁 − Γ
(0)
𝑘 Δ𝑡, where Γ

(0)
𝑘 gives the contribution of the 𝑘th

atom to the total value of Γ(0) =
𝑁∑︀
𝑘=1

Γ
(0)
𝑘 . Note that the factor 1

𝑁 in the

expansion of 𝑃𝑒𝑘(Δ𝑡) arises as a fact that in the initial state |Ψinit⟩ atom 𝑘

shares only the 𝑁 th fraction of the exciation as 𝑃|Ψinit⟩(Δ𝑡) ≈
𝑁∑︀
𝑘=1

𝑃𝑒𝑘(Δ𝑡) ≈

1 − Γ(0)Δ𝑡.
Here we also want to mention that during the time evolution of the

system, excitation can be transferred between the atoms many times before
being emitted into the field modes, therefore, there are many pathways of
how exactly the photon can be emitted by the system. Nevertheless, in the
considered case (Γtot,𝑔,𝑟Δ𝑡 ≪ 1) it makes sense to take into account at
most a single jump of the excitation from one atom to another, and after
this jump the excitation is assumed to be emitted into the field subsystem.
This corresponds to the mentioned before lowest non-vanishing order of
perturbation theory in terms of atom-atom couplings, which is the non
diagonal part of the effective Hamiltonian in Eq. (2.3). For the sake of
simplicity, we will also assume that the emission rate into non-guided modes
is negligible Γ𝑟/Γ𝑔 ≈ 0 as this contribution can be trivially added as an
additional term.

Now from Eq. (2.17) we can find the respective contribution of the 𝑘th

atom into the total emission rate Γ(0) for the case of subradiance to be equal
to Γ

(0)
𝑘 = 1−2 mod(𝑘−1,2)

𝑁 Γ𝑔. This can be rather simply explained by looking
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Figure 2.4 — The picture explaining chiral sub- (left) and superradiance
(right). Top figures show an example of Γ(0)

3 , while bottom figures show all
Γ
(0)
𝑘 , and the total value of Γ(0). Note that here it is assumed that Γ𝑟 is

negligible compared to Γ𝑔

at Fig. 2.4 (top left), where this value is pictorially explained for the case
𝑘 = 3. Here one can see that Γ

(0)
3 consists of three contributions: 1) the

first one comes from an independent spontaneous emission of atom 3, and it
would be present even if this atom would not interact with any other; 2), 3)
the next two contributions come from the absorption, and re-emission of the
photon from atoms 1, and 2, correspondingly. However, as the initial state
is a symmetric Dicke state |𝐷⟩, and as the distance between the atoms is
chosen such that ξ = (2𝑚 + 1)π, the latter two contributions destructively
interfere, therefore, canceling each other. Clearly, the same thing happens
for any other atom with an odd number, because there are even number of
atoms positioned before it, which is why Γ

(0)
𝑘 =

Γ𝑔

𝑁 for odd 𝑘. For atoms with
even numbers contributions from all preceding atoms would not completely
cancel each other, leading to Γ

(0)
𝑘 =

Γ𝑔

𝑁 −
2Γ𝑔

𝑁 = −Γ𝑔

𝑁 for even 𝑘. Therefore,
one can write for any positive integer 𝑘 the following: Γ(0)

𝑘 = 1−2mod(𝑘−1,2)
𝑁 Γ𝑔,

so, these contributions are of the same magnitude, but of an altering sign
(see Fig. 2.4, bottom left). When summing up all Γ

(0)
𝑘 , we obtain Γ(0) =∑︀𝑁

𝑘=1 Γ
(0)
𝑘 = mod(𝑁, 2)

Γ𝑔

𝑁 = 1−(−1)𝑁
𝑁 Γ𝑔. Therefore, finite emission rate into a

guided mode for odd 𝑁 is simply associated with the incomplete destructive
interference in the decay channels.

For ξ = 2π𝑚 case all atoms emit photons in-phase, which is why a
constructive interference appears, and one can see this from Fig. 2.4, top
right. It leads to a linear growth of Γ(0)

𝑘 with the respective atom number
𝑘: Γ(0)

𝑘 = 2𝑘−1
𝑁 Γ𝑔 (Fig. 2.4, bottom right). Obviously, this happens as the

number of atoms from which atom 𝑘 can receive a photon, and re-emit it
later also grows linearly with 𝑘, and, effectively, atom behaves as being a
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part of a chain with an effective size ∼ 𝑘
𝑁 . By summing up contributions

from all atoms we get Γ(0) =
∑︀𝑁

𝑘=1 Γ
(0)
𝑘 = 𝑁Γ𝑔.

2.3 Strongly asymmetric single excitation transfer through a
surface plasmon of a metallic nanowire

Previously, we formulated the problem by simply stating that it is possible
to realize a unidirectional coupling of a rotating dipole moment to a guided
mode of some structure, but we did not specified what kind of structure it
was. In principle, there are many different options for that. It can be based
on a glide-plane photonic crystal waveguide [24] or a nanobeam waveguide
(NWG) [171;172]. The electric field of the guided mode in this case is rotating
in the interface plane of the structure, and if the emitter is positioned at a
proper spatial point of the waveguide, then there is an asymmetric coupling to
forward and backward propagating modes. Another approach is based upon
the use of a single-mode nanofiber, which is a regular dielectric waveguide
with a circular cross section, and we already considered such a waveguide in
the previous chapter. Such a structure has a fundamental mode of a hybrid
TE-TM polarization (HE11 mode), which posesses a longitudinal component
of the electric field being phase-shifted by π/2 [80], resulting in the electric
field vector rotation, allowing for a chiral coupling [11;104], as was discussed
in the beggining of this thesis.

In our further discussion we will consider a metallic nanowire rather than
a dielectric nanofiber for a quite simple reason: it is more illustrative for a
theoretical study as the fundamental mode of a metallic nanowire is a TM
mode [173;174], which means that the electric field is rotating in the ρ𝑧-plane
in any spatial point. Moreover, a propagating surface plasmon allows for an
efficient emitter-guided mode coupling due to a strong confinement of the
field.

First of all, we need to discuss whether high asymmetry of the coupling
is achievable for a realistic structure. As shown in Fig. 2.5 (a) at sufficiently
large separation distances between the emitters (at least Δ𝑧 > 0.1λ0) the
coupling asymmetry can be, indeed, very high and exceed the value of 10. We
also need to make several comments regarding this figure. One has to take into
account that only the coupling through the modes of the nanowire are taken
into account here for two main reasons: the free-space dipole-dipole coupling
is always symmetric, and it diverges as Δ𝑧 → 0. Therefore, for very small
distances the free-space coupling will dominate the coupling through the
plasmon. The free-space interaction decays as ∼ |Δ𝑧|−1, while the interaction
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Figure 2.5 — (a) Coupling strength Σ(wire) of two atoms through the modes
of a nanowire, when the first (red) or the second (blue) atom is excited

initially. Other relevant parameters are ρ𝑐 = 0.05λ0, Δρ = ρ𝑐,
ε = −16.00 + 0.44𝑖. The chosen value of ε approximately corresponds to a

silver permittivity at a wavelength λ0 ≈ 600 nm [175]. (b) Numerical
(dashed) and analytical (solid) results for the excitation probabilities in a

chain of 𝑁 = 4 emitters. In the case of numerical calculations the averaging
over 20 realizations of emitters’ positions deviations from their regular ones
along the wire was performed. The regular separation period was chosen to

be Δ𝑧 = 2.0λ0, while the maximal deviation from a regular position is
𝑎 = λSPP/2, and the deviations are assumed to be uniformly distributed

through a surface plasmon decays as∼ 𝑒−𝑘
′′
SPP|Δ𝑧|, where 𝑘SPP is the imaginary

part of the plasmon’s wavenumber, which is non-zero due to Ohmic losses
in the metal. However, for the considered parameters the Ohmic losses are
quite small, resulting in a very weak exponential decay hardly seen in the
Fig. 2.5 (a). Therefore, at distances Δ𝑧 > λ0 one can almost ignore the
free-space coupling, while simultaneously having strong coupling to the wire
modes (Γplasmon ≫ Γ0), and large asymmetry in the interaction. One can also
notice that as |Δ𝑧| → 0, the coupling constants approach the same value as
in this limit the coupling constants can be interpreted as the Lamb shift
and the emission rate of an atom with a circularly polarized dipole moment
Σ(𝑤𝑖𝑟𝑒) = −ℏ

(︁
δ(wire) + 𝑖Γ

(wire)

2

)︁
.

Now we can compare the results previously obtained in Fig. 2.2 with the
ones calculated for the metallic nanowire. As we discussed before, for a perfect
unidirectional case the transport dynamics does not depend on the emitters
positions at all. However, as the interaction is not perfectly asymmetric, this
might not be completely true. As can be seen from Fig. 2.5 (b), one can
still describe the dynamics well enough by the previously obtained answer
in Eq. (2.9). Note that for the case of a nanowire we let the emitters be
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uniformly distributed around their regular positions, and then we averaged
over positional disorder realizations. The details are given in Fig. 2.5 caption.

In this chapter we have discussed single excitation dynamics in a system
of two-level emitters perfectly chirally coupled through a single guided mode.
We did it both in the context of single excitation transport, and collective
dynamics of this excitation being equally distributed among the atoms.
We demonstrated that such a system demonstrates a polynomial temporal
behavior, and obtained the emission rates for sub- and superradiant cases,
also providing the explanation on the nature of the occuring difference with
the case of a symmetric interaction between the emitters. We also discussed
a more or less realistic system based on a metallic nanowire that supports
a propagating surface plasmon.

2.4 A scientific statement

– For a perfectly asymmetric interaction of 𝑁 two-level quantum emitters
through a single guided mode, the collective spontaneous emission rate
in case of superradiance is 𝑁Γ𝑔, while for subradiance it becomes 0
for even 𝑁 , and Γ𝑔/𝑁 for odd 𝑁 . The latter happens as a result of
imperfect destructive interference between the decay channels.
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3. Noninverse dynamics of the excitation transfer in many-level
quantum emitter in the vicinity of a nanophotonic structure

In the previous chapter, we discussed the consequences of chiral
(asymmetric) coupling of two-level emitters. In this chapter, we will
elaborate on how to break the symmetry in the interaction between the
dipole transitions, but inside of a single emitter with more than one excited
state. We will demonstrate that this is, indeed, possible to achieve, and show
at least two ways to observe such an asymmetry.

The first one is based on simultaneous use of: 1) fully locally anisotropic
environment through the electromagnetic modes of which the transitions
are coupled, and 2) arbitrary orientation of the respective transition dipole
moments. For this we will explicitly formulate the criteria needed to be met in
order to observe the asymmetry in transition dynamics, and also discuss how
it affects the measurable quantities like registered temporal light intensity
profile, and emitted light spectrum.

The second one will be conceptually much closer to the chiral coupling of
emitters through surface localized modes - a topic covered in the previous
chapter. We will show that by using a quite simple structure based on a
plasmonic dimer made of two anisotropic scatterers, it is possible to realize
an almost perfect unidirectional coupling of circular transitions in a V-type
atom. We are also going to propose a simple scheme in which one can observe
this effect in an atom under a proper external continuous wave pumping.

3.1 Theoretical framework and the case of in-plane rotating
dipole moments

We begin by considering the system that is an atom with an s → p
transition shown in Fig. 3.1 (a), meaning that the excited state is 3-fold
degenerate with states |𝑒−1⟩, |𝑒0⟩, |𝑒+1⟩, while there is only one ground
state |𝑔⟩. This emitter is located in the vicinity of a photonic structure
(an anisotropic metasurface in our case) and this allows for the coupling
of circularly polarized transitions through the electromagnetic modes of
this structure, which appears due to the Anisotropic Vacuum-Induced
Interference (AVI) effect we mentioned before in the introduction [135;140].

What we are going to look at the probability amplitudes of an atom to
undergo a transition from state |𝑒𝑞⟩ to state |𝑒𝑞′⟩, which are given by the
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Figure 3.1 — The considered system shown schematically. (a) An atom with
an s→p transition (3-fold degeneracy in the excited state) is put close to a
photonic structure (anisotropic metasurface). The local atomic quantization

axis 𝑧′ in this scenario is parallel to the structure’s normal, and to the
𝑧-axis of the introduced coordinate system, while the transitions σ+, σ− (in

blue and red) are in the interface plane. (b) Same as (a) but with the
𝑧′-axis being rotated by angles α,β

matrix elements of the evolution operator [4]:

⟨𝑒𝑞′|�̂�(𝑡,0)|𝑒𝑞⟩ =
∫︁

𝐶

𝑑𝑧

2π𝑖
𝑒−𝑖𝑧𝑡/ℏ⟨𝑒𝑞′|�̂�(𝑧)|𝑒𝑞⟩, (3.1)

where �̂�(𝑧) = (𝑧 − �̂�)−1 is the resolvent operator of the full Hamiltonian
�̂� = �̂�0 + 𝑉 , which consists of the unperturbed �̂�0 part, and perturbation
𝑉 . The approach we use here is similar to the one discussed in the first
chapter, except that here we consider time evolution of the system rather
than find the spectrum through 𝑆, and 𝑇 matrices. We will briefly cover the
basics of this approach below. Note that as we only consider the atomic
excited states, which are discrete, there will be only pole contributions to the
integral, and also note that 𝑧 here is the parameter having the units of energy.
The unperturbed Hamiltonian consists of parts related to the atom and the
field: �̂�0 = �̂�𝐴 + �̂�𝐹 . In order to describe the field, and how it interacts
with the atom for a very general case of a medium with both dispersion and
absorption, we use the approach introduced in [164], and mentioned in the
previous chapters. In this case we can write:

�̂�𝐴 =
∑︀

𝑞=−1,0,+1
ℏω0|𝑒𝑞⟩⟨𝑒𝑞|,

�̂�𝐹 =
∫︀
𝑑r′

∞∫︀
0

𝑑ω′ℏω′f̂ †(r′,ω′)f̂(r′,ω′),

𝑉 = −∑︀
𝑞
d̂𝑞Ê(ra), (3.2)

where ω0 is the resonance frequency of the atomic transition, f̂ †(r′,ω′) is the
local field creation operator, Ê(ra) is the total electric field at the position
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of the atom ra. The electromagnetic field operator in this case reads as

Ê(r) = 𝑖
√
4ℏ
∫︀
𝑑r′

∞∫︀
0

𝑑ω′ω
′2

𝑐2

√︀
ε𝐼(r′,ω′)G(r, r′,ω′)f̂(r′,ω′) + ℎ.𝑐.,

where the bosonic field operators obey the commutation relation[︁
𝑓𝑖(r

′,ω′), 𝑓 †𝑘(r,ω)
]︁
= δ𝑖𝑘δ(r

′ − r)δ(ω′ − ω), G(r, r′,ω′) is the classical
electromagnetic Green’s function, and ε𝐼(r′,ω′) is the imaginary part of
permittivity.

The resolvent operator �̂�(𝑧) entering Eq. (3.1) being projected onto the
subspace of atomic excited states reads as:

𝑃�̂�(𝑧)𝑃 = 𝑃
1

𝑧 − �̂�0 − Σ̂(𝑧)
𝑃 , (3.3)

here 𝑃 is the corresponding projector, and Σ̂(𝑧) is the level-shift operator
or self-energy part. Σ̂(𝑧) here provides the energy shifts to the unperturbed
eigenstates of �̂�0 due to the interaction of the atom with electromagnetic
field modes of the structure, and it has the form:

Σ̂(𝑧) = 𝑉 + 𝑉 �̂�(𝑧)𝑉 ≈ 𝑉 + 𝑉 �̂�0(𝑧 = ℏω0)𝑉 , (3.4)

where the last transition implied two approximations: (1) near resonant case,
which ignores possible dependence of Σ̂(𝑧) on 𝑧, also called the flat spectrum
approximation; (2) Σ̂(𝑧) is calculated up to the second order in 𝑉 . The former
one is related to the Markov approximation, and the absence of memory
effects in the system. The latter is related to the fact that transitions are
coupled through the dipole-dipole interaction, which is a second-order process
in terms of the photon absorption/emission [152]. The corresponding matrix
elements can be represented in a rather simple form:

Σ𝑞′,𝑞(ℏω0) = −4π𝑘20d*q′G(ra, ra,ω0)dq, (3.5)

where 𝑘0 = ω0/𝑐, dq is the transition dipole moment from |𝑔⟩ to |𝑒𝑞⟩. This
can be alternatively written as Σ = S†ΣCartS, where:

S =
1√
2

⎛
⎝
+1 0 −1
−𝑖 0 −𝑖
0
√
2 0

⎞
⎠ , (3.6)

is the matrix of Cartesian components of rank-1 spherical tensors S =(︀
n−1,n0,n+1

)︀
as its columns (n0 = ez,n±1 = ∓ 1√

2
(ex ± 𝑖ey)), while ΣCart

is related to the couplings of linear dipole moments aligned along 𝑥, 𝑦, and 𝑧
axes. The latter assumes that we introduced a Cartesian coordinate system
with some origin that we fix.



102

Essentially, if one has the total electromagnetic Green’s tensor
G(ra, ra,ω0), the problem is immediately solved. As we discussed above,
we consider that the emitter is placed in the vicinity of an anisotropic
metasurface, which basically presents a planar interface of infinitely small
thickness described by a surface conductivity tensor:

σ(ω) =

(︂
σ𝑥𝑥(ω) 0

0 σ𝑦𝑦(ω)

)︂
, (3.7)

here the diagonal elements have a form of the Lorenzians [176] σ𝑗𝑗(ω) =

𝐴𝑗
𝑖𝑐

4π

ω

ω2 − Ω2
𝑗 + 𝑖γ𝑗ω

with 𝐴𝑗 being the normalization factor, Ω𝑗 - frequency

of the resonance, and γ𝑗 is the damping constant. We will also note that it
is assumed here that the 𝑥, 𝑦 axes of the previously introduced Cartesian
coordinate system are parallel to the principal axes of σ(ω), while 𝑧 axis is
normal to the interface plane. Once we know the surface conductivity tensor,
and the permittivity of the upper, and lower half-spaces we can derive the
classical electromagnetic Green’s tensor of the problem, the details of the
derivation are described in Appendix C.1.

For the case when rotating dipole moments are in the interface plane of
the structure, the matrix elements of Σ̂ on states |𝑒+1⟩, |𝑒−1⟩ are given by:

Σ−,+(ℏω0) = 4π𝑘0
|d|2
2

(︀
1 𝑖 0

)︀
⎛
⎝
𝐺𝑥𝑥 0 0
0 𝐺𝑦𝑦 0
0 0 𝐺𝑧𝑧

⎞
⎠
⎛
⎝
1
𝑖
0

⎞
⎠ =

2π𝑘20|d|2 (𝐺𝑥𝑥 −𝐺𝑦𝑦) = Σ+,−(ℏω0),

Σ−,−(ℏω0) = 4π𝑘0
|d|2
2

(︀
1 𝑖 0

)︀
⎛
⎝
𝐺𝑥𝑥 0 0
0 𝐺𝑦𝑦 0
0 0 𝐺𝑧𝑧

⎞
⎠
⎛
⎝

1
−𝑖
0

⎞
⎠ =

2π𝑘20|d|2 (𝐺𝑥𝑥 +𝐺𝑦𝑦) = Σ+,+(ℏω0).

(3.8)

One can already notice that the coupling of transitions Σ−,+(ℏω0) =
Σ+,−(ℏω0) ̸= 0 is present only if the structure is anisotropic 𝐺𝑥𝑥 ̸= 𝐺𝑦𝑦,
as expected, and this holds true if the corresponding surface conductivities
are not equal σ𝑥𝑥(ω0) ̸= σ𝑦𝑦(ω0). Also note that states |𝑒+1⟩, |𝑒−1⟩ are
decoupled from |𝑒0⟩, and if the atom is in spin-polarized state initially |𝑒±1⟩,
then excitation is only transferred between |𝑒+1⟩, |𝑒−1⟩.

The excitation transfer probability has the following explicit form:

𝑃∓1,−1(𝑡,0) =
⃒⃒
⃒⟨𝑒∓|�̂�(𝑡,0)|𝑒−⟩

⃒⃒
⃒
2

=

1

2
𝑒2Im[𝑔−,−]𝑡 (cos(2Re[𝑔−,+]𝑡) ± cosh(2Im[𝑔−,+]𝑡)) , (3.9)
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where 𝑔𝑖,𝑗 = Σ𝑖,𝑗/ℏ, and also note that 𝑔−,− = 𝑔+,+, 𝑔−,+ = 𝑔+,− in the
considered case. This result was first obtained in [165] in the context of
two distant two-level atoms interacting through the modes of some photonic
structure.

The oscillating part of this solution is related to the energy exchange
between the levels |𝑒−⟩, |𝑒+⟩, and the frequency of these oscillations is
naturally proportional to the energy splitting due to the coupling of
transitions 2Re [𝑔−,+]. How well these oscillations are pronounced depends on

the parameter −|Re [𝑔−,+]|
Im [𝑔−,−]

. If |Re [𝑔−,+]| > −Im [𝑔−,−], then the population

oscillations are underdumpled, which corresponds to a strong coupling regime,
while in the opposite case it is a weak coupling regime with overdumped
oscillations.

In order to demonstrate these two regimes we will consider one specific
example. In general, the local Green’s function of a metasurface includes
integrals (see Appendix C.1). However, we can consider the case, when
metasurface is strongly anisotropic, and lossless: σ𝑥𝑥 → 0𝑖, and σ𝑦𝑦 → ∞𝑖.
One can think about it as the structure being perfectly conducting in
𝑦-direction, while simultaneously being an isolator in 𝑥-direction. This allows
us to write the local Green’s function Gsc(ra, ra,ω0) in a form of a simple
explicit expression (some details are presented in Appendix C.1):

𝐺𝑠𝑐
𝑥𝑥(ra, ra,ω) = 𝑒2𝑖𝑘Δ𝑧 1

32π𝑘2Δ𝑧3
,

𝐺𝑠𝑐
𝑦𝑦(ra, ra,ω) = 𝑒2𝑖𝑘Δ𝑧−1 + 2𝑖𝑘Δ𝑧 + 4𝑘2Δ𝑧2

32π𝑘2Δ𝑧3
,

𝐺𝑠𝑐
𝑧𝑧(ra, ra,ω) = 𝑒2𝑖Δ𝑧𝑘 1− 𝑖𝑘Δ𝑧

16π𝑘2Δ𝑧3
, (3.10)

where Δ𝑧 is the atom-interface distance, which is asummed to be positive,
and the relevant coupling constants can be readily found:

ℏ𝑔−,+ = −4π𝑘20d*−1G(ra, ra,ω0)d+1 = 4π𝑘20|d|2
𝐺𝑥𝑥 −𝐺𝑦𝑦

2
=

(︂
1− 𝑖𝑘Δ𝑧 − 2𝑘2Δ𝑧2

4Δ𝑧3

)︂
|d|2𝑒𝑖𝑘2Δ𝑧,

ℏ𝑔−,− = −4π𝑘20d*−1G(ra, ra,ω0)d−1 = −4π𝑘20|d|2
𝐺𝑥𝑥 +𝐺𝑦𝑦

2
=

−
(︂
𝑖𝑘Δ𝑧 + 2𝑘2Δ𝑧2

4Δ𝑧3

)︂
|d|2𝑒𝑖𝑘2Δ𝑧. (3.11)

Now we can look at two typical profiles of Eq. (3.9), which are presented
in Fig. 3.2 (a). It can be seen that for atom-surface distance Δ𝑧 = 0.1λ0
this function is purely decaying, which corresponds to a weak coupling of
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Figure 3.2 — a) Probability function 𝑃−,−(𝑡) when a strongly aisotropic
metasurface is considered. The regime of strong coupling is reached for an
atom-interface distance Δ𝑧 = 0.05λ0, which manifests itself in the presence

of oscillations. b) Color plot of the strong coupling parameter
−|Re[𝑔−,+]|/Im[𝑔−,−] as a function of frequencies Ω𝑥, Ω𝑦. There are three
regions specified, these regions correspond to three regimes: I) inductive
(Im[σ𝑥𝑥], Im[σ𝑦𝑦] > 0), II) hyperbolic (Im[σ𝑥𝑥] · Im[σ𝑦𝑦] < 0), and III)

capacitive (Im[σ𝑥𝑥], Im[σ𝑦𝑦] < 0) regimes. Other relevant parameters are:
atom-metasurface distance is Δ𝑧 = 0.05λ0, the damping rates for surface

conductivities γ𝑥 = γ𝑦 = 0.1ω0, substrate permittivity is ε𝑠𝑢𝑏𝑠 = 1, and the
normalization constants are 𝐴𝑥 = 𝐴𝑦 = 1

|𝑒−1⟩, |𝑒+1⟩ states (solid red line). But as emitter becomes closer to the
surface, the energy level splitting becomes larger, and the strong coupling
regime appears (Δ𝑧 = 0.05λ0, dashed blue line). We want to note that going
into deep subwavelength atom-surface distances Δ𝑧 ⩽ 0.01λ0 might lead
to the breakdown of the purely resonant form of dipole-dipole coupling of
transitions (see Eq. (3.5)) as the near-fields of the structure will play an
important role through non-resonant Casimir-Polder interactions [143; 144].
This particular mechanism of coupling will not be discussed in here, and
further.

The considered above limit of a strong anisotropy allows for the explicit
analytical solution of the excitation transfer problem. However, for a
metasurface described by Lorenz-like surface conductivities it can be also

analyzed if we simply plot the strong coupling parameter −|Re [𝑔−,+]|
Im [𝑔−,−]

versus

two resonance frequencies Ω𝑥,Ω𝑦, which is shown in Fig. 3.2 (b). As can be
seen, the regions of this parameter being sufficiently larger than zero are the
areas, where the transition frequency lies in-between the Ω𝑥,Ω𝑦 frequencies,
which is commonly called the hyperbolic regime of operation [151; 176; 177]
of metasurfaces.
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In this section, we discussed how it is possible to couple circular transitions
in an atom put close to an anisotropic metasurface. However, for the situation
when dipole moments are rotating in the interface plane, the symmetry in
transitions between the excited states is preserved. In the next part we will
show how the arbitrary orientation of dipole moments will help us to break
this symmetry.

3.2 Rotation of dipole moments, and broken symmetry in
transitions

As a straightforward generalization of the problem under consideration,
we let the local quantization axis (𝑧′-axis) of the atom be arbitrarily oriented
in space. Formally, this boils down to the transformation of the form:

Σ̃ = S†M†ΣCartMS = T†ΣCartT, (3.12)

where M is the rotation matrix on Euler angles α,β,γ. We need also to
fix the following conventions: we will use active representation (rotation of
the objects, not of the coordinate axes), right-hand rule (according to which
the rotation is performed), 𝑧′′ − 𝑦′ − 𝑧 convention (which defines the order
of rotation axes).

The transofmation matrices have the following explicit forms:

M =

⎛
⎝
cos(α) cos(β) cos(γ)− sin(α) sin(γ) − cos(γ) sin(α)− cos(α) cos(β) sin(γ) cos(α) sin(β)
cos(α) sin(γ) + cos(β) cos(γ) sin(α) cos(α) cos(γ)− cos(β) sin(α) sin(γ) sin(α) sin(β)

− cos(γ) sin(β) sin(β) sin(γ) cos(β)

⎞
⎠ ,

T =

⎛
⎜⎝

𝑒𝑖γ√
2
(cos(α) cos(β) + 𝑖 sin(α)) cos(α) sin(β) 𝑒−𝑖γ√

2
(− cos(α) cos(β) + 𝑖 sin(α))

𝑒𝑖γ√
2
(−𝑖 cos(α) + cos(β) sin(α)) sin(α) sin(β) 𝑒−𝑖γ√

2
(−𝑖 cos(α)− cos(β) sin(α))

−𝑒𝑖γ√
2
sin(β) cos(β) 𝑒−𝑖γ√

2
sin(β)

⎞
⎟⎠ .

(3.13)
There is an important point to make: when rotating the local quantization

axis of the atom, we change the orientation of the respective transition
dipole moments. However, the eigenvalues of Σ and Σ̃ are, obviously, the
same, which means that the transition frequencies, and linewidths of the
eigenstates are also the same before, and after the rotation. Nevertheless,
rotation changes the projections of atomic transition dipole moments on the
introduced Cartesian coordinate system axes.

The consequences of this can be illustrated by the following: let us consider
the probability amplitude of a transition from state 𝑞 to 𝑞′. It has the simplest
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form in the eigenstate basis, and can be found to be:

𝑈𝑞′,𝑞(𝑡,0) =
∑︁

𝑗=𝑥,𝑦,𝑧

𝐶
(𝑞′,𝑞)
𝑗 𝑒−𝑖𝑔𝑗𝑡, 𝑞,𝑞′ = {−1,0,+ 1}, (3.14)

where 𝑔𝑗 are the complex-valued eigenvalues of Σ̃/ℏ, and 𝐶
(𝑞′,𝑞)
𝑗 =(︀

T−1
)︀
𝑞′,𝑗

T𝑗,𝑞. The physical meaning of this constant is simple - it is related
to how each eigenstate 𝑗 contributes to the dynamics. As the nanostructure
under consideration is the planar anisotropic conducting interface, the
eigenstates of the system correspond to three linear dipole moments oriented
along highly symmetric directions of this structure (principal axes of the
nanostructure). The three axes of high symmetry are: the normal to the
interface (z-axis), and two orthogonal axes in which the surface conductivity
tensor becomes diagonal. We want to note that in this coordinate system
the local Green’s tensor G(r, r,ω0) is also diagonal. Therefore, we can state
that ℏ𝑔𝑗 = −4π𝑘20d†jG(ra, ra,ω)dj are the self-energies of three linear dipole
moments oriented along 𝑥, 𝑦, and 𝑧 directions.

Now let us inspect the explicit form of coefficients 𝐶
(𝑞′,𝑞)
𝑗 for the specific

case of the transition |𝑒+1⟩ → |𝑒−1⟩:

𝐶
(−1,+1)
𝑥 = −𝑒−2𝑖γ

2 (cos(α) cos(β)− 𝑖 sin(α))2 ,

𝐶
(−1,+1)
𝑦 = 𝑒−2𝑖γ

2 (cos(α)− 𝑖 cos(β) sin(α))2 ,

𝐶
(−1,+1)
𝑧 = −𝑒−2𝑖γ

2 sin2(β). (3.15)

One can notice that all three coefficients have a common phase factor 𝑒−2𝑖γ.
As a quantity of interest is the transition probability |𝑈−1,+1(𝑡, 0)|2, this phase
factor will vanish, which means that the last rotation around the new ez′-axis
on angle γ is redundant as it does not affect the dynamics, and, therefore,
we can proceed with γ = 0 without loss of generality.

Also note that the transformation matrix T is unitary, from which follows
the property of these coefficients: 𝐶(+,−)

𝑗 = (𝐶
(−,+)
𝑗 )*. We can expect that for

general values of α,β this phase difference can lead to noninverse dynamics
between these two states, and to broken symmetry between the transitions
|𝑒−1⟩ → |𝑒+1⟩, and |𝑒+1⟩ → |𝑒−1⟩.

Now let us compute the transition probabilities as 𝑃𝑞′,𝑞(𝑡) = |𝑈𝑞′,𝑞(𝑡, 0)|2,
and obtain the following quantity, which is the asymmetry in transfer
probabilities 𝑃−,+(𝑡) − 𝑃+,−(𝑡):

𝑃−,+(𝑡)− 𝑃+,−(𝑡) = 𝑓(α,β)
(𝑥,𝑦),(𝑦,𝑧),(𝑧,𝑥)∑︀

(𝑘,𝑙)

𝑒(𝑔
′′
𝑘+𝑔′′𝑙 )𝑡 sin ((𝑔′𝑘 − 𝑔′𝑙) 𝑡) ,

𝑓(α,β) = 1
8 sin(2α) sin(2β) sin(β), (3.16)
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where 𝑔𝑗 = 𝑔′𝑗 + 𝑖𝑔′′𝑗 . From Eq. (3.16) one can see that there are two separate
conditions, which are necessary for this quantity to be non-zero:

{︃
(𝐼) 𝑓(α,β) ̸= 0 → α ̸= π

2𝑚, β ̸= π
2𝑚
′,

(𝐼𝐼) 𝑔′𝑘 ̸= 𝑔′𝑙, for any pair of eigenstates 𝑘, 𝑙.
(3.17)

The first condition is a purely geometrical condition, and is related to the
respective orientation of transition dipole moments, and to principal axes
of the nanostructure. It simply states that the 𝑧′ quantization axis of the
atom should not lie in a plane formed by any two principal axes. The
second statement, however, is electrodynamical, and can be formulated as:
the eigenstates of the system, formed due to the interaction through the
nanostructure modes, should not be degenerate.

A further insight into the physical nature of the effect can be gained if
one looks at the explicit form of the transition probability:

𝑃𝑞′,𝑞(𝑡) =
∑︁

𝑘=𝑥,𝑦,𝑧

𝑃
(𝑘)
𝑞′,𝑞(𝑡) +

(𝑥,𝑦),(𝑦,𝑧),(𝑧,𝑥)∑︁

(𝑘,𝑙)

𝑃
(𝑘,𝑙)
𝑞′,𝑞 (𝑡) =

∑︁

𝑘=𝑥,𝑦,𝑧

𝐶
(𝑞′,𝑞)
𝑘,𝑘 𝑒2𝑔

′′
𝑗 𝑡 +

(𝑥,𝑦),(𝑦,𝑧),(𝑧,𝑥)∑︁

(𝑘,𝑙)

2
⃒⃒
⃒𝐶(𝑞′,𝑞)

𝑘,𝑙

⃒⃒
⃒ cos

[︁
(𝑔′𝑘 − 𝑔′𝑙)𝑡−φ(𝑞′,𝑞)

𝑘,𝑙

]︁
𝑒(𝑔

′′
𝑘+𝑔′′𝑙 )𝑡,

(3.18)

where 𝐶
(𝑞′,𝑞)
𝑘,𝑙 = 𝐶

(𝑞′,𝑞)
𝑘 (𝐶

(𝑞′,𝑞)
𝑙 )*, and φ(𝑞′,𝑞)

𝑘,𝑙 = arg
(︁
𝐶

(𝑞′,𝑞)
𝑘,𝑙

)︁
. The origin of the

two terms above is simple: the first one is simply each term from Eq. (3.14)
being squared, while the second part is responsible for the interference of
different eigenstates, leading not only to the exponential decay, but also to
the oscillations due to this interference. And in the oscillating part, there is an
initial phase φ(𝑞′,𝑞)

𝑘,𝑙 , which has opposite signs for the forward |𝑒𝑞⟩ → |𝑒𝑞′⟩, and
backward |𝑒𝑞′⟩ → |𝑒𝑞⟩ processes φ(𝑞′,𝑞)

𝑘,𝑙 = −φ(𝑞,𝑞′)
𝑘,𝑙 , as it can be clearly seen

from it’s definition. Therefore, we can conclude, that this effect is, essentially,
the phase interference effect. This can be easily illustrated by considering the
mentioned before limit of strong anisotropy (σ𝑥𝑥 → 0𝑖,σ𝑦𝑦 → ∞𝑖). As one
can see from Fig. 3.3 (a), when both conditions from Eq. (3.17) are satisfied,
then, indeed, 𝑃−,+(𝑡) ̸= 𝑃+,−(𝑡), and this discrepancy is a result of difference
in the corresponding interference components entering the second part of
Eq. (3.18), which are shown in Fig. 3.3 (b). Also notice that in Fig. 3.3 (b)
both 𝑃−,+(𝑡), and 𝑃+,−(𝑡) at sufficiently large times start to behave identical.
This happens as a result of interference components, which oscillate, being
completely suppressed, and the dynamics is only described by a collection of
the decaying exponents (the first part of Eq. (3.18)).
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Figure 3.3 — (a) Different transition probabilities 𝑃𝑖.𝑗(𝑡) versus normalized
time 𝑡γ0. (b) Difference between the three interference terms entering as

the second part of Eq. (3.18) for forward, and backward transition
probabilities. The parameters are: Δ𝑧 = 0.05λ0, α = β = π/4

From Eq. (3.18) one can also derive the conditions in Eq. (3.17). Let us
do this for the first condition from Eq. (3.17). Notice that if φ(±,∓)

𝑘,𝑙 = 0 or
φ

(±,∓)
𝑘,𝑙 = π, then 𝑃+,−(𝑡) = 𝑃−,+(𝑡) as a result of cos(𝑥 − π) = cos(𝑥 + π).

Therefore, the effect is absent when 𝐶±,∓𝑘,𝑙 are purely real. We can inspect the
imaginary parts of these coefficients, which turn out to be equal:

Im 𝐶+,−
𝑥,𝑦 = Im 𝐶+,−

𝑦,𝑧 = Im 𝐶+,−
𝑧,𝑥 =

1

8
sin(2α) sin(2β) sin(β), (3.19)

which is equal to zero if either α or β is an integer multiple of
π

2
.

Now we can discuss the second condition from Eq. (3.17). Let us imagine
that two eigenstates turn out to be degenerate, meaning that 𝑔𝑥 = 𝑔𝑦 = 𝑔||.
Clearly, in this case 𝑃

(𝑥,𝑦)
−,+ (𝑡) = 𝑃

(𝑥,𝑦)
+,− (𝑡) as the interference term does not

oscillate, and it can be thought of a constant factor having the property
cos(−φ(−,+)

𝑥,𝑦 ) = cos(−φ(+,−)
𝑥,𝑦 ). For other two terms we have:

𝑃
(𝑦,𝑧)
−,+ (𝑡) = 2

⃒⃒
⃒𝐶(−,+)

𝑦,𝑧

⃒⃒
⃒ cos

[︁
(𝑔′|| − 𝑔′𝑧)𝑡−φ(−,+)

𝑦,𝑧

]︁
𝑒(𝑔

′′
||+𝑔′′𝑧 )𝑡,

𝑃
(𝑧,𝑥)
−,+ (𝑡) = 2

⃒⃒
⃒𝐶(−,+)

𝑧,𝑥

⃒⃒
⃒ cos

[︁
(𝑔′𝑧 − 𝑔′||)𝑡−φ(−,+)

𝑧,𝑥

]︁
𝑒(𝑔

′′
𝑧+𝑔′′||)𝑡,

𝑃
(𝑦,𝑧)
+,− (𝑡) = 2

⃒⃒
⃒𝐶(+,−)

𝑦,𝑧

⃒⃒
⃒ cos

[︁
(𝑔′|| − 𝑔′𝑧)𝑡−φ(+,−)

𝑦,𝑧

]︁
𝑒(𝑔

′′
||+𝑔′′𝑧 )𝑡,

𝑃
(𝑧,𝑥)
+,− (𝑡) = 2

⃒⃒
⃒𝐶(+,−)

𝑧,𝑥

⃒⃒
⃒ cos

[︁
(𝑔′𝑧 − 𝑔′||)𝑡−φ(+,−)

𝑧,𝑥

]︁
𝑒(𝑔

′′
𝑧+𝑔′′||)𝑡. (3.20)

It should be true that 𝑃 (𝑦,𝑧)
−,+ (𝑡)+𝑃

(𝑧,𝑥)
−,+ (𝑡)−𝑃

(𝑦,𝑧)
+,− (𝑡)−𝑃

(𝑧,𝑥)
+,− (𝑡) = 0, but at

the first glance this does not seem to be so. Recall that
⃒⃒
⃒𝐶(−,+)

𝑦,𝑧

⃒⃒
⃒ =

⃒⃒
⃒𝐶(+,−)

𝑦,𝑧

⃒⃒
⃒,⃒⃒

⃒𝐶(−,+)
𝑧,𝑥

⃒⃒
⃒ =

⃒⃒
⃒𝐶(+,−)

𝑧,𝑥

⃒⃒
⃒, φ(−,+)

𝑦,𝑧 = −φ(+,−)
𝑦,𝑧 , φ(−,+)

𝑧,𝑥 = −φ(+,−)
𝑧,𝑥 . With this in mind
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let’s rewrite the above:

𝑃
(𝑦,𝑧)
−,+ (𝑡) + 𝑃

(𝑧,𝑥)
−,+ (𝑡)− 𝑃

(𝑦,𝑧)
+,− (𝑡)− 𝑃

(𝑧,𝑥)
+,− (𝑡) =

2
(︁⃒⃒
𝐶(−,+)

𝑦,𝑧

⃒⃒
sin
[︁(︁

𝑔′|| − 𝑔′𝑧

)︁
𝑡
]︁
sin
(︀
φ−,+𝑦,𝑧

)︀
+

⃒⃒
𝐶(−,+)

𝑧,𝑥

⃒⃒
sin
[︁(︁

𝑔′𝑧 − 𝑔′||

)︁
𝑡
]︁
sin
(︀
φ−,+𝑧,𝑥

)︀ )︁
𝑒(𝑔

′′
𝑧+𝑔′′||)𝑡 =

1

4
sin(2α) sin(2β) sin(β)

(︀
sin
[︁(︁

𝑔′|| − 𝑔′𝑧

)︁
𝑡
]︁
+

sin
[︁(︁

𝑔′𝑧 − 𝑔′||

)︁
𝑡
]︁ )︀

= 0, (3.21)

in the above we have used the facts that |𝐶(𝑞′,𝑞)
𝑖,𝑗 | sin(φ

(𝑞′,𝑞)
𝑖,𝑗 ) = Im

[︁
𝐶

(𝑞′,𝑞)
𝑖,𝑗

]︁
,

and, as we know from Eq. (3.19), these coefficients are equal for fixed 𝑞′,𝑞,
and any 𝑖,𝑗.

To conclude, we have demonstrated that by coupling a multilevel 𝑠 →
𝑝 quantum emitter with the electromagnetic modes of an anisotropic
metasurface, it is possible to break the symmetry in electron transitions
between the excited states: 𝑃𝑞′,𝑞(𝑡) ̸= 𝑃𝑞,𝑞′(𝑡). We derived analytically the
criteria needed to be satisfied in order to observe this effect, and also identified
that it has a nature of a phaseshift appearing as a result of interference
between the eigenstates of the system.

3.3 Effect on the observables: detected temporal intensity, and
the total emitted light spectrum.

Previously, we derived the conditions under which the excitation
probability function between the states 𝑃𝑞′,𝑞(𝑡) will be different for forward,
and backward processes. However, we are not able to observe directly the
transition of an atom from one excited state to another. Therefore, we need
to consider experimentally measurable quantities, that are simultaneously
related to the results that were obtained already.

In order to do this, we can begin by considering the temporal dynamics
of the emitted light intensity. The set-up of the problem will be similar: the
atom is initially assumed to be in the excited state |𝑒𝑞0⟩, and we measure
the time-dependency of the light intensity registered at the position of the
detector rd put in the far-field, which can be found to be [178]:

𝐼𝑞0(𝑡) = ⟨ψ(𝑡)|Ê(−)(rd)Ê(+)(rd)|ψ(𝑡)⟩ =⃒⃒
⃒⃒
⃒
∑︀
𝑞′
4𝑘20

𝑡∫︀
0

𝑑𝑡′𝐶𝑞′,𝑞0(𝑡
′)
∞∫︀
0

𝑑ω Im [G(rd, ra,ω)]dq′𝑒−𝑖(ω−ω0)(𝑡−𝑡′)

⃒⃒
⃒⃒
⃒

2

. (3.22)
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As we want to find the intensity registered in the far-field zone, we need
to replace the full Green’s tensor with its far-field part G(rd, ra,ω) →
GFF(rd, ra,ω). Owing to a superposition principle [159; 179] this far-field
Green’s tensor can be written as a sum of free space and scattered
contributions: GFF(rd, ra,ω) = GFF,0(rd, ra,ω) + GFF,sc(rd, ra,ω) or,
more precisely:

GFF(rd, ra,ω) = f0(rd, ra,ω)𝑒𝑖𝑘𝑅− + f sc(rd, ra,ω)𝑒𝑖𝑘𝑅+, (3.23)

where 𝑅± =
√︀
(𝑥𝑑 − 𝑥𝑎)2 + (𝑦𝑑 − 𝑦𝑎)2 + (𝑧𝑑 ± 𝑧𝑎)2. Eq. (3.23) simply states

that the scattered part of the field emitted by a dipole can be represented
as a sum of two kinds of outgoing spherical waves. The first one would be
present even if there was no photonic structure nearby, it is a direct term,
which is just a far-field emitted by an isolated dipole f0(rd, ra,ω)𝑒𝑖𝑘𝑅−, while
the second term represents the field scattered off the photonic environment
f sc(rd, ra,ω)𝑒𝑖𝑘𝑅+. The difference in the exponential factors is quite clear - it
appears as these two contributions are generated by two different dipoles: one
is located at the position ra, and the other one is its mirror image located
at
(︀
𝑥𝑎, 𝑦𝑎,−𝑧𝑎

)︀
.

As we want to couple emitter’s transitions through the modes of the
structure, we put atom close to the structure surface (𝑧𝑎/λ0 ≪ 1), then
we can ignore the fact that the atom itself, and its image have different
locations 𝑅− ≈ 𝑅+ = 𝑅. This will allow us to write the far-field
Green’s tensor as GFF(rd, ra,ω) ≈ f𝑒𝑖𝑘𝑅, and, by using the fact that
Im
[︀
f(rd, ra,ω)𝑒𝑖𝑘𝑅

]︀
= Re [f(rd, ra,ω)] sin(𝑘𝑅) + Im [f(rd, ra,ω)] cos(𝑘𝑅),

and making the expansion of the wavenumber near the atomic resonance
frequency 𝑘(ω) ≈ 𝑘(ω0) + 𝑘′(ω0)(ω − ω0), we can finally perform the
integration over the frequency in Eq. (3.22). The function f(rd, ra,ω), which
is a sum f0() + f sc(), in our case can be thought of as a slowly varying
function of frequency, and taken outside of the ω integral calculated at the
resonance atomic frequency ω0. We want to note that the approximation
used here can be considered as a Markovianity in a weak sense, which means
that we took into account the dispersion of a photon propagating in the far
field, and it led to a finite propagation time from atomic position ra to the
detector rd for a lightfield.

Now we can finally take care of the ω integral, and arrive at the following
result:

𝐼𝑞0(𝑡) ≈

⃒⃒
⃒⃒
⃒⃒
4π𝑘20
𝑖

∑︁

𝑞′

𝐶𝑞′,𝑞0(𝑡−𝑅/𝑐)GFF(rd, ra,ω0)dq′

⃒⃒
⃒⃒
⃒⃒

2

. (3.24)

Note that the transition dipole moments dq′ here are the rotated ones, and
can be written as: dq′ = |d|MS:,𝑞′, where matrices M, and S are given by
Eqs. (3.13), (3.6), correspondingly.
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This result can be interpreted in a quite simply way. The atom is initially
pumped in state |𝑒𝑞0⟩, but due to the coupling of transitions, other excited
states also can be populated. Each transition can be viewed as a dipole dq′,
which produces the field at rd proportional to 4π𝑘20G

FF(rd, ra,ω0)dq′ and
this field is multiplied by the corresponding probability amplitude 𝐶𝑞′,𝑞0(𝑡−
𝑅/𝑐) of the atom being in state |𝑒𝑞′⟩ at the retarded time 𝑡−𝑅/𝑐. These fields,
independently produced by, in general, all three transition dipole moments
are summed up, and squared.

Another view on the equation above can be performed if one substitutes
Eq. (3.14) in it:

𝐼𝑞0(τ) ≈ |4π𝑘20d|2
⃒⃒
⃒⃒∑︀

𝑗

fj𝑒
−𝑖𝑔𝑗τ

⃒⃒
⃒⃒
2

, (3.25)

where τ = (𝑡 − 𝑅/𝑐) is the retarded time, fj = GFF
:,j (rd, ra,ω0) (MS𝑗,𝑞0) is

related to the electric field produced at the position of the detector rd, and
GFF

:,j (rd, ra,ω0) is the jth column of the far-field classical Green’s tensor of
the system. The difference between Eq. (3.24), and Eq. (3.25) is that the
former one is written in the basis of bare atomic excited states, while the
latter one is expressed in the eigenstate picture.

The manifestation of the effect under study can be observed by making
the comparison of the intensity dynamics for two initial conditions (𝑞0 = −1
and 𝑞0 = +1), when the structure is isotropic, and anisotropic. The results
of this comparison are presented in Fig. 3.4 (a). Note that in a general case
the orientation of the local atomic quantization axis, and the position of the
detector relative to the location of the atom are not correlated. In order to
reduce the total amount of degrees of freedom in the system, we enforce that
the detector position is given by rd||M𝑧, which means that the orientation
of the local atomic quantization axis, and location of the detector are given
by the angles α,β. As can be seen from Fig. 3.4 (a) for isotropic case (Case
A: dark red solid line, and bright red open circles) the intensity profiles are
the same for both initial conditions, while for anisotropic case (Case B: blue
dash-dotted, and blue dotted lines) they differ noticeably.

Previously we had a look at how the phenomenon under study affects the
intensity profile. It might be also interesting to consider what happens with
the spectral properties of the system, which can be described by the far-field
total emitted light spectrum. This quantity in the Markov approximation
can be found to be [165]:

𝑆𝑞0(ω) =
∞∫︀
0

𝑑𝑡2
∞∫︀
0

𝑑𝑡1

[︁
𝑒−𝑖ω(𝑡2−𝑡1)⟨Ê(−)(r, 𝑡2)Ê(+)(r, 𝑡1)⟩

]︁
=

⃒⃒
⃒⃒
⃒
∑︀
𝑞′

∞∫︀
0

𝑑𝑡′𝐶𝑞′,𝑞0(𝑡
′)𝑒𝑖(ω−ω𝑞′)𝑡

′
Fq′

(rd, ra)

⃒⃒
⃒⃒
⃒

2

, (3.26)
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where ω𝑞′ is the corresponding transition frequency, 𝐶𝑞′,𝑞0(𝑡
′) is the

probability amplitude of the system to be in the excite state |𝑒𝑞′⟩ at time 𝑡′,
while being initially in 𝑞0 state, and Fq′

(rd, ra) is given by:

Fq′
(rd, ra) = 4

ω2
𝑞′

𝑐2

∫︁ ′
𝑑ω′Im[G(rd, ra,ω

′)]dq′ζ(ω𝑞′−ω′) = Γ(rd, ra)dq′,

(3.27)
with ζ(𝑥) = 𝑖P 1

𝑥 + πδ(𝑥). We want to note that during further derivations
we only take into account the part proportional to πδ(𝑥). Despite the fact
that the principal value part of the integral above is, generally, not zero, we
will ignore this as this will simplify further calculations significantly, but will
not affect the results qualitatively with regard to the studied effect. Finally,
for this quantity we have:

Fq′
(rd, ra) ≈ 4π

ω2
𝑞′

𝑐2
Im [G(rd, ra,ω𝑞′)]dq′. (3.28)

In the definition of the emitted light spectrum Eq. (3.26) we put bare
transition frequencies ω𝑞′ = ω0 without the Lamb shift included in contrast
to how it was done in the original paper [165]. Formally, it means that the
bare transition frequency has to be replaced with the corrected value. For
instance, transition frequency enters as an argument in the Green’s tensor
of the problem, but in our problem Green’s tensor varies significantly on the
scale ∼ ω0, while the corrections are on the order of a bare atomic linewidth
∼ γ0 ≪ ω0, therefore, these corrections will not lead to any significant
deviations.

Now we can proceed with the calculation of the spectrum by carrying out
the time integral in Eq. (3.26):

𝑆𝑞0(ω) =

⃒⃒
⃒⃒
⃒
∑︀
𝑗

𝑖
∑︀

𝑞′ Fq′(rd, ra)𝐶
(𝑞′,𝑞0)
𝑗

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒
⃒
∑︀
𝑗

𝑖
∑︀

𝑞′ Γ(rd, ra)dq′𝐶
(𝑞′,𝑞0)
𝑗

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒
⃒
∑︀
𝑗

𝑖
∑︀

𝑞′ |d|Γ(rd, ra)MS:,𝑞′
[︀
(MS)−1

]︀
𝑞′,𝑗

(MS)𝑗,𝑞0

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒
⃒
∑︀
𝑗

𝑖|d|Γ:,𝑗(rd, ra)(MS)𝑗,𝑞0
(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒
⃒
∑︀
𝑗

𝑓 𝑞0
𝑗 (rd, ra)

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

, (3.29)

where we introduced the detuning δ = ω − ω0. In the above we have
also used Eq. (3.14) for 𝐶𝑞′,𝑞0(𝑡

′), and the fact that 𝐶
(𝑞′,𝑞0)
𝑗 is just equal to[︀

(MS)−1
]︀
𝑞′,𝑗

(MS)𝑗,𝑞0 by definition. Essentially, Eq. (3.29) is all we need, and
it physically expresses the contribution to the spectrum of each eigenstate 𝑗
with complex-valued eigenfrequency 𝑔𝑗 = 𝑔′𝑗 + 𝑖𝑔′′𝑗 , which produces the field
𝑓 𝑞0
𝑗 (rd, ra) at the position of the detector.
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There is also another way of representing the spectrum, which can be
obtained if we use the same trick we have used already in the first chapter:

𝑁∑︁

𝑗=1

𝑁∑︁

𝑖=1

(𝑓𝑞0
𝑖 )†𝑓𝑞0

𝑗

(δ− 𝑔𝑗)(δ− 𝑔*𝑖 )
=

𝑁∑︁

𝑗=1

𝑁∑︁

𝑖=1

(𝑓𝑞0
𝑖 )†𝑓𝑞0

𝑗

𝑔𝑗 − 𝑔*𝑖

[︂
1

δ− 𝑔𝑗
− 1

δ− 𝑔*𝑖

]︂
=

𝑁∑︁

𝑗=1

𝑁∑︁

𝑖=1

2Re

[︃
(𝑓𝑞0

𝑖 )†𝑓𝑞0
𝑗

𝑔𝑗 − 𝑔*𝑖

1

δ− 𝑔𝑗

]︃
=

𝑁∑︁

𝑗=1

𝑁∑︁

𝑖=1

2Re

[︃
(𝑓𝑞0

𝑖 )†𝑓𝑞0
𝑗 (δ− 𝑔*𝑗 )

𝑔𝑗 − 𝑔*𝑖

]︃
1

|δ− 𝑔𝑗|2
,

(3.30)

where in transition from the 2nd to the 3rd equation the interchange 𝑖↔ 𝑗 was
made for the second term. Now we can define the following two quantities:

ξ𝑗 = +2Re

[︃
∑︀
𝑖

(𝑓𝑞0
𝑖 )†𝑓𝑞0

𝑗

𝑔𝑗 − 𝑔*𝑖

]︃
,η𝑗 = −2Im

[︃
∑︀
𝑖

(𝑓𝑞0
𝑖 )†𝑓𝑞0

𝑗

𝑔𝑗 − 𝑔*𝑖

]︃
,

(3.31)

and, at last, arrive at the following:

𝑆𝑞0(δ) =

⃒⃒
⃒⃒
⃒
∑︁

𝑗

𝑓 𝑞0
𝑗 (rd, ra)

(δ− 𝑔𝑗)

⃒⃒
⃒⃒
⃒

2

=
∑︁

𝑗

(︀
ξ𝑗(δ− 𝑔′𝑗) + η𝑗𝑔

′′
𝑗

)︀

(δ− 𝑔′𝑗)
2 + 𝑔′′2𝑗

, (3.32)

Now let us discuss this form of the spectrum once more. First of all,
notice, that there are two principally different contributions to it. The one
proportional to ∼ ξ𝑗 has a simple Lorenzian lineshape described by the
spectral position of the line 𝑔′𝑗, and spectral width 𝑔′′𝑗 . The other contribution
is antisymmetrical with respect to δ−𝑔′𝑗 → −(δ−𝑔′𝑗) and it gives asymmetry
to each spectral line. The reason for the presence of this asymmetry is
that even though the spectrum is described in the picture of eigenstates,
these eigenstates are not orthogonal, in general, this leads to the interference
between the eigenstates. Eq. (3.32) presented above is absolutely identical to
the one we derived in the first chapter for total scattering cross-section (Eq.
(1.6)), transmission (Eq. (1.28)), and reflection (Eq. (1.30)) for an ensemble
of atoms.

Now let us come back to the discussion of the effect, for this, let us have
a look at the Fig. 3.4 (b). As expected, for isotropic metasurface (Case A:
dark red solid line, and bright red open circles) the spectra for two initial
conditions (𝑞0 = −1, and 𝑞0 = +1) are identical, but once the structure
is anisotropic (Case B: blue dash-dotted, and blue dotted lines) the spectra
become different. The presence of the phaseshift can be seen explicitly, if
one recalls that 𝑓 𝑞0

𝑗 (rd, ra) = 𝑖|d|Γ:,𝑗(rd, ra)(MS)𝑗,𝑞0, and, as clearly seen
from Eq. (3.13), the normalized rotated dipole moments obey the following:
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Figure 3.4 — a) Field intensity registered at the position of the detector rd
as a function of time τγ0 = (𝑡−𝑅/𝑐)γ0. τ = 0 time is when the light

emitted by the atom reaches the detector position. The emitter is assumed
to be in a state |𝑒𝑞0⟩ initially. We consider the two following cases: A -

isotropic (Ω𝑥 = Ω𝑦 = 1.5𝑘0), and B - anisotropic (Ω𝑥 = 1.5𝑘0,Ω𝑦 = 1.1𝑘0)
metasurface. We also study two possible initial conditions, hence, 4 cases in
total: isotropic metasurface - 𝐴 : 𝑞0 = −1, and 𝐴 : 𝑞0 = +1 (solid dark red

line, and bright red circles); anisotropic metasurface - 𝐵 : 𝑞0 = −1, and
𝐵 : 𝑞0 = +1 (blue dash-dotted, and dotted lines). The parameters are the

following: γ𝑥 = γ𝑦 = 0.1𝑘0, εsubs = 1.0, Δ𝑧 = 0.05λ0, ra = (0, 0,Δ𝑧),
rd = 𝑅(cos(α) sin(β), sin(α) sin(β), cos(β)), 𝑅 = 100λ0, α = π/4,

β = π/4. Normalization constant 𝐼(0)𝑞0 is the intensity registered at τ = 0
when the atom is in free space. b) The total emitted light spectra. All

relevant parameters, and the studied cases are the same as in Fig. 3.4 (a),
𝑆
(0)
𝑞0 is the value of the total emitted light spectrum for an atom in free

space at it’s resonance frequency. We provide comments on how to pick the
parameters (Ω𝑥,Ω𝑦) for cases A, and B in Appendix C.4

[MS]*:,1 = − [MS]:,3, which leads to
(︁
𝑓 𝑞0=−1
𝑗

)︁*
= −

(︁
𝑓 𝑞0=+1
𝑗

)︁
. Similarly to

temporal dynamics, this phase difference will affect the interference terms in
the total spectrum Eq. (3.29).

There is one more important point that we want to discuss. In the
beginning we derived the explicit expressions for the excitation transfer
amplitudes 𝑈𝑞′,𝑞(𝑡,0) (Eq. (3.14)), and the respective probabilities 𝑃𝑞′,𝑞(𝑡)
(Eq. (3.18)), both of which depend on the orientation of the local quantization
axis through α,β angles, and also on the parameters of the nanostructure as
well as the position of the emitter through the complex eigenfrequencies (𝑔𝑗).
However, as we introduced the detector, and calculated either the intensity
dynamics 𝐼𝑞0(𝑡) (Eq. (3.22)) or the total emitted light spectrum 𝑆𝑞0(ω) (Eq.
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(3.26)), we brought new degrees of freedom into the problem. Even though
we put detector into the far-field area, and linked it’s position rd to the
orientation of the quantization axis, this problem is quite different from the
one where we simply considered the transition probabilities 𝑃𝑞′,𝑞(𝑡), and it
can be illustrated by the following example.

When calculating results for Fig. 3.4, for the sake of simplicity we used
the fact that the materials of the lower, and the upper half-space media
are of the same kind, namely, that both of them are vacuum. Now imagine
that we set α = β = 0, so that the transition dipole moments d−1,d−1 are
parallel to the interface plane, while the detector is located right above the
atom at rd = (0, 0, 𝑅). For this set-up we compare two cases: εsubs = 1.0,
and εsubs ̸= 1.0, where εsubs is the dielectric constant of a lower medium
(the substrate). Results of this comparison can be seen in Fig. 3.5 (a), (b).
Interestingly, once the substrate is present, it turns out that despite the
orientation of transition dipole moments, 𝑆−1(ω) ̸= 𝑆+1(ω) still holds true.
It is quite clear that this happens not due to the studied effect as for α =

β = γ = 0 we have: 𝐶
(−1,+1)
𝑥 = 𝐶

(+1,−1)
𝑥 = −1

2 , 𝐶
(−1,+1)
𝑦 = 𝐶

(+1,−1)
𝑦 =

+1
2 , while 𝐶

(−1,+1)
𝑧 = 𝐶

(+1,−1)
𝑧 = 0. So, there is no phaseshift, which means

that 𝑃𝑞′,𝑞(𝑡) = 𝑃𝑞,𝑞′(𝑡) for this set of parameters. However, as can be seen
from definitions Eq. (3.24), and Eq. (3.29), apart from transition probability
amplitudes ∼ 𝑈𝑞′,𝑞0(𝑡,0), there is also a field produced by each eigenstate
𝑓 𝑞0
𝑗 (rd, ra) = 𝑖|d|Γ:,𝑗(rd, ra)(MS)𝑗,𝑞0, which is related to the far-field Green’s

tensor GFF(rd, ra,ω0). For the parameters considered in Fig. 3.5 (a) (εsubs =
1.0), we can write the following:

Γ(rd, ra) =

⎛
⎝
Γ𝑥𝑥 0 0
0 Γ𝑦𝑦 0
0 0 0

⎞
⎠ ,

(︀
𝑓±𝑥 (rd, ra), 𝑓±𝑦 (rd, ra), 𝑓±𝑧 (rd, ra)

)︀
=

𝑖|d|√
2

⎛
⎝
∓Γ𝑥𝑥 0 0
0 −𝑖Γ𝑦𝑦 0
0 0 0

⎞
⎠ . (3.33)

As can be seen, Γ is a diagonal matrix in this case with Γ𝑧𝑧 = 0. The
latter is true as both atom, and detector are located on the 𝑧-axis (as
α = β = 0), and 𝑧-oriented dipole moment does not radiate into the far
field along the direction of it’s orientation. As a consequence of this, only
𝑓 𝑞0
𝑥 (rd, ra), 𝑓 𝑞0

𝑦 (rd, ra) are non-zero. These vector quantities in our set-up
obey the following properties:

[︀
𝑓−1𝑗

]︀
𝑥
= −

[︀
𝑓+1
𝑗

]︀
𝑥
,
[︀
𝑓−1𝑗

]︀
𝑦
=
[︀
𝑓+1
𝑗

]︀
𝑦
, so only

𝑥-components flip their overall phase by π, when we change 𝑞0 = +1→ 𝑞0 =
−1. However, as seen from Eq. (3.33), these quantities have zero overlap
(𝑓 𝑞0

𝑥 )† · 𝑓 𝑞0
𝑦 = 0, leading to a fact that such a phaseshift does affect the
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Figure 3.5 — (a) The total emitted light spectra in the case of the absent
substrate εsubs = 1, and for α = β = 0. Solid red, and dashed blue lines are
for 𝑞0 = −1, and 𝑞0 = +1 cases, correspondingly. (b) Same as (a), but for
εsubs = 2.2. Here we take the following resonance frequencies for surface

conductivity tensor components: Ω𝑥 = 0.6𝑘0, Ω𝑦 = 1.0𝑘0. All other relevant
parameters are the same as for Fig. 3.4

spectrum as:

𝑆𝑞0(δ) =

⃒⃒
⃒⃒
⃒
∑︁

𝑗

𝑓 𝑞0
𝑥 (rd, ra)

(δ− 𝑔𝑥)
+

𝑓 𝑞0
𝑦 (rd, ra)

(δ− 𝑔𝑦)

⃒⃒
⃒⃒
⃒

2

=

⃒⃒
⃒⃒𝑓

𝑞0
𝑥 (rd, ra)

(δ− 𝑔𝑥)

⃒⃒
⃒⃒
2

+

⃒⃒
⃒⃒𝑓

𝑞0
𝑦 (rd, ra)

(δ− 𝑔𝑦)

⃒⃒
⃒⃒
2

,

(3.34)
and there are no cross-terms related to the interference of eigenstates 𝑥, and
𝑦. As a result, 𝑆−1(δ) = 𝑆+1(δ).

Now let us inspect the case from Fig. 3.5 (b) (εsubs = 2.2), when we have:

Γ(rd, ra) =

⎛
⎝
Γ𝑥𝑥 Γ𝑥𝑦 0
Γ𝑥𝑦 Γ𝑦𝑦 0
0 0 0

⎞
⎠ ,

(︀
𝑓±𝑥 (rd, ra), 𝑓±𝑦 (rd, ra), 𝑓±𝑧 (rd, ra)

)︀
=

𝑖|d|√
2

⎛
⎝
∓Γ𝑥𝑥 ∓Γ𝑥𝑦 0
−𝑖Γ𝑥𝑦 −𝑖Γ𝑦𝑦 0

0 0 0

⎞
⎠ , (3.35)

now the situation is different as we have non-diagonal components of Γ
matrix. Now the fields generated by eigenstates associated with 𝑥−, and
𝑦-oriented dipoles interfere (𝑓 𝑞0

𝑥 )† · 𝑓 𝑞0
𝑦 ̸= 0, and this phaseflip for the

𝑥-component of 𝑓 𝑞0
𝑗 affects the total spectrum, leading to 𝑆−1(δ) ̸= 𝑆+1(δ).

Note that this is a purely electrodynamical effect, and has nothing to do
with the phenomenon under study, as, again, in the situation described
above α = β = 0, which means that the transition probabilities are equal
𝑃−1,+1(𝑡) = 𝑃+1,−1(𝑡) even though the spectra are different 𝑆−1(δ) ̸= 𝑆+1(δ).
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3.4 Chiral coupling of excited states in a V-type atom: analysis
of the coupling constants

In the previous sections of this chapter in order to break the symmetry
in transitions |𝑒𝑞′⟩ → |𝑒𝑞⟩, and |𝑒𝑞⟩ → |𝑒𝑞′⟩ we allowed the transition
dipole moments dq to be arbitrarily oriented in space. We also allowed
the nanostructure in the vicinity of which the emitter is placed to be fully
locally anisotropic, which means that the components of a Green’s tensor are
pairwise non-identical: 𝐺𝑥𝑥(r0, r0,ω0) ̸= 𝐺𝑦𝑦(r0, r0,ω0), 𝐺𝑦𝑦(r0, r0,ω0) ̸=
𝐺𝑧𝑧(r0, r0,ω0), 𝐺𝑧𝑧(r0, r0,ω0) ̸= 𝐺𝑥𝑥(r0, r0,ω0). It led to the phaseshift
in the interference components in the time-dependent transition rates under
the exchange of the initial, and final states 𝑞′ ↔ 𝑞. However, this did not
allow us to make the system completely asymmetric such that, for instance,
𝑃𝑞′,𝑞(𝑡) = 0, while 𝑃𝑞,𝑞′(𝑡) ̸= 0. Let us now try to understand how we can
make this happen.

First of all, let us simplify a problem by making it quasi-2D: instead of
considering an 𝑠→ 𝑝 atom with triple digeneracy in the excited state, we will
take a look at an atom with V-type structure of levels (see Fig. 3.6 (a)) with
excited states |𝑒−1⟩, |𝑒+1⟩ only. As we will see later, this will significantly
simplify the analysis. Let us review the respective coupling constants for the
most general nanostructure:

Σ−,+
+,−

(ℏω0) = 4π𝑘0
|d|2
2

(∓)
(︀
1 ±𝑖 0

)︀
⎛
⎝
𝐺𝑥𝑥 𝐺𝑥𝑦 𝐺𝑥𝑧

𝐺𝑦𝑥 𝐺𝑦𝑦 𝐺𝑦𝑧

𝐺𝑧𝑥 𝐺𝑧𝑦 𝐺𝑧𝑧

⎞
⎠
⎛
⎝

1
±𝑖
0

⎞
⎠ =

2π𝑘20|d|2 (𝐺𝑥𝑥 −𝐺𝑦𝑦 ± 𝑖 (𝐺𝑥𝑦 +𝐺𝑦𝑥)) ,

Σ+,+
−,−

(ℏω0) = 4π𝑘0
|d|2
2

(︀
1 ∓𝑖 0

)︀
⎛
⎝
𝐺𝑥𝑥 𝐺𝑥𝑦 𝐺𝑥𝑧

𝐺𝑦𝑥 𝐺𝑦𝑦 𝐺𝑦𝑧

𝐺𝑧𝑥 𝐺𝑧𝑦 𝐺𝑧𝑧

⎞
⎠
⎛
⎝

1
±𝑖
0

⎞
⎠ =

2π𝑘20|d|2 (𝐺𝑥𝑥 +𝐺𝑦𝑦 ± 𝑖 (𝐺𝑥𝑦 −𝐺𝑦𝑥)) , (3.36)

where we have assumed that the transition dipole moments lie in the
𝑥𝑦-plane, and that 𝐺𝑖𝑗(r, r,ω0) ̸= 0 for all 𝑖,𝑗.

As one can see from the above, we can obtain Σ−,+ ̸= Σ+,− only if we
have 𝐺𝑥𝑦(r0, r0,ω0) + 𝐺𝑦𝑥(r0, r0,ω0) ̸= 0, so, the local Green’s tensor has
to be at least non-diagonal, and the sum of off-diagonal elements should
not be equal to zero. For typical photonic structures like semi-infinite planar
dielectric interface, dielectric/metal spherical nanoparticle, or conventional
dielectric/plasmonic waveguide the local Green’s tensor turns out to be
diagonal.
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One of the first naive ideas is to break time-reversal symmetry in the
system, which can be done by making use of the external static (DC)
magnetic field. This magnetic field can magnetize the electronic plasma in
the material leading to the appearance of non-diagonal Hall conductivities
σ𝑥𝑦,σ𝑦𝑥. However, these conductivities obey the relation σ𝑥𝑦 = −σ𝑦𝑥
as a direct consequence of the Onsager principle (see this happen [180]
for graphene, for instance). This symmetry of the conductivity tensor
components will be reflected in the local Green’s tensor leading to 𝐺𝑥𝑦 +
𝐺𝑦𝑥 = 0. Therefore, breaking the time-reversal symmetry would not help to
achieve the asymmetric coupling. Needless to say that a strong DC magnetic
field lifts the degeneracy in the excited states due to the Zeeman effect, and
lowers the spectral overlap of the levels, leading to smaller values of coupling
constants [152]. However, as Eq. (3.36) shows, the use of magnetic field makes
Σ−,− ̸= Σ+,+. It means that the Lamb shifts, and the spontaneous emission
rates for states of opposite helicities differ in this case, but we will not discuss
this as it does not affect the transition rates between the states.

From now on we will assume that the local Green’s tensor components
have the property 𝐺𝑥𝑦 − 𝐺𝑦𝑥 = 0, leading to Σ+,+ = Σ−,−. If we study the
free dynamics (in the absence of the external pumping field) of an initially
excited atom, we can find the evolution operator matrix elements as:

U(𝑡, 0) =

(︂
𝑈−,−(𝑡) 𝑈−,+(𝑡)
𝑈+,−(𝑡) 𝑈+,+(𝑡)

)︂
=

𝑒−𝑖𝑔𝑒𝑡

⎛
⎝ cosh

(︀√
𝑔−,+𝑔+,−𝑡

)︀
−𝑖
√︁

𝑔−,+

𝑔+,−
sinh

(︀√
𝑔−,+𝑔+,−𝑡

)︀

−𝑖
√︁

𝑔+,−
𝑔−,+

sinh
(︀√

𝑔−,+𝑔+,−𝑡
)︀

cosh
(︀√

𝑔−,+𝑔+,−𝑡
)︀

⎞
⎠ , (3.37)

where 𝑔𝑖,𝑗 = Σ𝑖,𝑗/ℏ, as before. The respective transition probabilities can
be found to be:

𝑃−,+
+,−

(𝑡) =
𝑒−γ𝑒𝑡

2

⃒⃒
⃒⃒
⃒
𝑔−,+
+,−

𝑔+,−
−,+

⃒⃒
⃒⃒
⃒ ·

(︂
cosh

(︀
2 Re

[︀√
𝑔−,+𝑔+,−

]︀
𝑡
)︀
− cos

(︀
2Im

[︀√
𝑔−,+𝑔+,−

]︀
𝑡
)︀)︂

, (3.38)

The transition rate 𝑃𝑞,𝑞′ is simply proportional to the ratio
⃒⃒
⃒𝑔𝑞,𝑞′𝑔𝑞′,𝑞

⃒⃒
⃒. Now

we can see explicitly that having 𝑔−,+ ̸= 𝑔+,− is not enough to obtain
𝑃𝑞,𝑞′(𝑡) ̸= 𝑃𝑞′,𝑞(𝑡), we rather need difference in the absolute values of the
coupling constants |𝑔−,+| ≠ |𝑔+,−|. This is of importance as in some cases it
might be that the couplings differ by an overall phase (in the simplest case
they differ in sign 𝑔−,+ = −𝑔+,−), and, as the result above suggests, this will
keep transition probabilities being equal 𝑃−,+(𝑡) = 𝑃+,−(𝑡).
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We can also look at the limit of an extreme asymmetry of interaction, for
example, let us consider the limit 𝑔+,− → 0, then Eq. (3.38) becomes:

𝑃+,−(𝑡) = 𝑒−γ𝑒𝑡 |𝑔+,−|2 𝑡2,
𝑃−,+(𝑡) = 0. (3.39)

Note that this answer is identical to the one obtained for a transport in a
chain of two-level atoms unidirectionally coupled through a guided mode (see
Eq. (2.9)), if we just set the number of atoms to 𝑁 = 2. This is quite natural
as the problem of two coupled transitions in a single atom is mathematically
identical to the case of two interacting two-level atoms, if one stays in a single
excitation domain. Now we will switch our discussion to a particular example
of a system, where one can realize such an asymmetric coupling.

3.5 Example of a system allowing for chiral coupling: qualitative
analysis

As was discussed previously, breaking the time-reversal symmetry does
not help to achieve the desired effect. Another possible option is to do
something with the parity of the system. Indeed, if one breaks certain
geometric symmetries in the photonic structure, one can achieve optical or
electromagnetic chirality [181]. Actually, there are, at least, several ways
through which one can achieve optical chirality: for instance, one can use
electromagnetic coupling. However, for now we will focus on a particular
way, which is based on altering the geometry of the system.

The simplest model for chiral nanophotonic structure is based on a Born
Kuhn model [36;37], which was used to describe the natural optical activity
in a system of two coupled oscillators, which are displaced in a vertical
direction [38]. Let us quickly demonstrate that this simple model will also
work for our purposes.

In order to do that, let us consider two strongly anisotropic dipolar
scatterers as presented in Fig. 3.6 (b), which are located in two parallel planes,
both of which are perpendicular to the 𝑧-axis of the introduced coordinate
system. By strongly anisotropic we mean that they are predominantly
polarized along a given direction which we will call the long axis of a scatterer,
and this long axis for both of them is always perpendicular to 𝑧-axis. If
we start from a given scatterer being aligned along the 𝑥-axis, then it’s
polarizability is given by:

α(ω) = 𝑆(φ0) · diag(α||(ω), 0, 0) · 𝑆−1(φ0), (3.40)
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Figure 3.6 — (a) A level scheme of a V-type emitter. (b) A scheme based on
the Born-Kuhn model similar to the one used in [38]. The centers of two
ellipsoidal scatterers, and the atom are located on the 𝑧-axis at positions
𝑧1, 𝑧2, and 𝑧0, correspondingly, while the long axes of both ellipsoids are
perpendicular to 𝑧-axis. (c) An alternative scheme, where centers of both

scatterers, and the atom are in the 𝑥𝑦-plane, on the 𝑦-axis

where φ0 defines the angle between the long axis of a scatterer and the
positive 𝑥-direction, and 𝑆(φ0) is a rotation matrix around the 𝑧-axis. We
want to note that such a form of polarizability is only chosen for a qualitative
analysis, later we will use another model.

If we want to find the local Green’s tensor of two point dipolar scatterers
(in order to analyze the coupling constants), we can do that by using the
Dyson equation [2; 182]:

Gtot(r, r0) = G0(r, r0)+

4π𝑘2
(︂
G0(r, r1)α1Gtot(r1, r0) +G0(r, r2)α2Gtot(r2, r0)

)︂
, (3.41)

where α1,α2 are the respective polarizabilities of both scatterers, r1, r2 are
their locations. The values of the total Green’s tensor at field points r1,
and r2 can be found by setting r to be equal to r1, and r2, excluding the
appearing self-interaction terms G0(r1, r1), G0(r2, r2), and by solving the
resulting system of equations for Gtot(r1, r0), Gtot(r2, r0). The details of
this can be found in Appendix C.5.

If we assume that the atom is also on the 𝑧-axis, and that scatterer 1 is
rotated on angle φ0, while 2 - on −φ0, then the conditions for |𝑔−,+| ≠ |𝑔+,−|
in this particular set-up are the following:

{︃
|𝑧0 − 𝑧1| ≠ |𝑧0 − 𝑧2|,
φ0 ̸= π

4𝑚, 𝑚 ∈ Z.
(3.42)

This is not that surprising that we were able to achieve chiral coupling
for this specific system as it is geometrically chiral, and geometrical chirality
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leads to the optical chirality with respect to plane wave scattering [181]. As
the dipole field is of more complex profile than a usual plane wave, we can
naturally expect the system to allow for chiral coupling of circular transitions.
However, the question is, whether or not it is possible to achieve the same
result, but for the system with simpler geometry? The answer is yes.

In order to demonstrate that, let us allow for both dipole scatterers and
the atom to be in the same plane (𝑥𝑦-plane, for instance), and, moreover, on
the same axis (let it be 𝑦-axis) as shown in Fig. 3.6 (c). We will also put the
atom right in between the scatterers, and let the long axes of both scatterers
be parallel, and defined by angle φ0 in order to simplify the problem as
much as possible. In this set-up, if we will also set φ1 = φ2 = φ0 we will
have 𝐺𝑥𝑦 ̸= 0 if:

φ0 ̸=
π

2
𝑚, 𝑚 ∈ Z. (3.43)

Indeed, even though the described system, clearly, has a reflection plane (at
least the 𝑥𝑦-plane), and geometrically is achiral, it allows for chiral coupling
of circularly polarized transitions. In the next section we will switch to a
more realistic description of the system, and show some quantitative rather
than qualitative results.

3.6 Example of a system allowing for chiral coupling: quantitative
results

One of the simplest shapes of anisotropic scatterers, which simultaneously
has an analytical explicit form of a polarizability is based on a prolate
ellipsoid, the quasi-static polarizability of which can be written as [183;184]:

α−1(ω) =
4π

𝑉

[︁
(4πε(ω)− 1)−1 I+ L

]︁
− 𝑖

2

3
𝑘3I, (3.44)

where ε(ω) is a dielectric permittivity tensor of the ellipsoid material,
𝑉 = 4π𝑎𝑥𝑎𝑦𝑎𝑧/3 is the ellipsoid volume, 𝑎𝑗 are it’s semiaxes, and L =
diag (𝑁𝑥, 𝑁𝑦, 𝑁𝑦) is the depolarization matrix with 𝑁𝑗 being the related
elliptic integrals [184]. For a prolate ellipsoid 𝑎𝑥 > 𝑎𝑦 = 𝑎𝑧 one can write
𝑁𝑥 =

1−𝑒2
2𝑒3

(︀
ln
(︀
1+𝑒
1−𝑒 − 2𝑒

)︀)︀
, 𝑁𝑦 = 𝑁𝑧 = (1−𝑁𝑥) /2, where 𝑒 =

√︁
1− 𝑎2𝑦/𝑎

2
𝑥.

When describing the optical response of the metal out of which the
scatterers are made, we can use the Drude model [185]: εD(ω) = ε∞ +

ω𝑝

ω(ω+𝑖γ) , where ε∞ is a high-frequency permittivity, ω𝑝,γ are the plasma
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frequency, and electron damping rate. However, the Drude model has its
limitations, and one can rather use table data from [175;186], for instance.

As Eq. (3.38) suggests, |𝑔𝑖,𝑗|/|𝑔𝑗,𝑖| defines the asymmetry of transition
probabilities, but if the coupling strength will be too weak realative to γ𝑒, for
instance, it will be impossible to observe this asymmetry in any measurable
quantity. Therefore, we need to look at both of these quantities, and in
Fig. 3.7 we show the results for the set-up from Fig. 3.6 (b). We note that
the atomic resonance frequency ω0 is always asummed to be tuned to the
longitudinal surface plasmon resonance (with dipole moment being parallel
to the long axis of a scatterer), which we define through the condition on
maximal Im [α̃𝑥𝑥(ω)], and the corresponding vacuum wavelength is defined

as λ|| =
2π𝑐

ω0
.

Figure 3.7 — (a) Coupling asymmetry, and (b) coupling strength versus
positions of the second emitter 𝑧2, and atom 𝑧0. The first scatterer is

assumed to be located at the origin of the introduced coordinate system. (c)
Excitation transfer probabilities between the excited states for parameters
𝑧0, 𝑧2 specified by the black cross. The parameters are: 𝑎𝑥 = 2𝑎𝑦 = 2𝑎𝑧 = 30

nm, λ|| ≈ 470 nm, ε is taken from [186], φ0 = π/8

As we discussed previously, there is no asymmetry |𝑔+,−|
|𝑔−,+| = 1 if the rotation

angle is φ0 =
π
4𝑚. Therefore, as a consequence of the problem’s symmetry,

we can expect that the maximal coupling asymmetry will be at φ0 = π/8,
and we fix this parameter. By tuning the respective positions of one of the
scatterers 𝑧2, and the atom 𝑧0, we observe a region with a quite high value
of the asymmetry parameter (red region in Fig. 3.7(a)). Interestingly, for the
parameters chosen, it lies very close to a region of a large coupling strength
(see lower right part of Fig. 3.7(b)). Fig. 3.7 (c) demonstrates that, indeed,
the high asymmetry regime is achieved as 𝑃−,+(𝑡) is almost zero at any time,
while 𝑃+,−(𝑡) achieves a peak value of ∼ 0.06.

In Fig. 3.8 the same quantities are presented for the situation from Fig.
3.6 (c): when we put the emitter, and both scatterers in the 𝑥𝑦-plane, fix
the emitter-scatterers distance Δ𝑦, but vary φ1,φ2. Interestingly, as seen
from (a), one can easily switch from |𝑔−,+| ≫ |𝑔+,−| to |𝑔+,−| ≫ |𝑔−,+| by
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a relatively slight change of φ1,φ2. From Fig. 3.8 (b) one realizes that the
angles allowing for the maximal coupling asymmetry do not quite correspond
to the maximal coupling constants. Despite this, as Fig. 3.8 (c) demonstrates,
such coupling strengths is enough to achieve a perfectly asymmetric transfer
of ∼ +10% of the excitation.

Figure 3.8 — (a) Coupling asymmetry, and (b) coupling strength versus the
rotation angles of long axes of both emitters φ1,φ2. The atom is located at

the origin, while both scatterers are symmetrically displaced along the
𝑦-axis. (c) Excitation transfer probabilities between the excited states for
the point with the maximal asymmetry in (a) that is marked by a black

cross. All relevant parameters are the same as in Fig. 3.7, while the distance
atom-scatterer is chosen to be Δ𝑦 = 𝑎𝑥 + λ||/20

In this section we demonstrated the possibility of almost perfectly chiral
coupling of levels on the example of an initially excited V-atom in one of its
excited states by looking at the transfer probabilities. However, instantaneous
level populations for the initially excited atom are not the quantities which
can be measured directly in the experiment, and one might rather want to
look at a scheme with, for instance, a continuous external pumping by a laser
field. This situation we are going to cover in the next section.

3.7 Chiral coupling in the presence of an external pumping field

The approach used in the previous sections - the calculation of the
evolution operator matrix elements, and the respective probabilities - can not
include simultaneously dissipative processes like spontaneous emission, and
the interaction with the pumping field. We need to rather use the full master
equation on the density matrix for the emitter. However, the conventional
Lindblad equation, which can be found, for instance, in Ref. [140] is not
suitable here, in the case of chiral interactions, and one has to rather use a
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more general form [165; 187]:

˙̂ρ𝑠(𝑡) = 𝑖
∑︀
𝑖

Δω𝑖 [σ̂𝑖𝑖, ρ̂𝑠(𝑡)]−
𝑖

ℏ

[︁
�̂�𝑝, ρ̂𝑠(𝑡)

]︁
+ ℒ̂ρ̂𝑠(𝑡),

ℒ̂ρ̂𝑠(𝑡) =
∑︀
𝑖

Γ𝑖𝑖

2
(2σ̂𝑔,𝑖ρ̂𝑠(𝑡)σ̂𝑖,𝑔 − σ̂𝑖,𝑖ρ̂𝑠(𝑡)− ρ̂𝑠(𝑡)σ̂𝑖,𝑖) +

�̸�=𝑗∑︀
𝑖,𝑗

Γ𝑖𝑗

2
([σ̂𝑔,𝑗ρ̂𝑠(𝑡), σ̂𝑖,𝑔] + [σ̂𝑔,𝑖, ρ̂𝑠(𝑡)σ̂𝑗,𝑔]) ,

�̸�=𝑗∑︀
𝑖,𝑗

δ𝑖𝑗 (−𝑖 [σ̂𝑔,𝑗ρ̂𝑠(𝑡), σ̂𝑖,𝑔] + 𝑖 [σ̂𝑔,𝑖, ρ̂𝑠(𝑡)σ̂𝑗,𝑔]) ,

− 𝑖

ℏ

[︁
�̂�𝑝, ρ̂𝑠(𝑡)

]︁
= − 𝑖

2

(︂
[σ̂𝑔,+, ρ̂𝑠(𝑡)] Ω+𝑒

𝑖φ+ + [σ̂+,𝑔, ρ̂𝑠(𝑡)] Ω+𝑒
−𝑖φ+ +

[σ̂𝑔,−, ρ̂𝑠(𝑡)] Ω−𝑒𝑖φ− + [σ̂−,𝑔, ρ̂𝑠(𝑡)] Ω−𝑒−𝑖φ−

)︂
, (3.45)

where detuning of the laser ω𝐿 from the atomic transition frequency
corrected for the Lamb shift ω0,𝑖 − δ𝑖𝑖 is given by Δω𝑖 = ω𝐿 −ω0,𝑖 + δ𝑖𝑖,
�̂�𝑝 = σ̂𝑔,+Ω+𝑒

𝑖φ+ + σ̂𝑔,−Ω−𝑒𝑖φ− + h.c. is responsible for the interaction of
the atom with the laser field, Ω± are the respective Rabi frequencies, 𝑒𝑖φ±

are related to the relative phases between the transition dipole moments,
and the external laser field, ℒ̂ is the Lindblad superoperator, and δ𝑖𝑗 =

4π𝑘20,𝑗d
†
iRe [G(r0, r0,ω0,𝑗)]dj/ℏ, Γ𝑖𝑗 = 8π𝑘20,𝑗d

†
i Im [G(r0, r0,ω0,𝑗)]dj/ℏ.

As ρ̂𝑠(𝑡) is the reduced density matrix of the system of interest (V-atom),
then we have 9 equations in total, and the system Eq. (3.45) can be re-written
as �̇�ρ(𝑡) = Mρ · 𝑥ρ(𝑡), where 𝑥ρ(𝑡) is a vector of 9 × 1 size containing all
components of the density matrix, and Mρ is a 9× 9 matrix. Now our point
in the beginning of the chapter is clear: if we took a more relistic 𝑠→ 𝑝 atom
with 4 levels, then Mρ would be 16× 16 in size. However, this simplification
does not allow us to obtain analytical solutions even for some extreme cases,
and the system in Eq. (3.45) has to be solved numerically. Nevertheless,
the reduced number of states will help us in the future when analyzing the
stationary solutions.

In order to demonstrate the presence of chirality, we can do the following.
Imagine that there is a plane wave of a general polarization impinging on the
system. The polarization should be chosen such that the total field (consisting
of the incident one, and the scattered one off the nanostructure) should
be linearly polarized at the atomic position r0. This means that the Rabi
frequencies for both transitions will be equal in strength, so Ω− = Ω+.
However, as the interaction between the transitions is chiral, then the
populations of the excited states will be unequal ρ++(𝑡) ̸= ρ−−(𝑡) despite the
equal pumping rates. We will concentrate on the case presented in Fig. 3.7 (c),
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and, for the sake of simplicity, assume that the incident field is propagating
along the −𝑧 direction, and is given by:

Einc(r) =
Einc,0√
1 + ξ2

⎛
⎝

1
ξ𝑒𝑖φinc

0

⎞
⎠ 𝑒𝑖kincr, (3.46)

where Einc,0 is the electric field strength of the incoming plane wave, and
ξ,φinc define it’s polarization. After tuning the atom-scatterer distance Δ𝑦,
and rotation angles φ1,φ2 (we assume using the geometry presented in
Fig. 3.6 (c)) in order to obtain |𝑔+,−| ≫ |𝑔−,+|, we alter the incident wave
parameters ξ,φinc such that Ω− = Ω+. However, in this scenario we do not
have full control over the values of phases φ−,φ+, but the effect of these
phases on the dynamics will not be discussed here.

Figure 3.9 — (a) Stationary values of excited state populations versus the
Rabi frequencies for both transitions Ω− = Ω+. The dashed black line
indicates the point of the maximal difference between the populations

|ρ∞+,+ − ρ∞−,−|. (b) Populations of excited states as a function of time for the
field strength allowing for a maximal stationary population difference from

(a)

Under the external excitation, after the transient processes take place, the
density matrix elements approach the stationary values, therefore, it makes
sense to look at how the stationary populations vary with the strength of
the external field, which is presented in Fig. 3.9 (a). First of all notice that
as Ω−,Ω+ →∞, the population difference expectably vanishes as the values
of the coupling constants |𝑔−,+|, |𝑔+,−|, and the asymmetry between them do
not play any role in this regime. However, for some specific value of the field
strength, the maximal population difference is achieved (indicated by the
vertical dashed line). The population dynamics for this parameter is shown
in Fig. 3.9 (b), notice that the stationary populations vary by the factor of 2.

Another possible way to demonstrate chirality is to consider selective
optical pumping of a given transition Ω− ≫ Ω+ (Ω+ ≫ Ω−), and looking at
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the excited state population on the orthogonal transition ρ+,+(𝑡) (ρ−,−(𝑡)).
Selective pumping of each transition can be done by properly tuning the
ξ,φinc parameters, as we have done previously. In case of symmetric coupling
𝑔−,+ = 𝑔+,−, these populations would be equal ρ−,−(𝑡) = ρ+,+(𝑡), and once
the system is chiral, there will be difference between them. First of all,
similarly, we analyze the stationary values for the two situations discussed
above as functions of the dominant Rabi frequency. From Fig. 3.10 (a)
one can see that, unlike in the symmetric pumping case (Fig. 3.9 (a)), for
Ω± ≫ |𝑔±,∓|, the stationary values approach zero, as here we look at the
population on the orthogonal transition, and the emitter does not have a
chance to undergo a transition due to the dipole-dipole coupling of levels
before the pumping field de-excites it. Secondly, as here |𝑔+,−| ≫ |𝑔−,+|, if
we pump the σ+ transition, then our system effectively behaves as a simple
two-level atom, and level |𝑒−⟩ is never populated (blue dashed line). However,
if we pump σ− transition, we can obtain a substantial population ρ∞+,+ (solid
red line) for a properly chosen strength of the external field Ω− (indicated
by a vertical dashed line). Indeed, as Fig. 3.10 (b) confirms, |𝑒−⟩ does not
get populated at all, while |𝑒+⟩ does.

Figure 3.10 — (a) Stationary values of excited state populations ρ∞+,+ (ρ∞−,−)
versus the Rabi frequency Ω− (Ω+) in solid red (dashed blue). The dashed

black line indicates the point of the maximal population ρ∞+,+ for σ−
pumping. Note that here |𝑔+,−| ≫ |𝑔−,+|, therefore, ρ∞−,− ≈ 0. (b)

Populations of excited states as functions of time for the field strength
allowing for a maximal stationary population from (a). Solid red line is for

ρ+,+(𝑡), when Ω− ̸= 0,Ω+ = 0, dashed blue line - ρ−,−(𝑡) for
Ω+ ̸= 0,Ω− = 0

As this scenario is a kind of an extreme case, where the chiral nature of
coupling is most prominent, we can obtain the stationary solution of Eq.
(3.45) analytically. Let us fix that 𝑔−,+ = Ω+ = 0, and Δω− = 0 (the
external field is exactly in resonance with the Lamb-shift corrected transition
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frequency), then we can find that:

ρ∞+,+ =
8Ω2
−|𝑔+,−|2

2γ4𝑒 + 5γ2𝑒Ω
2
− + 2Ω4

− + 8Ω2
−|𝑔+−|2

,

ρ∞𝑔,𝑔 =

(︀
γ2𝑒 + Ω2

−
)︀ (︀

2γ2𝑒 + Ω2
−
)︀

2γ4𝑒 + 5γ2𝑒Ω
2
− + 2Ω4

− + 8Ω2
−|𝑔+−|2

,

ρ∞−,− =
Ω2
−
(︀
2γ2𝑒 + Ω2

−
)︀

2γ4𝑒 + 5γ2𝑒Ω
2
− + 2Ω4

− + 8Ω2
−|𝑔+,−|2

,

ρ∞−,+ =
𝑖4γ𝑒Ω

2
−𝑔
*
+,−

2γ4𝑒 + 5γ2𝑒Ω
2
− + 2Ω4

− + 8Ω2
−|𝑔+,−|2

,

ρ∞+,𝑔 =
−2𝑔+,−Ω−

(︀
2Γ2

𝑒 − Ω2
−
)︀

2γ4𝑒 + 5γ2𝑒Ω
2
− + 2Ω4

− + 8Ω2
−|𝑔+,−|2

,

ρ∞−,𝑔 =
−𝑖γ𝑒Ω−

(︀
2γ2𝑒 + Ω2

−
)︀

2γ4𝑒 + 5γ2𝑒Ω
2
− + 2Ω4

− + 8Ω2
−|𝑔+,−|2

. (3.47)

Notice from the above, that the populations ρ∞𝑔,𝑔, ρ∞−,− contain 𝑔+,− only in
the denominator, while ρ∞+,+ has it both in numerator, and denominator, and,
more importantly, in the same power. It means that, in principle, by tuning
the parameters one can achieve population inversion on the |𝑒−⟩ ↔ |𝑒𝑔⟩
transition, if the condition 8Ω2

−|𝑔+,−|2 ≫
(︀
γ2𝑒 + Ω2

−
)︀ (︀

2γ2𝑒 + Ω2
−
)︀

is satisfied.
However, as one can see from the form of ρ∞+,𝑔, if we simply go into the
limit |𝑔+,−| ≫ Ω−,γ𝑒, then the corresponding coherence tends to be zero
ρ∞+,𝑔 → 0, as expected.

In this part of the chapter we demonstrated that it is possible to achieve
a strongly asymmetric coupling of circular transitions in a V-type quantum
emitter by making use of a quite simple structure based on just a pair of
asymmetric dipole scatters. We have shown that the asymmetry is achievable
both with the Born-Kuhn type arrangement of scatteres, and also for a system
that is geometrically achiral. We also suggested a scheme with the external
continuous wave pumping, which might allow to observe chiral coupling
through unequal stationary populations of the excited states.

3.8 Scientific statements

– When coupling the transitions in a multilevel quantum emitter through
the modes of an anisotropic metasurface, it is possible to achieve
asymmetry in the excitation transfer dynamics. This asymmetry
appears only if the quantization axis is tilted with respect to high
symmetry planes, and if the dressed states of the emitter are not
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degenerate. The effect arises from the phaseshift in the interference
part of the temporal dynamics, and it is prominent in both detected
temporal intensity or the total emitted light spectrum, making them
dependent on the spin orientation of the initially excited state.

– By using a plasmonic dimer structure consisting of two anisotropic
dipole scatterers (prolate ellipsoidal particles), one can achieve an
asymmetric coupling of circularly polarized transitions in a single
V-type quantum emitter. This coupling asymmetry results in an uneven
steady-state populations of the excited states even when pumping
strengths for both transitions are equal, and it also makes the optical
response of the system being strongly dependent on the local helicity
of the total field at the atomic position.



129

Conclusion

In the presented work we have considered, and solved several theoretical
problems in which one observes the manifestation of the interference effect
in the interaction of light with matter from a quantum optical perspective.
Here are the highlights of the most important results of this work:

1. In the first chapter we have discussed the appearance of strongly
subradiant states at the edge of a Brilluoin zone in subdiffractional
periodic chains of two-level atoms, where the enhancement in lifetimes
of such states was possible due to the mixing of eigenmodes, and the
consequent destructive interference of their constituents. This led to
several distinct features of such states as much faster decrease of the
emission rate with the system size (∼ 𝑁−6.8 instead of a regular ∼ 𝑁−3

dependency), as well as a better eigenstate localization due to the
suppression of dipole moments at the edges of a chain. More than
that, the aforementioned destructive interference is found to lead to a
simultaneous reduction of many multipolar contributions into the far
field radiation for this kind of subradiant state. We also demonstrated
that the presence of an additional interaction channel, apart from
the vacuum dipole-dipole interaction, does not necessarily lead to the
disappearance of this effect, and we have shown this for the case of
atomic chain near a single-mode optical nanofiber.

2. In the second chapter we have revealed a peculiar polynomial temporal
behavior of a single excitation transport in a one-dimensional chain of
atoms, which are unidirectionally coupled through a guided mode. We
have solved the problem analytically for arbitrary system sizes, and
based on this result, we have also estimated the approximate collective
sub-, and superradiant emission rates. For subradiance it was found
to be different from the case of symmetrically coupled atoms, which
is given by the Dicke theory. In order to reveal the reason for this
discrepancy to appear, we have analyzed the single-excitation dynamics
in the lowest non-vanishing order of perturbation theory, and found
that it happens due to the imperfect destructive interference.

3. In the third chapter we have demonstrated how, by using an anisotropic
photonic structure (metasurface), and by controlling the orientation
of transition dipole moments in an 𝑠 → 𝑝 atom, one can break the
symmetry of forward, and backward quantum-mechanical processess
related to the probabilities for an electron to make a transition from
one excited states to another. We derived analytically the requirements
for the observation of this phenomenon, and also attributed it to the
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interference of the eigenstates, which appear as a result of emitter’s
interaction with the electromagnetic modes of the environment. It
is demonstrated that this interference gives rise to a phaseshift in
the transition probability dynamics. We have also shown how these
unequal transition probabilities in such a system affect the measurable
quantities: detected light intensity dynamics, and total emitted light
spectrum.

4. In the third chapter we have also proposed another way to break this
symmetry in transitions by using a simple plasmonic structure - a
dimer made of two asymmetric dipolar matallic scatterers. By properly
tuning the geometry of the system, we have shown that it is possible
to almost completely forbid transitions of an electron in one direction
between the excited states with circularly polarized dipole moments
in a V-type atom. We have also analyzed the dynamics of the system
under the external continuous-wave pumping, and demonstrated that,
for instance, the steady-state populations of excited states can be
unequal due to their asymmetric coupling despite the Rabi frequencies
for corresponding transitions being equal. More than that, it is shown
that in this case the response of the system strongly depends on the
local helicity of the total field at the position of the atom.

To conclude, we want to pay a special attention that this thesis was
mostly concentrated on studying the very basics of the effects considered,
clarifying the mechanisms of their appearance, and specifying how they
affect different optical properties of the systems. An interesting future
direction of research can be to consider possible applications in different
branches of quantum physics: be it general quantum technologies, quantum
computations, quantum metrology or sensing. This is of interest as the effects
studied can play an important role in the development of concepts for future
quantum nanophotonic devices operating at the level of one or few quanta.
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3.4 a) Field intensity registered at the position of the detector rd as
a function of time τγ0 = (𝑡−𝑅/𝑐)γ0. τ = 0 time is when the
light emitted by the atom reaches the detector position. The
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- anisotropic (Ω𝑥 = 1.5𝑘0,Ω𝑦 = 1.1𝑘0) metasurface. We also
study two possible initial conditions, hence, 4 cases in total:
isotropic metasurface - 𝐴 : 𝑞0 = −1, and 𝐴 : 𝑞0 = +1 (solid dark
red line, and bright red circles); anisotropic metasurface -
𝐵 : 𝑞0 = −1, and 𝐵 : 𝑞0 = +1 (blue dash-dotted, and dotted
lines). The parameters are the following: γ𝑥 = γ𝑦 = 0.1𝑘0,
εsubs = 1.0, Δ𝑧 = 0.05λ0, ra = (0, 0,Δ𝑧),
rd = 𝑅(cos(α) sin(β), sin(α) sin(β), cos(β)), 𝑅 = 100λ0,
α = π/4, β = π/4. Normalization constant 𝐼(0)𝑞0 is the intensity
registered at τ = 0 when the atom is in free space. b) The total
emitted light spectra. All relevant parameters, and the studied
cases are the same as in Fig. 3.4 (a), 𝑆(0)
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3.8 (a) Coupling asymmetry, and (b) coupling strength versus the
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F. Nori, A. V. Zayats // Nature Photonics. — 2015. — Dec. — Vol. 9,
no. 12. — Pp. 796–808. — URL: https://doi.org/10.1038/nphoton.2015.
201.

35. Mechelen Todd Van, Jacob Zubin. Universal spin-momentum locking
of evanescent waves // Optica. — 2016. — Feb. — Vol. 3, no. 2. —
Pp. 118–126. — URL: http://www.osapublishing.org/optica/abstract.
cfm?URI=optica-3-2-118.
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A. Additional materials for Chapter 1

A.1 Expanding the emission rate of a collection of dipole
scatterers in terms of Vector Spherical Harmonics

Our primary goal in this appendix is to expand the emission rate in terms
of contributions of different Vector Spherical Harmonics (VSH), which have
the following explicit form:

M𝑗,𝑚(𝑘, r) =

⎛
⎝

0
𝑖𝑚
sin θ𝑗𝑗(𝑘𝑟)𝑌𝑗,𝑚(θ,φ)

−𝑗𝑗(𝑘𝑟)𝜕𝑌𝑗,𝑚(θ,φ)
𝜕θ

⎞
⎠ ,

N𝑗,𝑚(𝑘, r) =
1

𝑘𝑟

⎛
⎜⎝
𝑗𝑗(𝑘𝑟)𝑗(𝑗 + 1)𝑌𝑗,𝑚(θ,φ)

𝜕(𝑟𝑗𝑗(𝑘𝑟))
𝜕𝑟

𝜕𝑌𝑗,𝑚(θ,φ)
𝜕θ

𝜕(𝑟𝑗𝑗(𝑘𝑟))
𝜕𝑟

𝑖𝑚
sin θ𝑌𝑗,𝑚(θ,φ)

⎞
⎟⎠ . (A.1)

We start from the definitions of a period-averaged Poynting vector,
electric, and magnetic fields, which read as:

𝑃 = lim𝑟→∞
∫︀ ∫︀
⟨S⟩ · nr 𝑟

2 𝑑Ω, ⟨S⟩ = 𝑐

8π
Re [E(r,ω)×H*(r,ω)] ,

E(r,ω) =
∞∑︀
𝑗=0

+𝑗∑︀
𝑚=−𝑗

𝑖𝑎𝑗,𝑚√︀
𝑗(𝑗 + 1)

N
(1)
j,m(𝑘, r) +

𝑖𝑏𝑗,𝑚√︀
𝑗(𝑗 + 1)

M
(1)
j,m(𝑘, r),

H(r,ω) =
∞∑︀
𝑗=0

+𝑗∑︀
𝑚=−𝑗

𝑎𝑗,𝑚√︀
𝑗(𝑗 + 1)

M
(1)
j,m(𝑘, r) +

𝑏𝑗,𝑚√︀
𝑗(𝑗 + 1)

N
(1)
j,m(𝑘, r).

(A.2)

When plugging the expressions of E(r,ω),H(r,ω) into the definition of
⟨S⟩ there are two types of terms appearing: the direct ones (proportional to
𝑎𝑗,𝑚𝑎

*
𝑗′,𝑚′, and 𝑏𝑗,𝑚𝑏

*
𝑗′,𝑚′), and the cross-terms (𝑎𝑗,𝑚𝑏*𝑗′,𝑚′, and 𝑏𝑗,𝑚𝑎

*
𝑗′,𝑚′). Let

us first look at the direct terms in [E(r,ω)×H*(r,ω)]𝑟 (it can be shown
that the cross terms will give zero contribution to the radiated power):

∞∑︁

𝑗=1

+𝑗∑︁

𝑚=−𝑗

∞∑︁

𝑗′=1

+𝑗′∑︁

𝑚′=−𝑗′

(︂
𝑖𝑎𝑗,𝑚𝑎

*
𝑗′,𝑚′√︀

𝑗𝑗′(𝑗 + 1)(𝑗′ + 1)

[︁
N

(1)
j,m(𝑘, r)×M

(1),*
j′,m′(𝑘, r)

]︁
𝑟
+

𝑖𝑏𝑗,𝑚𝑏
*
𝑗′,𝑚′√︀

𝑗𝑗′(𝑗 + 1)(𝑗′ + 1)

[︁
M

(1)
j,m(𝑘, r)×N

(1),*
j′,m′(𝑘, r)

]︁
𝑟

)︂
,
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[︁
N

(1)
j,m(𝑘, r)×M

(1),*
j′,m′(𝑘, r)

]︁
𝑟
= −

𝜕(𝑘𝑟ℎ
(1)
𝑗 (𝑘𝑟))

𝜕(𝑘𝑟)

ℎ
(1),*
𝑗′ (𝑘𝑟)

𝑘𝑟
·

(︂
𝜕𝑌𝑗,𝑚(θ,φ)

𝜕θ

𝜕𝑌 *𝑗′,𝑚′(θ,φ)

𝜕θ
+

𝑚𝑚′

sin2(θ)
𝑌𝑗,𝑚(θ,φ)𝑌

*
𝑗′,𝑚′(θ,φ)

)︂
,

[︁
M

(1)
j,m(𝑘, r)×N

(1),*
j′,m′(𝑘, r)

]︁
𝑟
=

𝜕(𝑘𝑟ℎ
(1),*
𝑗′ (𝑘𝑟))

𝜕(𝑘𝑟)

ℎ
(1)
𝑗 (𝑘𝑟)

𝑘𝑟
·

(︂
𝜕𝑌𝑗,𝑚(θ,φ)

𝜕θ

𝜕𝑌 *𝑗′,𝑚′(θ,φ)

𝜕θ
+

𝑚𝑚′

sin2(θ)
𝑌𝑗,𝑚(θ,φ)𝑌

*
𝑗′,𝑚′(θ,φ)

)︂
, (A.3)

With the help of the identity [188]:

∫︁ ∫︁ (︂
𝜕𝑌𝑗,𝑚(θ,φ)

𝜕θ

𝜕𝑌 *𝑗′,𝑚′(θ,φ)

𝜕θ
+

𝑚𝑚′

sin2(θ)
𝑌𝑗,𝑚(θ,φ)𝑌

*
𝑗′,𝑚′(θ,φ)

)︂
·

sin θ𝑑θ𝑑φ = 𝑗(𝑗 + 1)δ𝑚,𝑚′δ𝑗,𝑗′, (A.4)

we can find that:
∫︁ ∫︁ [︁

N
(1)
j,m(𝑘, r)×M

(1),*
j′,m′(𝑘, r)

]︁
𝑟
𝑟2𝑠𝑖𝑛θ𝑑θ𝑑φ =

−
𝜕(𝑘𝑟ℎ

(1)
𝑗 (𝑘𝑟))

𝜕(𝑘𝑟)

ℎ
(1),*
𝑗′ (𝑘𝑟)

𝑘𝑟
𝑗(𝑗 + 1)𝑟2δ𝑗,𝑗′δ𝑚,𝑚′,

∫︁ ∫︁ [︁
M

(1)
j,m(𝑘, r)×N

(1),*
j′,m′(𝑘, r)

]︁
𝑟
𝑟2 sin θ𝑑θ𝑑φ =

𝜕(𝑘𝑟ℎ
(1),*
𝑗′ (𝑘𝑟))

𝜕(𝑘𝑟)

ℎ
(1)
𝑗 (𝑘𝑟)

𝑘𝑟
𝑗(𝑗 + 1)𝑟2δ𝑗,𝑗′δ𝑚,𝑚′. (A.5)

After the integration was done, we can take the limit (lim𝑟→∞ ...), taking
into account that lim𝑘𝑟→+∞ ξ*𝑗(𝑘𝑟)ξ

′
𝑗(𝑘𝑟) = 𝑖 (with ξ𝑗(𝑘𝑟) = 𝑘𝑟ℎ

(1)
𝑗 (𝑘𝑟)),

we can get rid of the integrals:

𝑃 =
𝑐

8π

1

𝑘2

∞∑︁

𝑗=1

+𝑗∑︁

𝑚=−𝑗

(︀
|𝑎𝑗,𝑚|2 + |𝑏𝑗,𝑚|2

)︀
. (A.6)

However, one might want to normalize the above expression with respect
to the everage power radiated by a single dipole scatterer with dipole moment

d: 𝑃1(𝑡) =
𝑐|d|2𝑘4

3
. This brings us to the final result:

Γ =
𝑃

𝑃1
=

3

8π

1

|d|2𝑘6
∞∑︁

𝑗=1

+𝑗∑︁

𝑚=−𝑗

(︀
|𝑎𝑗,𝑚|2 + |𝑏𝑗,𝑚|2

)︀
. (A.7)
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A.2 Case of the atomic chain along the z-axis

As we discussed in the maintext, one is free to choose how exactly to
position the system of dipole scatterers in order to perform the multipolar
expansion, this will not affect the final results, but will affect how many
multipolar orders 𝑗 one needs to take into account to have a reliable result.
As we are studying the emission rates of a linear periodic chain of dipoles, it
makes sense to position it so that the center of the chain coincides with the
center of the introduced spherical coordinate system. We will also consider
that the total number of dipoles 𝑁 is even, but this can be easily generalized
for the 𝑁 -odd case.

Moreover, we will align the chain along the 𝑧-direction, and as we will
show later, that will reduce the number of VSHs needed to be taken into
account significantly. In this set-up the spherical coordinates of a given dipole
𝑛 are given by:

𝑟𝑛 =

(︂
(𝑛− 1)− 𝑁 − 1

2

)︂
Δ𝑧,

θ𝑛 =

{︃
0, for 𝑧 > 0,

π, for 𝑧 < 0,

φ𝑛 = 0, (A.8)

where we were free to chose any fixed value for φ𝑛 as all dipoles are on
the 𝑧-axis, where φ-coordinate is undefined. The dipole moments for the
eigenmodes of interest are trasverse to the chain axis, so we can set them
to be parallel to the 𝑥-axis (θ-axis in the spherical coordinates). This means
that we care only about θ components of VSHs. From the form of VSHs one
can see that as all dipoles are located on the 𝑧-axis, a special care needed
with the term 𝑌𝑗,𝑚(θ,φ)/ sin(θ) appearing for 𝑏𝑗,𝑚 coefficients. Recalling
that 𝑌𝑗,𝑚 ∼ 𝑃𝑚

𝑛 (cos θ) sin|𝑚| θ, we can say that for the θ’s considered only
the coefficients 𝑏𝑗,+1, 𝑏𝑗,−1 are non-zero.

Similarly, for coefficients 𝑎𝑗,𝑚 we inspect the angular part:

𝜕𝑌𝑗,−𝑚(θ,φ)

𝜕θ

⃒⃒
⃒⃒
θ=0(π)
φ=0

=

1

2

(︂
𝑌𝑗,−𝑚+1(0(π), 0)

√︀
(𝑗 +𝑚)(𝑗 −𝑚+ 1)−

𝑌𝑗,−𝑚−1(0(π), 0)
√︀
(𝑗 −𝑚)(𝑗 +𝑚+ 1)

)︂
.
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From the above one can see that the only coefficints of relevance are,
again, the ones with |𝑚| = ±1: 𝑎𝑗,+1, 𝑎𝑗,−1.

Below we also provide helpful relations for the spherical harmonics, and
their derivatives with respect to θ:

𝑌𝑗,±1(θ,φ)

sin θ

⃒⃒
⃒⃒
θ=0
φ=0

= ∓1
2

√︂
2𝑗 + 1

4π

√︀
𝑗(𝑗 + 1),

𝑌𝑗,±1(θ,φ)

sin θ

⃒⃒
⃒⃒
θ=π
φ=0

= ±(−1)𝑗 1
2

√︂
2𝑗 + 1

4π

√︀
𝑗(𝑗 + 1),

𝜕𝑌𝑗,±1(θ,φ)

𝜕θ

⃒⃒
⃒⃒
θ=0
φ=0

= ∓1
2

√︂
2𝑗 + 1

4π

√︀
𝑗(𝑗 + 1),

𝜕𝑌𝑗,±1(θ,φ)

𝜕θ

⃒⃒
⃒⃒
θ=π
φ=0

= ∓(−1)𝑗 1
2

√︂
2𝑗 + 1

4π

√︀
𝑗(𝑗 + 1). (A.9)

A.3 Description of the fundamental guided mode

Following the [80; 104; 189] papers we define the field functions for the
modes of a waveguide with a circular cross-section in the following way:

ε(𝑓,𝑙,𝑝) = 𝑒ρερ + 𝑒φεφ + 𝑒𝑧ε𝑧, (A.10)

where index 𝑓 = ± defines the direction of propagation, 𝑙 - azimuthal mode
order or orbital momentum of the mode, 𝑝 = ± defines the direction of
the field vector rotation, ej are the unit vectors along the corresponding
directions, ε𝑗 are the scalar functions of the corresponding field components,
we will define them later.

There are two fundamental bases in which one can define the field
functions: quasicircularly, and quasilinearly polarized:

E(f ,l,p) = ε(𝑓,𝑙,𝑝)𝑒𝑖𝑓β𝑧+𝑖𝑙𝑝φ,

E(f ,l,p,φ0) =
1√
2

(︁
E(f ,l,+1)𝑒−𝑖φ0 + E(f ,l,−1)𝑒+𝑖φ0

)︁
, (A.11)

where β is a propagation constant (wavenumber along the waveguide),
φ0 parameter defines the symmetry axis of the electric field strength of
quasilinearly polarized modes, as light intensity for these modes, unlike
for the quasicircular ones, loses a complete cylindrical symmetry. The
propagation constant of a particular guided mode can be found from the
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following equation:
[︂

𝐽 ′𝑙(ℎρ𝑐)

ℎ𝑎𝐽𝑙(ℎρ𝑐)
+

𝐾 ′𝑙(𝑞ρ𝑐)

𝑞ρ𝑐𝐾𝑙(𝑞ρ𝑐)

]︂ [︂
𝑛2
1𝐽
′
𝑙(𝑞ρ𝑐)

ℎρ𝑐𝐽𝑙(ℎρ𝑐)
+

𝑛2
2𝐾
′
𝑙(𝑞ρ𝑐)

𝑞ρ𝑐𝐾𝑙(𝑞ρ𝑐)

]︂
=

𝑙2
(︂

1

ℎ2ρ2𝑐
+

1

𝑞2ρ2𝑐

)︂
β2

𝑘2
, (A.12)

where 𝐽𝑙(𝑥), 𝐾𝑙(𝑥) are the Bessel, and modified Bessel functions, respectively,
ℎ =

√︀
𝑛2
1𝑘

2 − β2, 𝑞 =
√︀
β2 − 𝑛2

2𝑘
2 with 𝑛1, 𝑛2 being refractive indeces

inside, and outside of the waveguide, 𝑘 = ω/𝑐 - vacuum wavenumber.
The modes with 𝑙 = 0 are either TE or TM modes, while 𝑙 ̸= 0 modes have

a hybrid nature (HE,EH modes), which means that, generaly, all three field
components are non-zero for such modes. It turns out that for a dielectric
waveguide the fundamental guided mode HE11 is of hybrid nature. As we
study the scattering of a single photon from this fundamental mode in the
maintext, we will provide explicit expressions for the field functions only for
this mode. For ρ < ρ𝑐 they read as:

ερ = 𝑖𝐴
𝑞

ℎ

𝐾1(𝑞ρ𝑐)

𝐽1(ℎρ𝑐)
((1− 𝑠)𝐽0(ℎρ)− (1 + 𝑠)𝐽2(ℎρ)) ,

εφ = −𝐴𝑞

ℎ

𝐾1(𝑞ρ𝑐)

𝐽1(ℎρ𝑐)
((1− 𝑠)𝐽0(ℎρ) + (1 + 𝑠)𝐽2(ℎρ)) ,

ε𝑧 = 𝐴
2𝑞

ℎ

𝐾1(𝑞ρ𝑐)

𝐽1(ℎρ𝑐)
𝐽1(ℎρ), (A.13)

while for ρ ⩾ ρ𝑐:

ερ = 𝑖𝐴 ((1− 𝑠)𝐾0(𝑞ρ) + (1 + 𝑠)𝐾2(𝑞ρ)) ,

εφ = −𝐴 ((1− 𝑠)𝐾0(𝑞ρ)− (1 + 𝑠)𝐾2(𝑞ρ)) ,

ε𝑧 = 𝐴
2𝑞

ℎ
𝐾1(𝑞ρ), (A.14)

where 𝐴 is a normalization constant, which is defined through the condition∫︀ 2π

0 𝑑φ
∫︀ +∞
0 𝑛2(ρ)|ε|ρ𝑑ρ = 1. The parameter 𝑠 is defined as:

𝑠 =
ℎ−2ρ−2𝑐 + 𝑞−2ρ−2𝑐

𝐽 ′1(ℎρ𝑐)/ℎρ𝑐𝐽1(ℎρ𝑐) +𝐾 ′1(𝑞ρ𝑐)/𝑞ρ𝑐𝐾1(𝑞ρ𝑐)
. (A.15)

Expressions for field functions for other guided modes can be found in
Ref. [189].
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A.4 Green’s tensor of a circular waveguide

The classical electromagnetic Green’s tensor for the system under study
can be found from the vector Helmholtz equation:

[︂
−ω

2

𝑐2
ε(r,ω) +∇×∇×

]︂
G(r,r′,ω) = Iδ(r− r′), (A.16)

where ε(r,ω) is the complex dielectric permittivity, and I is the unit 3 × 3
matrix (rank-2 tensor). In the maintext we consider a dielectic cylindrical
waveguide of a radius ρ𝑐, and dielectric permittivity ε, which is assumed
to be constant inside the cylindrical waveguide. To find the solution of the
equation above, we first apply the scattering superposition method [159;179]
that allows to expand the total Green’s tensor into a sum of the homogeneous,
and inhomogeneous parts:

G(r,r′,ω) = G0(r,r
′,ω) +G𝑠(r,r

′,ω). (A.17)

The case of interest for us is when both source, and field points r, r′ are
outside the cylindrical waveguide. For this case the homogeneous term is
non-zero, and it describes the field that is directly generated at the point r
by the source placed at the point r′, and this term is present even if there is
no waveguide. This term can be found analytically from the Green’s tensor
written in Cartesian coordinates by making use of the transformation from
Cartesian to cylindrical coordinate system S(φ)GCart

0 (r,r′,ω)S𝑇 (φ′), where
GCart

0 is given by the following analytic expression [2]:

GCart
0 (r, r′,ω) =

(︂
I+

1

𝑘2
∇⊗∇

)︂
𝐺0(r,r

′,ω), (A.18)

here 𝐺0(r,r
′,ω) is the scalar Green’s function, which is the solution to the

scalar Helmholtz equation.
The scattering part of the Green’s tensor can be constructed by exploiting

the integral representation of the homogeneous part. In order to obtain this
representation we need apply the method of Vector Wave Functions (VWF),
which is explained in details in Ref. [159; 179]. However, below we will only
describe the basic idea, and provide the final answer. In order to find the
solution of the vector Helmholtz equation (A.16), we can first look at the
solution to a scalar Helmholtz equation in the cylindrical coordinate system
that is given by:

∇2φ(k,r) + 𝑘2φ(k,r) = 0,

φ𝑛(𝑘𝑧,r) = 𝐽𝑛(𝑘ρρ)𝑒
𝑖𝑛θ+𝑖𝑘𝑧𝑧, (A.19)
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here r = (ρ,θ,𝑧) is a vector of cylindrical coordinates, 𝐽𝑛(𝑥) is the Bessel
function of the first kind, and 𝑘ρ, 𝑘𝑧 are the projections of the wavevector
k onto the corresponding directions.

The solution of the vector equation may be written in terms of the
following vector wavefunctions (VWFs):

M𝑛(𝑘𝑧,r) = ∇× [φ𝑛(𝑘𝑧,r)ez],

N𝑛(𝑘𝑧,r) =
1

𝑘
∇×M𝑛(𝑘𝑧,r), (A.20)

where ez is called the pilot vector, it is just a unit vector pointing in the
𝑧 direction in this case. These VWFs Mn(𝑘𝑧, r), Nn(𝑘𝑧, r) correspond to
transverse electric/magnetic (TE/TM) modes of the field.

It is possible to demonstrate [159] that the homogeneous part of the
Green’s function can also be represented in terms of these VWFs, and this
expansion has the following form:

G0(r,r
′,ω) = −eρeρ

𝑘20
δ(r− r′) +

𝑖

8π

∞∑︁

𝑛=−∞

∞∫︁

−∞

𝑑𝑘𝑧
𝑘20ρ

F𝑛(𝑘𝑧, r, r
′), (A.21)

where the F𝑛(𝑘𝑧, r, s) function is given by:

F𝑛(𝑘𝑧, r, s) =

{︃
M

(1)
𝑛 (𝑘𝑧, r)M𝑛(𝑘𝑧, r

′) +N
(1)
𝑛 (𝑘𝑧, r)N𝑛(𝑘𝑧, r

′),

M𝑛(𝑘𝑧, r)M
(1)
𝑛 (𝑘𝑧, r

′) +N𝑛(𝑘𝑧, r)N
(1)
𝑛 (𝑘𝑧, r

′).
(A.22)

In the above the first line is used for the case ρ𝑟 > ρ𝑟′, while the second one is
for ρ𝑟 < ρ𝑟′, and 𝑘0 = ω/𝑐 is the vacuum wavenumber, 𝑘0ρ =

√︀
𝑘20 − 𝑘2𝑧 is it’s

projection onto the eρ direction, and the superscript (1) in VWFs indicates
that the Bessel functions of the first kind 𝐽𝑛(𝑘ρρ) should be replaced with
the Hankel functions of the first kind 𝐻

(1)
𝑛 (𝑘ρρ), as the latter corresponds to

the out-going wave, satisfying the Sommerfeld radiation condition. Below we
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provide the explicit expressions for WVFs:

M𝑛(𝑘𝑧,r) =

⎛
⎝

𝑖𝑛
ρ
𝐽𝑛(𝑘0ρρ)

−𝑘0ρ(𝐽𝑛(𝑘0ρρ))′
0

⎞
⎠ 𝑒𝑖𝑛θ+𝑖𝑘𝑧𝑧,

N𝑛(𝑘𝑧,r) =

⎛
⎜⎝

𝑖𝑘𝑧𝑘0ρ
𝑘 (𝐽𝑛(𝑘0ρρ))

′

−𝑛𝑘𝑧
ρ𝑘 𝐽𝑛(𝑘0ρρ)

𝑘20ρ
𝑘 𝐽𝑛(𝑘0ρρ)

⎞
⎟⎠ 𝑒𝑖𝑛θ+𝑖𝑘𝑧𝑧

M𝑛(𝑘𝑧,r
′) =

⎛
⎝
− 𝑖𝑛
ρ′𝐽𝑛(𝑘0ρρ

′)
−𝑘0ρ(𝐽𝑛(𝑘0ρρ′))′

0

⎞
⎠

𝑇

𝑒−𝑖𝑛θ
′−𝑖𝑘𝑧𝑧′,

N𝑛(𝑘𝑧,r
′) =

⎛
⎜⎝
− 𝑖𝑘𝑧𝑘0ρ

𝑘 (𝐽𝑛(𝑘0ρρ
′))′

−𝑛𝑘𝑧
ρ′𝑘 𝐽𝑛(𝑘0ρρ

′)
𝑘20ρ
𝑘 𝐽𝑛(𝑘0ρρ

′)

⎞
⎟⎠

𝑇

𝑒−𝑖𝑛θ
′−𝑖𝑘𝑧𝑧′

(A.23)

where 𝐽𝑛(𝑘ρρ)
′ denotes the derivative of the expression with respect to the

dimensionless argument 𝑘ρρ.
Now with the help of the integral representation for the homogeneous part

of the Green’s tensor, we can construct the scattering term G𝑠(r,r
′,ω) in a

similar way. Let us label the medium outside the dielectric waveguide as 1,
and the medium inside as 2. An exact form of the Green’s tensor depends on
whether the source point r′ is inside or outside the waveguide. As soon as we
are interested in a situation when both source, and field points are outside
the structure (atoms in the maintext are in the vicinity of a waveguide), and
in the latter we consider only the second case. Therefore, the total Green’s
tensor can be written as:

{︃
G11(r,r′,ω) = G11

0 (r,r′,ω) +G11
𝑠 (r,r′,ω),

G21(r,r′,ω) = G21
𝑠 (r,r′,ω),

(A.24)

here the two superscripts denote the positions of the field, and the source
points, respectively. The two scattering parts of the Green’s tensor can be
written as:

G11
𝑠 (r,r′,ω) =

𝑖

8π

∞∑︁

𝑛=−∞

∞∫︁

−∞

𝑑𝑘𝑧
𝑘2ρ1

F
11(1)
M;𝑛,1(𝑘𝑧,r)M

(1)
𝑛,1(𝑘𝑧,r

′)

+ F
11(1)
N;𝑛,1(𝑘𝑧,r)N

(1)
𝑛,1(𝑘𝑧,r

′),

F
11(1)
M;𝑛,1(𝑘𝑧,r) = 𝑅11

𝑀𝑀M
(1)
𝑛,1(𝑘𝑧, r) +𝑅11

𝑁𝑀N
(1)
𝑛,1(𝑘𝑧,r),

F
11(1)
N;𝑛,1(𝑘𝑧,r) = 𝑅11

𝑀𝑁M
(1)
𝑛,1(𝑘𝑧, r) +𝑅11

𝑁𝑁N
(1)
𝑛,1(𝑘𝑧,r). (A.25)
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G21
𝑠 (r,r′,ω) =

𝑖

8π

∞∑︁

𝑛=−∞

∞∫︁

−∞

𝑑𝑘𝑧
𝑘2ρ1

F21
M;𝑛,2(𝑘𝑧,r)M

(1)
𝑛,1(𝑘𝑧,r

′)

+ F21
N;𝑛,1(𝑘𝑧,r)N

(1)
𝑛,1(𝑘𝑧,r

′),

F21
M;𝑛,2(𝑘𝑧,r) = 𝑅21

𝑀𝑀M𝑛,2(𝑘𝑧, r) +𝑅21
𝑁𝑀N𝑛,2(𝑘𝑧,r),

F21
N;𝑛,2(𝑘𝑧,r) = 𝑅21

𝑀𝑁M𝑛,2(𝑘𝑧, r) +𝑅21
𝑁𝑁N𝑛,2(𝑘𝑧,r), (A.26)

here the Fresnel coefficients 𝑅𝑖𝑗
𝐴𝐵 are introduced, and the second subscript in

the VWFs identifies that wavenumber 𝑘, and the corresponding projection
of the wavevector 𝑘ρ have to be replaced with their values inside the
corresponding medium 𝑘𝑖 =

√︀
ε𝑖(r,ω)𝑘0, 𝑘ρ𝑖 =

√︀
𝑘2𝑖 − 𝑘2𝑧 . We want to notice

that unlike the case of the homogeneous term (vacuum Green’s tensor), here
we have cross-terms - products of M and N VWFs, which is due to the fact
that the normal modes in our case have a hybrid nature. It simply means
that a cylindrical TE(TM) mode can be converted into a cylindrical TM(TE)
after either reflection or transmission through the structure.

Now the only thing we need to find are the Fresnel coefficients, which can
be derived by imposing the boundary conditions on the Green’s tensor at
the waveguide surface:

{︃
eρ × [G11(r,r′,ω)−G21(r,r′,ω)]|ρ𝑟=ρ𝑐 = 0,

eρ ×∇r × [G11(r,r′,ω)−G21(r,r′,ω)]|ρ𝑟=ρ𝑐 = 0.
(A.27)

By solving the above system of algebraic equations, we can find the explicit
expressions for the Fresnel coefficients 𝑅𝑖𝑗

𝐴𝐵 and, finally, construct the
scattering part of the Green’s tensor G𝑠(r,r

′,ω). Below we provide the
expressions for the Fresnel coefficients:
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𝐷𝑇 (𝑘𝑧) = −
(︂

1

𝑘2ρ2
− 1

𝑘2ρ1

)︂2

𝑘2𝑧𝑛
2 +

(︃
(𝐽𝑛(𝑘ρ2ρ𝑐))

′

𝑘ρ2𝐽𝑛(𝑘ρ2ρ𝑐)
− (𝐻

(1)
𝑛 (𝑘ρ1ρ𝑐))

′

𝑘ρ1𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

)︃
·

(︃
(𝐽𝑛(𝑘ρ2ρ𝑐))

′𝑘22
𝑘ρ2𝐽𝑛(𝑘ρ2ρ𝑐)

− (𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐))

′𝑘21

𝑘ρ1𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

)︃
ρ2𝑐,

𝑅11
𝑀𝑀(𝑘𝑧) =

1

𝐷𝑇 (𝑘𝑧)

𝐽𝑛(𝑘ρ1ρ𝑐)

𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

[︃(︂
1

𝑘2ρ2
− 1

𝑘2ρ1

)︂2

𝑘2𝑧𝑛
2−

(︂
(𝐽𝑛(𝑘ρ2ρ𝑐))

′

𝑘ρ2𝐽𝑛(𝑘ρ2ρ𝑐)
− (𝐽𝑛(𝑘ρ1ρ𝑐))

′

𝑘ρ1𝐽𝑛(𝑘ρ1ρ𝑐)

)︂(︃
(𝐽𝑛(𝑘ρ2ρ𝑐))

′𝑘22
𝑘ρ2𝐽𝑛(𝑘ρ2ρ𝑐)

− (𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐))

′𝑘21

𝑘ρ1𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

)︃
ρ2𝑐

]︃
,

𝑅11
𝑁𝑀(𝑘𝑧) =

𝐽𝑛(𝑘ρ1ρ𝑐)

𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

1

𝑘ρ1

(︂
1

𝑘2ρ1
− 1

𝑘2ρ2

)︂
·

(︃
(𝐽𝑛(𝑘ρ1ρ𝑐))

′

𝐽𝑛(𝑘ρ1ρ𝑐)
− (𝐻

(1)
𝑛 (𝑘ρ1ρ𝑐))

′

𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

)︃
𝑘1𝑘𝑧𝑛ρ𝑐
𝐷𝑇 (𝑘𝑧)

,

𝑅11
𝑀𝑁(𝑘𝑧) = 𝑅11

𝑁𝑀 ,

𝑅11
𝑁𝑁(𝑘𝑧) =

1

𝐷𝑇 (𝑘𝑧)

𝐽𝑛(𝑘ρ1ρ𝑐)

𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

[︃(︂
1

𝑘2ρ2
− 1

𝑘2ρ1

)︂2

𝑘2𝑧𝑛
2−

(︃
(𝐽𝑛(𝑘ρ2ρ𝑐))

′

𝑘ρ2𝐽𝑛(𝑘ρ2ρ𝑐)
− (𝐻

(1)
𝑛 (𝑘ρ1ρ𝑐))

′

𝑘ρ1𝐻
(1)
𝑛 (𝑘ρ1ρ𝑐)

)︃(︂
(𝐽𝑛(𝑘ρ2ρ𝑐))

′𝑘22
𝑘ρ2𝐽𝑛(𝑘ρ2ρ𝑐)

− (𝐽𝑛(𝑘ρ1ρ𝑐))
′𝑘21

𝑘ρ1𝐽𝑛(𝑘ρ1ρ𝑐)

)︂
ρ2𝑐

]︃
.

(A.28)

Note that the integral representations in Eq. (A.26) include integration
over the whole range of 𝑘𝑧 values, which means that it takes into account all
present modes: radiation (leaky), guided, near-field modes. Of special interest
are the guided modes, and mathematically their contribution is in the poles of
the Fresnel coefficients, which lie on the real 𝑘𝑧 axis (for the lossless dielectric
medium) between 𝑘0 (vacuum wavenumber), and 𝑘2 (dielectric wavenumber).
In a single-mode regime, when there is only the fundamental guided mode
in a waveguide, and one can extract it’s contribution to the Green’s tensor
easily. In order to do that, one needs to take the common denominator of
all of the Fresnel coefficients, and expand it near the corresponding βHE11

point up to the first order: 𝐷𝑇 (𝑘𝑧) ≈
𝜕𝐷𝑇 (𝑘𝑧)

𝜕𝑘𝑧

⃒⃒
⃒⃒
𝑘𝑧=βHE11

(𝑘𝑧 − βHE11
) + ....

Then one needs to calculate the pole contribution to the integral by using
the residue theorem, provided the value of βHE11

is found from the dispersion
relation from Eq. (A.12).



170

B. Additional materials for Chapter 2

B.1 Derivation of the effective Schrodinger equation from the
master equation

Here we want to prove that for the problem considered (dynamics of a
single excitation in an ensemble of coupled two-level systems) we can use
the Schrodinger equation with the effective Hamiltonian (Eq. (2.3)) rather
than use the full master equation on a density matrix. The latter for the
considered case (dipole-dipole coupled atoms with asymmetric interaction)
has the following form [165; 187]:

˙̂ρ𝑠(𝑡) = 𝑖
∑︁

𝑘

Δω𝑘

[︀
σ̂+𝑘 σ̂

−
𝑘 , ρ̂𝑠(𝑡)

]︀
+ ℒ̂ρ̂𝑠(𝑡),

ℒ̂ρ̂𝑠(𝑡) =
∑︁

𝑘

Γ𝑘𝑘

2

(︀
2σ̂−𝑘 ρ̂𝑠(𝑡)σ̂

+
𝑘 − σ̂+𝑘 σ̂−𝑘 ρ̂𝑠(𝑡)− ρ̂𝑠(𝑡)σ̂+𝑘 σ̂−𝑘

)︀
+

𝑘 ̸=𝑙∑︁

𝑘,𝑙

Γ𝑘𝑙

2

(︀[︀
σ̂−𝑙 ρ̂𝑠(𝑡), σ̂

+
𝑘

]︀
+
[︀
σ̂−𝑘 , ρ̂𝑠(𝑡)σ̂

+
𝑙

]︀)︀
+

𝑘 ̸=𝑙∑︁

𝑘,𝑙

δ𝑘𝑙
(︀
−𝑖
[︀
σ̂−𝑙 ρ̂𝑠(𝑡), σ̂

+
𝑘

]︀
+ 𝑖
[︀
σ̂−𝑘 , ρ̂𝑠(𝑡)σ̂

+
𝑙

]︀)︀
, (B.1)

where Δω𝑘 = −ω0,𝑘 + δ𝑘𝑘, with ω0,𝑘 - transition frequency
for atom 𝑘, ℒ̂ is the Lindblad superoperator accounting for the
dissipative dynamics, and δ𝑖𝑗 = 4π𝑘20,𝑗Re

[︁
d†iG(r0, r0,ω0,𝑗)dj

]︁
/ℏ,

Γ𝑖𝑗 = 8π𝑘20,𝑗Im
[︁
d†iG(r0, r0,ω0,𝑗)dj

]︁
/ℏ, which are responsible for the

coherent, and dissipative coupling of atoms.
Our primal interest is to find the probability that each atom is excited

at time 𝑡, given by the respective component of the density matrix
⟨𝑒𝑘|ρ̂𝑠(𝑡)|𝑒𝑘⟩ = ρ𝑘,𝑘(𝑡), where |𝑒𝑘⟩ = |𝑒𝑘⟩|𝑔⟩⊗𝑁−1. Therefore, by calculating
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the average value from the operator equation above, one finds that:

ρ̇𝑚,𝑚(𝑡) = −Γ𝑚,𝑚ρ𝑚,𝑚(𝑡) +
∑︁

𝑘 ̸=𝑚

Γ𝑘,𝑘ρ𝑚𝑘,𝑚𝑘(𝑡)+

𝑘 ̸=𝑚,𝑙 ̸=𝑚∑︁

𝑘,𝑙;𝑘 ̸=𝑙

(︂
−𝑖δ𝑘,𝑙 +

Γ𝑘,𝑙

2

)︂
ρ𝑚𝑙,𝑚𝑘(𝑡) +

∑︁

𝑙,𝑙 ̸=𝑚

(︂
𝑖δ𝑚,𝑙 −

Γ𝑚,𝑙

2

)︂
ρ𝑙,𝑚(𝑡)+

𝑘 ̸=𝑚,𝑙 ̸=𝑚∑︁

𝑘,𝑙;𝑘 ̸=𝑙

(︂
𝑖δ𝑘,𝑙 +

Γ𝑘,𝑙

2

)︂
ρ𝑚𝑘,𝑚𝑙(𝑡) +

∑︁

𝑙,𝑙 ̸=𝑚

(︂
−𝑖δ𝑚,𝑙 −

Γ𝑚,𝑙

2

)︂
ρ𝑚,𝑙(𝑡), (B.2)

where double subscript means that two atoms out of 𝑁 are excited ρ𝑚𝑙,𝑚𝑘 =
⟨𝑒𝑚|⟨𝑒𝑙|⟨𝑔|⊗𝑁−2ρ̂𝑠(𝑡)|𝑔⟩⊗𝑁−2|𝑒𝑙⟩|𝑒𝑚⟩, and due to the definition, the order in
each pair of indeces does not matter ρ𝑚𝑘,𝑚𝑙 = ρ𝑘𝑚,𝑚𝑙 = ρ𝑚𝑘,𝑙𝑚 = ρ𝑘𝑚,𝑙𝑚.
One can see that the second, the third, and the fifth terms in the righthand
side are expressing how the states from two-excitation domain interact with
the states in a single excitation domain. However, as we want to study single
excitation transport we can ignore these terms, and we end up with the
following reduced system:

ρ̇𝑚,𝑚(𝑡) = −Γ𝑚,𝑚ρ𝑚,𝑚(𝑡)+
∑︁

𝑙,𝑙 ̸=𝑚

(︂
𝑖δ𝑚,𝑙 −

Γ𝑚,𝑙

2

)︂
ρ𝑙,𝑚(𝑡) +

∑︁

𝑙,𝑙 ̸=𝑚

(︂
−𝑖δ𝑚,𝑙 −

Γ𝑚,𝑙

2

)︂
ρ𝑚,𝑙(𝑡). (B.3)

We can now make the following formal substitution ρ𝑙,𝑚(𝑡) = 𝐶𝑙(𝑡)𝐶
*
𝑚(𝑡),

plug it in the equation above, and gather together the terms with common
multipliers:

Re

⎡
⎣𝐶*𝑚(𝑡)

⎛
⎝�̇�𝑚(𝑡) +

Γ𝑚,𝑚

2
𝐶𝑚(𝑡)−

∑︁

𝑙,𝑙 ̸=𝑚

𝐶𝑙(𝑡)

(︂
𝑖δ𝑚,𝑙 −

Γ𝑚,𝑙

2

)︂⎞
⎠
⎤
⎦ = 0.

(B.4)

It is easily seen that the expression in round brackets should always be
equal to zero, even if the corresponding 𝐶*𝑚(𝑡) = 0 for a given 𝑚. One can
immediately identify that the expression in the round brackets is identical to
a Schrodinger equation that can be obtained with the effective Hamiltonian.

Here, an important note has to be made. Even though the substitution
ρ𝑙,𝑚(𝑡) = 𝐶𝑙(𝑡)𝐶

*
𝑚(𝑡) looks like a standard expression of a density matrix

through the components of a state vector ρ(𝑡) = |Ψ(𝑡)⟩⟨Ψ(𝑡)|, in our problem,
strictly speaking, we do not have a state vector for the full Hilbert space of
the problem. This is why we called this substitution formal.

Let us proceed with a system consisting of just a pair of asymmetrically
coupled two-level atoms, one of which is excited initially. One can formulate
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this in terms of a density matrix as:

ρ̇(𝑡) = Mρ · ρ(𝑡),

Mρ =

⎛
⎜⎜⎝

−Γ 𝐺*12 𝐺12 0
𝐺*21 −Γ 0 𝐺12

𝐺21 0 −Γ𝑒 𝐺*12
0 𝐺21 𝐺*21 −Γ

⎞
⎟⎟⎠ ,ρ(𝑡) =

⎛
⎜⎜⎝

ρ1,1(𝑡)
ρ1,2(𝑡)
ρ2,1(𝑡)
ρ2,2(𝑡)

⎞
⎟⎟⎠ , (B.5)

where in the above we assumed that both atoms have equal emission rates
Γ11 = Γ22 = Γ, and Lamb-shifts δ11 = δ22, and 𝐺𝑖𝑗 = 𝑖δ𝑖𝑗 − Γ𝑖𝑗/2. All we
need to do is to find the matrix exponent exp(Mρ · 𝑡), and then multiply it
by initial condition vector ρ(𝑡 = 0) from the right. However, as we assume
that initially atom 1 is excited ρ1,1(𝑡 = 0) = 1, we will provide below only
the first column of the matrix exponent:

[exp(Mρ · 𝑡)]:,1 = 𝑒−Γ𝑡

⎛
⎜⎜⎜⎜⎜⎝

cosh(
√
𝐺12𝐺21𝑡) cosh(

√︀
𝐺*12𝐺

*
21𝑡)√︁

𝐺*
21

𝐺*
12
cosh(

√
𝐺12𝐺21𝑡) sinh(

√︀
𝐺*12𝐺

*
21)√︁

𝐺21

𝐺12
cosh(

√︀
𝐺*12𝐺

*
21𝑡) sinh(

√
𝐺12𝐺21𝑡)√︁

𝐺21

𝐺12

𝐺*
21

𝐺*
12
sinh(

√
𝐺12𝐺21𝑡) sinh(

√
𝐺12𝐺21𝑡)

⎞
⎟⎟⎟⎟⎟⎠

.(B.6)

Now we can write a similar system, but in terms of probability amplitudes
for each atom to be excited:

Ċ(𝑡) = MC ·C(𝑡),

MC =

(︂
−Γ/2 𝐺12

𝐺21 Γ/2

)︂
,C(𝑡) =

(︂
𝐶1(𝑡)
𝐶2(𝑡)

)︂
, (B.7)

and the matrix exponent for this system is equal to:

exp(MC𝑡) = 𝑒−Γ𝑡/2

⎛
⎜⎜⎝

cosh(
√
𝐺12𝐺21𝑡)

√︂
𝐺12

𝐺21
sinh(

√
𝐺12𝐺21𝑡)

√︂
𝐺21

𝐺12
sinh(

√
𝐺12𝐺21𝑡) cosh(

√
𝐺12𝐺21𝑡)

⎞
⎟⎟⎠ .

(B.8)

One can easily see that the two answers obtained above are identical.
Moreover, with the help of the following identities:

cosh(𝑋) = 𝑖 sinh(𝑋 ′) sin(𝑋 ′′) + cosh(𝑋 ′) cos(𝑋 ′′),

sinh(𝑋) = cosh(𝑋 ′) cos(𝑋 ′′) + 𝑖 cosh(𝑋 ′) sin(𝑋 ′′),

cosh(𝑋) cosh(𝑋*) =
1

2
(cosh(2𝑋 ′) + cos(2𝑋 ′′)) ,

sinh(𝑋) sinh(𝑋*) =
1

2
(cosh(2𝑋 ′)− cos(2𝑋 ′′)) , (B.9)
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with 𝑋 = 𝑋 ′ + 𝑖𝑋 ′′, one can obtain results presented in the maintext in
Chapter 3, where the coupling of two excited states in a single emitter is
discussed, as this problem is mathematically equivalent to the case of two
interacting two-level atoms in a single excitation domain.

B.2 Chiral collective emission rate

As we mentioned in the maintext (see Eq. (2.10)), the emission rate of a
collective state can be found by calculating the following:

𝐶|Ψ⟩(𝑡) =

𝐴2

⎛
⎜⎜⎝

𝑒−𝑖ψ
*
1

𝑒−𝑖ψ
*
2

...
𝑒−𝑖ψ

*
𝑁

⎞
⎟⎟⎠

𝑇 ⎛
⎜⎜⎝

𝑒𝑖φ1,1𝐹0(𝑡) 0 ... 0
𝑒𝑖φ2,1𝐹1(𝑡) 𝑒𝑖φ2,2𝐹0(𝑡) ... 0

... ... ... ...
𝑒𝑖φ𝑁,1𝐹𝑁−1(𝑡) 𝑒𝑖φ𝑁,2𝐹𝑁−2(𝑡) ... 𝑒𝑖φ𝑁,𝑁𝐹0(𝑡)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

𝑒𝑖ψ1

𝑒𝑖ψ2

...
𝑒𝑖ψ𝑁

⎞
⎟⎟⎠ ,

(B.10)

here 𝐴 is the normalization factor assumed to be real, and both φ𝑖,𝑗 and ψ𝑗

can be complex, in general. Let us define these phases in the following way:
φ𝑙,𝑘 = (𝑙 − 𝑘)φ (φ = φ′ + 𝑖φ′′), and ψ𝑗 = (𝑗 − 1)ψ (ψ = ψ′ + 𝑖ψ′′).
For propagation phases φ𝑙,𝑘 this corresponds to the case, when emitters are
regularly spaced, while the imaginary part of φ𝑙,𝑘 accounts for the decay
of the propagating waveguide mode arising due to the presence material
losses. The phases ψ𝑗 entering the state vectors are introduced to compensate
for this propagation phases, which will allow for both in-phase, and out-of
phase emission of neighboring emitters. Due to the periodicity of the system,
we are able to write that 𝐹𝑠−1(𝑡) = 𝑒−Γtot𝑡/2𝐿

(−1)
𝑠−1 (Γ𝑔(𝑡 − (𝑠 − 1)τ))Θ(𝑡 −

(𝑠 − 1)τ) as now the retardation time between any two emitters can be
written in terms of photon flight time between the neighboring ones τ.
Moreover, in this case, the normalization constant 𝐴 can be readily found:
𝐴−2 = 𝑒ψ

′′(1−𝑁)csch(ψ′′)sinh(𝑁ψ′′), where csch(𝑥) and sinh(𝑥) are cosecant
hyperbolic, and sine hyperbolic functions, respectively.

The product can be written as C†UC, where 𝐶𝑘 = 𝑒𝑖(𝑘−1)ψ,
𝑈𝑙,𝑘 = 𝐴2𝑒𝑖(𝑙−𝑘)φ𝐹𝑙−𝑘(𝑡)Θ𝑙,𝑘, 𝐶†𝑙 = 𝑒−𝑖(𝑙−1)ψ

*, where Θ𝑙,𝑘 is a
discrete analogue of a Heaviside function given by Θ𝑙,𝑘 = 1 for
𝑙 ⩾ 𝑘, and equal to 0 otherwise. (UC)𝑙 =

∑︀𝑙
𝑘=1 𝑈𝑙,𝑘𝐶𝑘 =

𝑙∑︀
𝑘=1

𝑒𝑖(𝑙−𝑘)φ𝐹𝑙−𝑘(𝑡)𝑒𝑖(𝑘−1)ψ =
𝑙∑︀

𝑘=1

𝐹𝑙−𝑘(𝑡)𝑒𝑖𝑘(ψ−φ)𝑒𝑖𝑙φ−𝑖ψ;
𝑁∑︀
𝑙=1

𝐶†𝑙 (UC)𝑙 =
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𝑁∑︀
𝑙=1

𝑒−𝑖(𝑙−1)ψ
* 𝑙∑︀
𝑘=1

𝐹𝑙−𝑘(𝑡)𝑒𝑖𝑘(ψ−φ)𝑒𝑖𝑙φ−𝑖ψ =

𝑁∑︀
𝑙=1

𝑙∑︀
𝑘=1

𝑒𝑖(𝑙−𝑘)(φ
′−ψ′)+2ψ′′−(𝑙+𝑘)ψ′′−(𝑙−𝑘)φ′′

𝐹𝑙−𝑘(𝑡).

The final general answer can be written as:

𝐶|Ψ⟩(𝑡) = 𝐴2
𝑁∑︁

𝑙=1

𝑙∑︁

𝑘=1

𝑒𝑖(𝑙−𝑘)(φ
′−ψ′)+2ψ′′−(𝑙+𝑘)ψ′′−(𝑙−𝑘)φ′′

𝐹𝑙−𝑘(𝑡) =

𝐴2
𝑁∑︁

𝑠=1

𝑒𝑖(𝑠−1)(φ
′−ψ′)−(𝑠−1)φ′′

𝑒2ψ
′′
𝑁−(𝑠−1)∑︁

𝑗=1

𝑒−(𝑠−1)ψ
′′
𝑒−2𝑗ψ

′′
𝐹𝑠−1(𝑡). (B.11)

Now let us ignore the retardation effects τ → 0, and expand
𝑒−Γtot𝑡/2𝐿

(−1)
𝑠−1 (Γ𝑔𝑡) to the first order in 𝑡:

𝑒−Γtot𝑡/2𝐿
(−1)
𝑠−1 (Γ𝑔𝑡) =

{︃
1− Γtot𝑡, if 𝑠 = 1;

−Γ𝑔𝑡, if 𝑠 > 1.
(B.12)

For the case of complex-valued φ,ψ phases, the form of the expansion
looks quite cumbersome. Instead, let us from now on consider that both ψ,
and φ are real, while the normalization constant is equal to 𝐴 = 1/

√
𝑁 (a

single excitation is equally distributed between all atoms), and in this case
one can obtain:

𝐶(𝑡→ 0) ∼ 1 +

[︃
−Γtot

2
− Γ𝑔

𝑒𝑖ξ
(︀
𝑁 + 𝑒𝑖𝑁ξ −𝑁𝑒𝑖ξ − 1

)︀

𝑁 (𝑒𝑖ξ − 1)
2

]︃
𝑡 ∼

𝑃 (𝑡→ 0) = |𝐶(𝑡→ 0)|2 ∼ 1− Γ(0)𝑡, (B.13)

where ξ = φ′ − ψ′, and the modified spontaneous emission rate at small
times is equal to:

Γ(0) = 2Re

[︃
Γtot

2
+ Γ𝑔

𝑒𝑖ξ
(︀
𝑁 + 𝑒𝑖𝑁ξ −𝑁𝑒𝑖ξ − 1

)︀

𝑁 (𝑒𝑖ξ − 1)
2

]︃
=

Γtot + Γg
𝑁 + cos(𝑁ξ)− 1−𝑁 cos(ξ)

2𝑁 sin2(ξ/2)
. (B.14)

It is natural to proceed by considering the two extreme cases: each two
neighbouring emitters are emitting photons in- (superradiance), and out of
phase (subradiance), which corresponds to ξ = 2π𝑚, and ξ = π(2𝑚 + 1).
For these two cases we can rewrite the expression above as:

Γ(0) =

⎧
⎨
⎩
Γr +𝑁Γ𝑔, if ξ = 2π𝑚;

Γr + Γ𝑔
1 + (−1)𝑁

2𝑁
, if ξ = π(2𝑚+ 1),

(B.15)
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which is then discussed in the maintext. Pay attention that for superradiance,
and subradiance with 𝑁 being even the answers are the same as for the
symmetric interaction case. However, for odd 𝑁 subradiant emission into
the guided mode is not perfectly suppressed, and the deviation from zero
decreases with the system size as Γ

(0)
g = Γ(0) − Γr = Γg/𝑁 .

B.3 The effect of retardation

In the maintext (Chapter 2) as well as in the previous Appendix section
we assumed that the retardation time due to the photon time of flight from
one emitter to another is negligible. However, one can ask a question of how
the answers obtained so far are modified due to this when the system size is
so large that the retardation effects can not be ignored?

The way how retardation affects the atom-atom interaction through the
electromagnetic field was studied in Ref. [58;59], for instance. One can write
the following modification of the system in Eq. (2.1) in a form:

�̇�𝑛(𝑡) = −𝑖Ω𝐶𝑛(𝑡) +
𝑛−1∑︁

𝑚=1

𝐺𝑛𝑚𝐶𝑛(𝑡−Δτ𝑛,𝑚)Θ(𝑡−Δτ𝑛,𝑚), (B.16)

where Δτ𝑛𝑚 = (𝑧𝑛− 𝑧𝑚)/𝑣𝑔𝑟 are the flight times for a photon traveling from
emitter 𝑚 to emitter 𝑛, and Θ(𝑡) is a unit step Heaviside function.

Let us proceed with examination of Eq. (B.16) for the first three emitters:

𝐶1 = 𝑒−Γtot𝑡/2,

𝐶2 = (𝑡−Δτ2,1)𝐺21𝑒
−Γtot(𝑡−Δτ2,1)/2Θ(𝑡−Δτ2,1), (B.17)

𝐶3 =

(︂
𝐺32𝐺21

(𝑡−Δτ3,1)
2

2
+𝐺31(𝑡−Δτ3,1)

)︂
𝑒−Γtot(𝑡−Δτ3,1)/2Θ(𝑡−Δτ3,1).

One can easily deduce that it has a form quite close to that in the absence
of retardation, and, indeed, for the interaction constant of the form 𝐺𝑛𝑚 =
−Γ𝑔𝑒

𝑖𝑘𝑔(𝑧𝑛−𝑧𝑚), the answer can be given by:

𝐶1
𝑁(𝑡) = 𝑒−Γtot(𝑡−Δτ𝑁,1)/2+𝑖φ𝑁,1𝐿

(−1)
𝑁−1(Γ𝑔(𝑡−Δτ𝑁,1))Θ(𝑡−Δτ𝑁,1). (B.18)

The reason why this answer looks almost the same as Eq. (2.9) is, again, in
the fact that the system is unidirectional, and there is no back-reflection. One
can consider different ways of how excitation can jump from the first emitter
to emitter 𝑁 , and while it is transferred from one atom to another, it is only
allowed to make jumps in one direction. This leads to the fact that any of the
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considered pathways has the same length equal to 𝑧𝑁 − 𝑧1, and, hence, the
same propagation time Δτ𝑁,1. The term Θ(𝑡−Δτ𝑁,1) appears for the same
reason, as from 𝑡 = 0 it takes Δτ𝑁,1 time for the photon to reach atom 𝑁 . We
want to note that a similar result was first obtained in Ref. [170], where the
authors studied the propagation of photon pulses through a chain of two-level
emitters, which were embedded in the topological photonic structure with
one-way propagating edge mode.

We mentioned in Appendix B.2 that from Eq. (B.18) one can find how does
any state in the single excitation domain evolve. This will involve summation
over all pairs of emitters, and the collective behavior will be altered due to
the fact that each time the photon emitted by one atom hits another one,
the time evolution of the latter will be affected. This can be viewed as the
field produced by the first atom plays a role of, roughly speaking, an external
driving field for the second one. But one should not make a direct connection
here to the external pumping field (a laser field in a coherent state) as it was
emitted by another atom spontaneously.
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C. Additional materials for Chapter 3

C.1 Green’s function of a metasurface

For the derivation of the Green’s tensor of a metasurface characterized
by a surface conductivity tensor σ(ω), we basically follow the procedure
outlined in [190]. It is assumed that the interface lies in the 𝑥𝑦-plane with
𝑧 = 0. First, let us introduce useful notations.

For the wavevector of a wave propagating in medium 𝑗 in the positive or
negative direction along 𝑧 we write:

kj,± =

⎛
⎝
κ𝑥
κ𝑦
±𝑘𝑗,𝑧

⎞
⎠ , κ =

√︁
κ2𝑥 + κ

2
𝑦, 𝑘𝑗,𝑧 =

√︁
𝑘2𝑗 − κ2. (C.1)

For TE, and TM modes:

tj,± =
1

κ

⎛
⎝
−κ𝑦
κ𝑥
0

⎞
⎠ , pj,± =

1

𝑘𝑗

⎛
⎝
∓𝑘𝑗,𝑧κ𝑥/κ
∓𝑘𝑗,𝑧κ𝑦/κ

κ

⎞
⎠ , (C.2)

t⊥j,± = ez × tj,± =
1

κ

⎛
⎝
−κ𝑥
−κ𝑦
0

⎞
⎠ ; p⊥j,± = ez × pj,± =

𝑘1,𝑧
𝑘1κ

⎛
⎝
±κ𝑦
∓κ𝑥
0

⎞
⎠ , (C.3)

tj,± = −kj,± × pj,±/𝑘𝑗,

pj,± = +kj,± × tj,±/𝑘𝑗,

∇× [tj,±𝑒𝑖kj,±r] = 𝑖kj,± × tj,±𝑒𝑖kj,±r = 𝑖𝑘𝑗pj,±𝑒𝑖kj,±r,

∇× [pj,±𝑒𝑖kj,±r] = 𝑖kj,± × pj,±𝑒𝑖kj,±r = −𝑖𝑘𝑗tj,±𝑒𝑖kj,±r. (C.4)

Let us label the upper medium as 1, while the lower one as 2. Below we
will consider only the situation, when the source point r is always in medium
1. According to a superposition principle [159;179], the total Green’s function
can be decomposed into the free space part and the scattered part, as usual:

Gij(r, r′,ω) = G0(r, r
′,ω) +Gij

sc(r, r
′,ω), (C.5)

where 𝑖(𝑗) labels the medium in which the field (source) point is located.
The relevant Green’s tensors are of the form:
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G0(r, r
′,ω) = −ezezδ(R) +

𝑖

8π2

∫︁ ∫︁
𝑑κ𝑥𝑑κ𝑦

1

𝑘1𝑧

[︀
t1±t1± +

p1±p1±
]︀
exp(𝑖k1±R),

G11
sc (r, r

′,ω) =
𝑖

8π2

∫︁ ∫︁
𝑑κ𝑥𝑑κ𝑦
𝑘1,𝑧

[︂
𝑅11

𝑡𝑡 t1,+t1,− +𝑅11
𝑡𝑝 t1,+p1,− +

𝑅11
𝑝𝑡p1,+t1,− +𝑅11

𝑝𝑝p1,+p1,−

]︂
×

exp(𝑖k1,+r− 𝑖k1,−r
′),

G21
sc (r, r

′,ω) =
𝑖

8π2

∫︁ ∫︁
𝑑κ𝑥𝑑κ𝑦
𝑘1,𝑧

[︂
𝑅21

𝑡𝑡 t2,−t1,− +𝑅21
𝑡𝑝 t2,−p1,− +

𝑅21
𝑝𝑡p2,−t1,− +𝑅21

𝑝𝑝p2,−p1,−

]︂
×

exp(𝑖k2,−r− 𝑖k1,−r
′),

(C.6)

here R = r − r′. For the free-space Green’s tensor the upper (lower)
superscripts correspond to 𝑧 > 𝑧′ (𝑧 < 𝑧′). In the equations above we also
introduced the Fresnel coefficients 𝑅𝑖𝑗

𝑘𝑙 accounting for the scattering from
mode l to mode k. Note that due to the structure being, generally, anisotropic
in the 𝑥𝑦-plane, there are hybrid modes, which is why there are the cross
terms present involving the products of tj,±, and pj,±. The dyads required
for the calculation of G11

sc (r, r
′,ω) are listed below:

t1,+t1,−
𝑘1,𝑧

=

⎛
⎜⎝

κ2𝑦
κ2𝑘1,𝑧

− κ𝑥κ𝑦
κ2𝑘1,𝑧

0

− κ𝑥κ𝑦
κ2𝑘1,𝑧

κ2𝑥
κ2𝑘1,𝑧

0

0 0 0

⎞
⎟⎠ ,

t1,+p1,−
𝑘1,𝑧

=

⎛
⎜⎝
−κ𝑥κ𝑦𝑘1κ2

− κ2𝑦
𝑘1κ2

− κ𝑦
𝑘1𝑘1,𝑧

κ2𝑥
𝑘1κ2

κ𝑥κ𝑦
𝑘1κ2

κ𝑥
𝑘1𝑘1,𝑧

0 0 0

⎞
⎟⎠ ,

p1,+t1,−
𝑘1,𝑧

=

⎛
⎜⎝

κ𝑥κ𝑦
𝑘1κ2

− κ2𝑥
𝑘1κ2

0
κ2𝑦
𝑘1κ2

−κ𝑥κ𝑦𝑘1κ2
0

− κ𝑦
𝑘1𝑘1,𝑧

κ𝑥
𝑘1𝑘1,𝑧

0

⎞
⎟⎠ ,

p1,+p1,−
𝑘1,𝑧

=

⎛
⎜⎜⎝

−κ2𝑥𝑘1,𝑧
𝑘21κ

2 −κ𝑥κ𝑦𝑘1,𝑧
𝑘21κ

2 −κ𝑥
𝑘21

−κ𝑥κ𝑦𝑘1,𝑧
𝑘21κ

2 −κ
2
𝑦𝑘1,𝑧
𝑘21κ

2 −κ𝑦
𝑘21

κ𝑥
𝑘21

κ𝑦
𝑘21

κ2

𝑘21𝑘1,𝑧

⎞
⎟⎟⎠ .

(C.7)

In order to find the Fresnel coefficients, we need to satisfy the boundary
conditions at the interface plane:

⎧
⎨
⎩
ez × (E1 − E2) = 0,

ez × (H1 −H2) =
4π

𝑐
σE1,2,

(C.8)

where σ =

(︂
σ𝑥𝑥 σ𝑥𝑦
σ𝑦𝑥 σ𝑦𝑦

)︂
is a surface conductivity tensor.
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Even though the boundary conditions on electric, and magnetic fields have
to be considered together, by looking only at the condition on the electric
field, and taking into account that

(︀
t⊥i,+ = t⊥i,− = t⊥j,+, p⊥i,+ = −p⊥i,−, p⊥i,+ =

𝑘𝑖𝑘𝑗,𝑧
𝑘𝑖,𝑧𝑘𝑗

p⊥j,+
)︀
, we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 +𝑅11
𝑡𝑡 = 𝑅21

𝑡𝑡 ,

𝑅11
𝑝𝑡

𝑘1,𝑧
𝑘1

= −𝑅21
𝑝𝑡

𝑘2,𝑧
𝑘2

,

𝑅11
𝑡𝑝 = 𝑅21

𝑡𝑝 ,

−1 +𝑅11
𝑝𝑝 = −𝑅21

𝑝𝑝

𝑘2,𝑧𝑘1
𝑘2𝑘1,𝑧

.

(C.9)

From the boundary conditions for the magnetic fields we have 2 systems
of 2x2 equations:

(︂
𝑀11 𝑀12

𝑀21 𝑀22

)︂(︂
𝑅11

𝑡𝑡

𝑅11
𝑝𝑡

)︂
=

(︃
𝐵

(1)
1

𝐵
(1)
2

)︃
,

(︂
𝑀11 𝑀12

𝑀21 𝑀22

)︂(︂
𝑅11

𝑡𝑝

𝑅11
𝑝𝑝

)︂
=

(︃
𝐵

(2)
1

𝐵
(2)
2

)︃
, (C.10)

𝑅11
𝑡𝑡 =

𝐵
(1)
1 𝑀22 −𝐵

(1)
2 𝑀12

𝑀11𝑀22 −𝑀12𝑀21
, 𝑅11

𝑝𝑡 =
𝐵

(1)
2 𝑀11 −𝐵

(1)
1 𝑀21

𝑀11𝑀22 −𝑀12𝑀21
,

𝑅11
𝑡𝑝 =

𝐵
(2)
1 𝑀22 −𝐵

(2)
2 𝑀12

𝑀11𝑀22 −𝑀12𝑀21
, 𝑅11

𝑝𝑝 =
𝐵

(2)
2 𝑀11 −𝐵

(2)
1 𝑀21

𝑀11𝑀22 −𝑀12𝑀21
, (C.11)
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where:

𝑀11 = −
4π

𝑐κ
(−κ𝑦σ𝑥𝑥 + κ𝑥σ𝑥𝑦) +

κ𝑦

𝑘0κ
(𝑘1,𝑧 + 𝑘2,𝑧) ,

𝑀21 = −
4π

𝑐κ
(−κ𝑦σ𝑦𝑥 + κ𝑥σ𝑦𝑦)−

κ𝑥

𝑘0κ
(𝑘1,𝑧 + 𝑘2,𝑧) ,

𝑀12 =
4π

𝑐

𝑘1,𝑧𝑘2
𝑘2,𝑧𝑘1

𝑘2,𝑧
𝑘2κ

(κ𝑥σ𝑥𝑥 + κ𝑦σ𝑥𝑦) +
κ𝑥

𝑘0κ

(︂
𝑘1 +

𝑘1,𝑧𝑘
2
2

𝑘1𝑘2,𝑧

)︂
,

𝑀22 =
4π

𝑐

𝑘1,𝑧𝑘2
𝑘2,𝑧𝑘1

𝑘2,𝑧
𝑘2κ

(κ𝑥σ𝑦𝑥 + κ𝑦σ𝑦𝑦) +
κ𝑦

𝑘0κ

(︂
𝑘1 +

𝑘1,𝑧𝑘
2
2

𝑘1𝑘2,𝑧

)︂
,

𝐵
(1)
1 =

4π

𝑐

1

κ
(−κ𝑦σ𝑥𝑥 + κ𝑥σ𝑥𝑦) +

κ𝑦

𝑘0κ
(𝑘1,𝑧 − 𝑘2,𝑧) ,

𝐵
(1)
2 =

4π

𝑐

1

κ
(−κ𝑦σ𝑦𝑥 + κ𝑥σ𝑦𝑦) +

κ𝑥

𝑘0κ
(−𝑘1,𝑧 + 𝑘2,𝑧) ,

𝐵
(2)
1 =

4π

𝑐

𝑘1,𝑧𝑘2
𝑘1𝑘2,𝑧

𝑘2,𝑧
κ𝑘2

(κ𝑥σ𝑥𝑥 + κ𝑦σ𝑥𝑦) +
κ𝑥

𝑘0κ

(︂
−𝑘1 +

𝑘1,𝑧𝑘
2
2

𝑘1𝑘2,𝑧

)︂
,

𝐵
(2)
2 =

4π

𝑐

𝑘1,𝑧𝑘2
𝑘2,𝑧𝑘1

𝑘2,𝑧
𝑘2κ

(κ𝑥σ𝑦𝑥 + κ𝑦σ𝑦𝑦) +
κ𝑦

𝑘0κ

(︂
−𝑘1 +

𝑘1,𝑧𝑘
2
2

𝑘1𝑘2,𝑧

)︂
. (C.12)

We want to note that the double integral in Eq. (C.6)
∫︀ ∫︀

𝑑κ𝑥𝑑κ𝑦 is
better to carry out in cylindrical coordinates as one of the integration
domains becomes finite. This can be done by a simple transformation
κ𝑥 → κ cos(φ), κ𝑦 → κ sin(φ).

A very general explicit form of the Fresnel’s coefficients is quite
complicated, however, we can consider some specific cases, for which we
can at least make some analysis.

C.1.1 The case of: ε1 ̸= ε2, σ𝑖𝑗 = 0 for 𝑖 ̸= 𝑗

In case of the presence of the optical contrast between upper (1), and lower
(2) media (ε1 ̸= ε2 = 1), and vanishing non-diagonal surface conductivity
tensor components (σ𝑥𝑦 = σ𝑦𝑥 = 0), we can have a closer look at the
components of the Green’s tensor.

First, let us introduce the following notations:

𝑘+𝑧 = 𝑘1,𝑧 + 𝑘2,𝑧,

𝑘−𝑧 = 𝑘1,𝑧 − 𝑘2,𝑧,

𝐾+
12 = 𝑘1,𝑧𝑘

2
2 + 𝑘2,𝑧𝑘

2
1,

𝐾−12 = 𝑘1,𝑧𝑘
2
2 − 𝑘2,𝑧𝑘

2
1. (C.13)
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Now we will present each Fresnel coefficients in the form 𝑅11
𝑖𝑗 =

Num
[︀
𝑅11

𝑖𝑗

]︀

Det
, where Num[...] stands for numerator, and Det is the determinant

of the corresponding system Eq. (C.11).

Det =
𝑘+𝑧 𝐾

+
12

𝑘20𝑘1𝑘2,𝑧
+

4π

𝑐

1

𝑘0𝑘1𝑘2,𝑧

[︃
𝑘1,𝑧𝑘2,𝑧𝑘

+
𝑧

(︀
σ𝑥𝑥 cos

2(φ) + σ𝑦𝑦 sin
2(φ)

)︀
+

𝐾+
12

(︀
σ𝑦𝑦 cos

2(φ) + σ𝑥𝑥 sin
2(φ)

)︀
]︃
+

(︂
4π

𝑐

)︂2
𝑘1,𝑧 (σ𝑥𝑥σ𝑦𝑦)

𝑘1
. (C.14)

As can be seen, in this case the determinant is symmetric with respect
to π + φ → π − φ transformation. And inside both of domains φ ∈ [0,π],
and φ ∈ [π, 2π] the determinant is symmetric with respect to the domain’s
central point (π/2, and 3π/2, correspondingly).

Now let us have a look at the numerators:

Num(𝑅11
𝑡𝑡 ) =

1

𝑐2𝑘20𝑘1𝑘2,𝑧

[︃
𝑐2𝑘−𝑧 𝐾

+
12 − 2𝑐𝑘0

(︀
𝐾+

12 − 𝑘1,𝑧𝑘2,𝑧𝑘
−
𝑧

)︀
π(σ𝑥𝑥 + σ𝑦𝑦)−

16𝑘20𝑘1,𝑧𝑘2,𝑧π
2σ𝑥𝑥σ𝑦𝑦 + 2𝑐𝑘0

(︀
𝐾+

12 + 𝑘1,𝑧𝑘2,𝑧𝑘
−
𝑧

)︀
π(σ𝑥𝑥 − σ𝑦𝑦) cos(2φ)

]︃
,

Num(𝑅11
𝑝𝑡 ) =

4𝑘1,𝑧π

𝑐𝑘0
(σ𝑦𝑦 − σ𝑥𝑥) sin(2φ),

Num(𝑅11
𝑡𝑝 ) =

4𝑘1,𝑧π

𝑐𝑘0
(σ𝑥𝑥 − σ𝑦𝑦) sin(2φ),

Num(𝑅11
𝑝𝑝) =

1

𝑐2𝑘20𝑘1𝑘2,𝑧

(︃
𝑐2𝑘+𝑧 𝐾

−
12 + 2𝑐𝑘0

(︀
𝑘1,𝑧𝑘2,𝑧𝑘

+
𝑧 −𝐾−12

)︀
π (σ𝑥𝑥 + σ𝑦𝑦)+

16𝑘20𝑘1,𝑧𝑘2,𝑧π
2σ𝑥𝑥σ𝑦𝑦 + 2𝑐𝑘0

(︂
−𝐾−12 + 𝑘1,𝑧𝑘2,𝑧𝑘

+
𝑧

)︂
π (σ𝑥𝑥 − σ𝑦𝑦) cos(2φ)

)︃
.

(C.15)

For this case 𝑅11
𝑡𝑡 , and 𝑅11

𝑝𝑝 are of the same angular symmetry as the
denominator (as they contain only ∼ cos(2φ) part). However, 𝑅11

𝑡𝑝 , and 𝑅11
𝑝𝑡

are both anti-symmetric inside of domains φ ∈ [0,π], φ ∈ [π, 2π] with
respect to their central points.

In the maintext, we are interested mostly in the local Green’s tensor,
G11

sc (r, r,ω). For equal source, and field points, the exponential factor in
Eq. (C.6) turns into:

exp(𝑖k1,+r− 𝑖k1,−r) = exp (𝑖2𝑘1,𝑧𝑧) , (C.16)
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where, as usual, 𝑧 > 0 condition is assumed. One can see that this factor
does not contain the angular part at all. Therefore, whether or not some
component of the local Green’s tensor is equal to zero, can be understood by
looking at the products of corresponding dyad’s component with the related
Fresnel coefficient. The dyads entering the local Green’s tensor can be written
in the cylindrical coordinates as:

t1,+t1,−
𝑘1,𝑧

=

⎛
⎜⎝

𝑠𝑖𝑛2(φ)
𝑘1,𝑧

−𝑠𝑖𝑛(2φ)
2𝑘1,𝑧

0

−𝑠𝑖𝑛(2φ)
2𝑘1,𝑧

𝑐𝑜𝑠2(φ)
𝑘1,𝑧

0

0 0 0

⎞
⎟⎠ ,

t1,+p1,−
𝑘1,𝑧

=

⎛
⎜⎝
−𝑠𝑖𝑛(2φ)

2𝑘1
−𝑠𝑖𝑛2(φ)

𝑘1
−κ𝑠𝑖𝑛(φ)𝑘1𝑘1,𝑧

𝑐𝑜𝑠2(φ)
𝑘1

𝑠𝑖𝑛(2φ)
2𝑘1

κ𝑐𝑜𝑠(φ)
𝑘1𝑘1,𝑧

0 0 0

⎞
⎟⎠ ,

p1,+t1,−
𝑘1,𝑧

=

⎛
⎜⎝

𝑠𝑖𝑛(2φ)
2𝑘1

−𝑐𝑜𝑠2(φ)
𝑘1

0
𝑠𝑖𝑛2(φ)

𝑘1
−𝑠𝑖𝑛(2φ)

2𝑘1
0

−κ𝑠𝑖𝑛(φ)𝑘1𝑘1,𝑧

κ𝑐𝑜𝑠(φ)
𝑘1𝑘1,𝑧

0

⎞
⎟⎠ ,

p1,+p1,−
𝑘1,𝑧

=

⎛
⎜⎜⎝

−𝑐𝑜𝑠2(φ)𝑘1,𝑧
𝑘21

−𝑠𝑖𝑛(2φ)𝑘1,𝑧
2𝑘21

−κ𝑐𝑜𝑠(φ)
𝑘21

−𝑠𝑖𝑛(2φ)𝑘1,𝑧
2𝑘21

−𝑠𝑖𝑛2(φ)𝑘1,𝑧
𝑘21

−κ𝑠𝑖𝑛(φ)
𝑘21

κ𝑐𝑜𝑠(φ)
𝑘21

κ𝑠𝑖𝑛(φ)
𝑘21

κ2

𝑘21𝑘1,𝑧
.

⎞
⎟⎟⎠ . (C.17)

One can easily analyze the symmetry of each component, and quickly
understand that in the considered case the local Green’s tensor is diagonal.
This is, essentially, a result of the surface conductivity tensor being diagonal
σ𝑥𝑦 = σ𝑦𝑥 = 0. In the next subsection we will demonstrate the appearance
of these components explicitly.

C.1.2 The case of: ε1 = ε2 = 1, σ𝑖𝑗 ̸= 0 for all 𝑖,𝑗 = 𝑥,𝑦

This is the simplest situation, where one can observe that non-diagonal
components of the local Green’s tensor do not vanish. For this case we have
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𝐾−12 = 0, 𝑘−𝑧 = 0, 𝑘+𝑧 = 2𝑘𝑧, 𝐾+
12 = 2𝑘𝑧𝑘

2
0, and can write that:

Det = −16π
2

𝑐2
𝑘𝑧
𝑘0

[σ𝑥𝑦σ𝑦𝑥 − σ𝑥𝑥σ𝑦𝑦] +
8π

𝑘20𝑐

[︁
𝑘20
(︀
sin2(φ)σ𝑥𝑥 − cos(φ) sin(φ)(σ𝑥𝑦 + σ𝑦𝑥) + cos2(φ)σ𝑦𝑦

)︀
+

𝑘2𝑧
(︀
cos2(φ)σ𝑥𝑥 + cos(φ) sin(φ)(σ𝑥𝑦 + σ𝑦𝑥) + sin2(φ)σ𝑦𝑦

)︀ ]︁
+ 4

𝑘𝑧
𝑘0
. (C.18)

The numerators of the Fresnel coefficients are given by:

Num
[︀
𝑅11

𝑡𝑡

]︀
= − 8π

𝑐2𝑘0

(︁
𝑐𝑘0
(︀
sin2(φ)σ𝑥𝑥 − cos(φ) sin(φ) (σ𝑥𝑦 + σ𝑦𝑥)+

cos2(φ)σ𝑦𝑦
)︀
− 2𝑘𝑧π (σ𝑥𝑦σ𝑦𝑥 − σ𝑥𝑥σ𝑦𝑦)

)︁
,

Num
[︀
𝑅11

𝑝𝑡

]︀
=

8𝑘𝑧π
(︀
cos2(φ)σ𝑥𝑦 − sin2(φ)σ𝑦𝑥 + cos(φ) sin(φ) (σ𝑦𝑦 − σ𝑥𝑥)

)︀

𝑐𝑘0
,

Num
[︀
𝑅11

𝑡𝑝

]︀
=

8𝑘𝑧π
(︀
sin2(φ)σ𝑥𝑦 − cos2(φ)σ𝑦𝑥 + cos(φ) sin(φ) (σ𝑥𝑥 − σ𝑦𝑦)

)︀

𝑐𝑘0
,

Num
[︀
𝑅11

𝑝𝑝

]︀
=

8π𝑘𝑧
𝑐2𝑘20

(︁
𝑐𝑘𝑧
(︀
cos2(φ)σ𝑥𝑥 + cos(φ) sin(φ) (σ𝑥𝑦 + σ𝑦𝑥)+

sin2(φ)σ𝑦𝑦
)︀
+ 2𝑘0π (σ𝑥𝑥σ𝑦𝑦 − σ𝑥𝑦σ𝑦𝑥)

)︁
. (C.19)

Notice, that for all of the Fresnel coefficients the angular symmetry is now
more peculiar than in the previously considered case. Now they are neither
symmetric nor antisymmetric with respect to φ = π/2, and φ = 3π/2 points
in the corresponding domains (φ ∈ [0,π], andφ ∈ [π, 2π]). However, nothing
happened to the angular symmetry of dyads entering the Green’s tensor.
Therefore, one can expect that the local Green’s tensor is now non-diagonal.

C.2 Far-field Green’s tensor

At some point, we will require the far-field part of the scattered Green’s
tensor. For the case of both source, and field points being located in medium
1, the 𝑖, 𝑗 component of the Green’s tensor scattered part for a single-interface
planar nanostructure has the following form:

𝐺11,𝑠𝑐
𝑖𝑗 (r, r′,ω) =

𝑖

8π2

∫︁ ∫︁
𝑔11,𝑠𝑐𝑖𝑗 (κ𝑥, κ𝑦)𝑒

𝑖(κ𝑥𝑋+κ𝑦𝑌+𝑘𝑧𝑍)𝑑κ𝑥𝑑κ𝑦, (C.20)
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where 𝑋 = 𝑥−𝑥′, 𝑌 = 𝑦−𝑦′, 𝑍 = 𝑧+ 𝑧′,R =
(︀
𝑋, 𝑌, 𝑍

)︀
, 𝑅 = |R|. The ”+”

sign in 𝑍 appears as the scattered field is generated by a mirror image of a
source dipole. We also implied that the medium 1 has ε1 = 1 for simplicity.

By taking the limit 𝑘𝑅 → ∞, one can obtain [191]:

𝐺11,𝑠𝑐𝐹𝐹
𝑖𝑗 =

1

4π

𝑘𝑍

𝑅

𝑒𝑖𝑘𝑅

𝑅
𝑔11,𝑠𝑐𝑖𝑗

(︂
𝑘
𝑋

𝑅
, 𝑘

𝑌

𝑅

)︂
. (C.21)

For the case of an interface: 𝑋 = 𝑥 − 𝑥0, 𝑌 = 𝑦 − 𝑦0, 𝑍 = 𝑧 + 𝑧0,R =(︀
𝑋, 𝑌, 𝑍

)︀
, 𝑅 = |R|.

C.3 Extreme anisotropy case

Clearly, the Green’s function of anistoropic metasurface can be written
only in the form of double integrals

∫︀ ∫︀
𝑑κ𝑥𝑑κ𝑦. However, it is possible to

obtain the explicit form of the local Green’s function 𝐺11,𝑠𝑐(r, r,ω), when
there is no substrate (ε2 = 1), and when the following limit is taken:
σ𝑦𝑦 → 𝑖∞,σ𝑥𝑥 → 𝑖0. In this work the phenomenological Lorenz model for
surface conductivity tensor components is used rather than some ab-initio
calculation of it:

σ𝑗𝑗(ω) = 𝐴𝑗
𝑖𝑐

4π

ω

ω2 − Ω2
𝑗 + 𝑖γ𝑗ω

, (C.22)

here 𝐴𝑗 is the normalization factor, Ω𝑗 - frequency of the corresponding
resonance, γ𝑗 is the damping constant, 𝑐 is the speed of light. The
aforementioned limit corresponds to considering an almost or perfectly
lossless case (γ𝑗 ≈ 0), and ω is chosen such that the resonance condition is
satisfied for one component of the tensor (in this case ω ≈ Ω𝑦, and, therefore
σ𝑦𝑦 → 𝑖∞), while for the other component this frequency is far from the
resonance (ω≫ Ω𝑥 or ω≪ Ω𝑥, leading to σ𝑥𝑥 → 0𝑖). In a physical sense it
means that the system for this set of parameters presents a perfect electric
conductor along the 𝑦 direction, and a perfect isolator along the 𝑥 direction.

In this regime of strong anisotropy, and in the absence of the substrate,
the Fresnel coefficients take the following form:

𝑅11
𝑡𝑡 = − cos2(φ)

𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)
, 𝑅11

𝑝𝑡 = +
sin(φ) cos(φ)𝑘𝑧𝑘

𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)
,

𝑅11
𝑡𝑝 = − sin(φ) cos(φ)𝑘𝑧𝑘

𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)
, 𝑅11

𝑝𝑝 = +

𝑘2𝑧
𝑘20
sin2(φ)

𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)
,

(C.23)
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where the transformation from Cartesian to cylindrical coordinates is
assumed to be made. The components of the local Green’s tensor then take
the form:

𝐺𝑠𝑐,11
𝑥𝑥 (r, r,ω) = −

∫︀ ∫︀ 𝑖

8π2
sin2(φ) cos2(φ)

𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)

𝑘5ρ
𝑘𝑧𝑘4

𝑒𝑖2𝑘𝑧Δ𝑧𝑑𝑘ρ𝑑φ,

𝐺𝑠𝑐,11
𝑦𝑦 (r, r,ω) =

∫︀ ∫︀ 𝑖

8π2

(︁
𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)
)︁ 𝑘ρ
𝑘𝑧
𝑒𝑖2𝑘𝑧Δ𝑧𝑑𝑘ρ𝑑φ,

𝐺𝑠𝑐,11
𝑧𝑧 (r, r,ω) =

∫︀ ∫︀ 𝑖

8π2
sin2(φ)

𝑘2𝑧
𝑘2 sin

2(φ) + cos2(φ)

𝑘3ρ𝑘𝑧

𝑘4
𝑒𝑖2𝑘𝑧Δ𝑧𝑑𝑘ρ𝑑φ,

(C.24)

where it is assumed that the atom is located at Δ𝑧 > 0 distance from the
metasurface.

The three double integrals above can be carried out by first performing
the integration over φ, and then integration over 𝑘ρ. Finally, we arrive at
the following:

𝐺𝑠𝑐
𝑥𝑥(r, r,ω) = 𝑒2𝑖𝑘Δ𝑧 1

32π𝑘2Δ𝑧3
,

𝐺𝑠𝑐
𝑦𝑦(r, r,ω) = 𝑒2𝑖𝑘Δ𝑧−1 + 2𝑖𝑘Δ𝑧 + 4𝑘2Δ𝑧2

32π𝑘2Δ𝑧3
,

𝐺𝑠𝑐
𝑧𝑧(r, r,ω) = 𝑒2𝑖𝑘Δ𝑧 1− 𝑖𝑘Δ𝑧

16π𝑘2Δ𝑧3
. (C.25)

The functions derived above are visualized in Fig. C.1. Let us analyze how
do these functions behave in the limit of a small emitter-interface distance
(𝑘Δ𝑧 ≪ 1):

Re [𝐺𝑠𝑐
𝑥𝑥(r, r,ω)] ≈ 𝑘

32π(𝑘Δ𝑧)3
, Im [𝐺𝑠𝑐

𝑥𝑥(r, r,ω)] ≈ 𝑘

16π(𝑘Δ𝑧)2
,

Re
[︀
𝐺𝑠𝑐

𝑦𝑦(r, r,ω)
]︀
≈ − 𝑘

32π(𝑘Δ𝑧)3
, Im

[︀
𝐺𝑠𝑐

𝑦𝑦(r, r,ω)
]︀
≈ 𝑘

6π
,

Re [𝐺𝑠𝑐
𝑧𝑧(r, r,ω)] ≈ − 𝑘

16π(𝑘Δ𝑧)3
, Im [𝐺𝑠𝑐

𝑧𝑧(r, r,ω)] ≈ 𝑘

16π(𝑘Δ𝑧)2
.

(C.26)

As seen, the real parts diverge as ∼ (𝑘Δ𝑧)−3 as a result of dipole
interacting with its mirror image through the near fields (quasi-static
interaction). This is a quite typical behavior, and can be also found, for
instance, for a dipole put close to a planar half-space [2]. The behavior of the
imaginary parts is more peculiar: for 𝑥𝑥, and 𝑧𝑧 components the imaginary
parts diverge as ∼ (𝑘Δ𝑧)−2, while for 𝑦𝑦-component it is finite, and is equal
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Figure C.1 — Real (a), and Imaginary (b) parts of the local Green’s tensor
given by Eq. (C.25) as a function of dipole-interface distance Δ𝑧/λ0. Red

solid, green dashed, blue dotted lines correspond to 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧
components. The insets show more in detail the region 0.01 ⩽ Δ𝑧/λ0 ⩽ 0.1

to the same value, as for the vacuum Green’s tensor (𝑘/(6π)). The latter
is easily interpretable: the dipole is oriented along the 𝑦-direction, and as
σ𝑦𝑦 → 𝑖∞, it behaves as if it was in the vicinity of a half-space made of a
perfect electric conductor, and the dipole field constructively interferes with
the field of the image dipole, leading to the enhancement of the emission rate
by the factor of two. However, the divergence of the other two components
is not that easily explainable. This might be a result of the inconsistency of
the model, as here we have an infinitely thin layer of a material, which is
conducting in one direction, and isolating in the orthogonal direction, while
being described as a continuous medium. One might view this system as
a set of infinitely thin metallic wires aligned along the 𝑦-direction. Such
wires would have had a microscopic structure, and the near fields would
vary significantly when moving perpendicularly to their alignment axis. This
model does not take into account this microscopic structure of the constituent
elements of the metasurface. This might be only considered a speculation
rather than explanation, and might require some additional analysis as well
as the comparison with full-wave modelling, which we do not present here.
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Figure C.2 — Colorplots of quantities 𝐼−1,+1, and 𝑆−1,+1 defined by Eq.
(C.27), and Eq. (C.28) as functions of resonance frequencies Ω𝑥, Ω𝑦. Other

relevant parameters are the same as the ones used in Fig. 3.4. The two
specified points correspond to isotropic (A: Ω𝑥 = Ω𝑦 = 1.5𝑘0), and

anisotropic (Ω𝑥 = 1.5𝑘0, Ω𝑦 = 1.1𝑘0) metasurface

C.4 A measure of the discrepancy in the intensity, and spectral
profiles

Imagine that we set all the relevant parameters, and plotted intensity
dynamics 𝐼𝑞0(τ) as well as the spectrum 𝑆𝑞0(δ). We want to introduce some
measure, which quantifies how much these functions are different for initial
conditions 𝑞0 = −1, and 𝑞0 = +1. For the sake of simplicity, we will pre
define the angles α,β responsible for the orientation of the local quantization
axis as well as the position of the detector. Now we introduce the following
two quantities:

𝐼−1,+1 =

∞∫︀
0

|𝐼−1(τ)− 𝐼+1(τ)| 𝑑τ
∞∫︀
0

(𝐼−1(τ) + 𝐼+1(τ)) 𝑑τ

, (C.27)

𝑆−1,+1 =

∞∫︀
−∞
|𝑆−1(δ)− 𝑆+1(δ)| 𝑑δ

∞∫︀
−∞

(𝑆−1(δ) + 𝑆+1(δ)) 𝑑δ

. (C.28)

The two functions defined above are, clearly, always between 0 and 1,
and they can be used to measure how much the two functions are similar or
different. Therefore, we can plot the maps of these quantities in Eq. (C.27),
and Eq. (C.28) versus frequencies Ω𝑥,Ω𝑦, which are presented in Fig. C.2
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(a), (b). Note that once Ω𝑥 = Ω𝑦 the metasurface is isotropic in the interface
plane, and both quantities 𝐼−1,+1, 𝑆−1,+1 are equal to zero. It can be seen that
the local maxima of these two functions 𝐼−1,+1, and 𝑆−1,+1 do not overlap.
However, one can easily spot a region on these maps, where both of them
are close to being equal to ∼ 0.2− 0.3, which might be sufficient in order to
observe the discrepancy for 𝑞0 = −1,+1 cases. Indeed, as seen from Fig. 3.4
(a), and (b), this set of parameters allows to achieve the primary goal.

C.5 Green’s tensor of two anisotropic dipole scatterers

We want to construct a Green’s tensor for the system consisting of two
dipolar scatterers characterized by polarizabilities α1,2, this can be done
with the help of Dyson equation [2; 182]:

Gtot(r, r0) = G0(r, r0) +

4π𝑘2
(︂
G0(r, r1)α1Gtot(r1, r0) +G0(r, r2)α2Gtot(r2, r0)

)︂
, (C.29)

where α1,α2 are electric dipole polarizabilities of the scatterers. In order to
find Gtot(r1, r0), GF(r2, r0) we make the two following substitutions: r = r1,
and r = r2 into Eq. (C.29). This will lead to the algebraic system:

M(r1, r2) ·X(r1.r2, r0) = B(r1, r2, r0), (C.30)

where:

M(r1, r2) =

(︂
I −4π𝑘2G0(r1, r2)α2

−4π𝑘2G0(r2, r1)α1 I

)︂
;

B(r1, r2, r0) =

(︂
G0(r1, r0)
G0(r2, r0)

)︂
; X(r1.r2, r0) =

(︂
Gtot(r1, r0)
Gtot(r2, r0)

)︂
. (C.31)

Note that during the derivation of this system, the self-interaction terms
G0(r1, r1), and G0(r2, r2) were put to zero as point dipolar scatterers do not
polarize themselves, unless there are additional boundaries on which dipole
field can scatter off, and be reflected back. This would occur (but only for the
scattered fields) if one introduces a substrate, for instance. It is important
to note that these divergent self-interaction terms appear as Eq. (C.29) is,
strictly speaking, valid only in the region which is free from the current
sources [182;192], and can not be used to describe the field generated at the
position of any of the dipole scatterers.
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Our real interest is in the total local Green’s tensor of the system
Gtot(r0, r0), and now we will consider several specific cases. First, for the sake
of simplicity, we will consider the case, when both scatterers are identical,
and their polarizabilities correspond to ones of an ellipsoid:

α̃1 = α̃2 =

⎛
⎝
α|| 0 0
0 α⊥ 0
0 0 α⊥

⎞
⎠ , (C.32)

where tilde indicates that these are the polarizabilities in a specific orientation
of the scatterers with respect to the introduced reference frame: principal axes
of the particle are parallel to the coordinate axes. Now we want to rotate those
particles on angles +φ0,−φ0 in the 𝑥𝑦-plane, so there is some angle between
their principal axes; this can be done trivially: α1 = S(φ0)α̃1S

−1(φ0), α2 =
S(−φ0)α̃2S

−1(−φ0).

C.5.1 r0, r1, r2 are on the 𝑧-axis

Now let us set all relevant position vectors on the 𝑧-axis:

r0 =

⎛
⎝

0
0
𝑧0

⎞
⎠ , r1 =

⎛
⎝

0
0
𝑧1

⎞
⎠ , r2 =

⎛
⎝

0
0
𝑧2

⎞
⎠ , (C.33)

as a result, we have the following:

G0(r1, r0) = G0(r0, r1) =

⎛
⎝
𝐺⊥0,10 0 0
0 𝐺⊥0,10 0

0 0 𝐺
||
0,10

⎞
⎠ ,

G0(r2, r0) = G0(r0, r2) =

⎛
⎝
𝐺⊥0,20 0 0
0 𝐺⊥0,20 0

0 0 𝐺
||
0,20

⎞
⎠ ,

G0(r1, r2) = G0(r2, r1) =

⎛
⎝
𝐺⊥0,12 0 0
0 𝐺⊥0,12 0

0 0 𝐺
||
0,12

⎞
⎠ , (C.34)

which is due to the form of the free-space Green’s tensor.
General expressions for 𝑥𝑥, 𝑦𝑦 components of Gtot(r0, r0) are quite

cumbersome, but we are more interested in the non-diagonal term, which
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is rather simple:

Num [𝐺sc,𝑥𝑦(r0, r0)] = Num [𝐺sc,𝑦𝑥(r0, r0)] =

2π𝑘2
(︀
α|| − α⊥

)︀ (︁[︀
𝐺⊥0,10

]︀2 −
[︀
𝐺⊥0,20

]︀2)︁(︁
1− 16π2𝑘4α||α⊥

[︀
𝐺⊥0,12

]︀2)︁
sin (2φ0)

Den [𝐺sc,𝑖𝑗] = 1− 8π2𝑘4
(︀
α|| + α⊥

)︀2 [︀
𝐺⊥0,12

]︀2
+ 256π4𝑘8α2

||α
2
⊥
[︀
𝐺⊥0,12

]︀4−
8π2𝑘4

(︀
α|| − α⊥

)︀2 [︀
𝐺⊥0,12

]︀2
cos (4φ0) ,

where Num[...],Den[...] stand for numerator, and denominator, respectively,
and Gsc is defined as: Gtot = G0 + Gsc.

One can see that the condition 𝐺𝑠𝑐,𝑥𝑦 = 0 is satisfied when:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α|| = α⊥
𝐺⊥0,10 = 𝐺⊥0,20
16π2𝑘4α||α⊥

[︀
𝐺⊥0,12

]︀2
= 1

φ0 =
π

2
𝑚, 𝑚 ∈ Z.

(C.35)

The first condition is obvious - in case of isotropic scatterers, there should
be no chirality, as expected. The second condition in this configuration is
equivalent to |𝑧1 − 𝑧0| ≠ |𝑧2 − 𝑧0|, so as 𝑧1 ̸= 𝑧2, then it means that the atom
should not be right in between the scatterers. The third condition menifests
interference of the fields generated by both particles, but this condition is
unlikely to be satisfied as α||,α⊥, 𝐺⊥0,12 ∈ C. The last condition is related to
the respective orientation of the scatterers principal axes: it means that once
the long axes of scatterers are collinear or perpendicular - there is no chirality.

It is also instructive to consider the case of a strongly anisotropic scatterer
α⊥ = 0 as it is discussed in the maintext. In this regime we have:

Den [𝐺sc,𝑖𝑗] = 1− 8π2𝑘4α2
||
[︀
𝐺⊥0,12

]︀2
(1 + cos(4φ0)) ,

Num [𝐺sc,𝑥𝑦] = 2π𝑘2α||
(︁[︀

𝐺⊥0,10
]︀2 −

[︀
𝐺⊥0,20

]︀2)︁
sin(2φ0),

Num [𝐺sc,𝑥𝑥] = 4π𝑘2α||
(︀ [︀

𝐺⊥0,10
]︀2

+
[︀
𝐺⊥0,20

]︀2
+

8π𝑘2α||𝐺
⊥
0,10𝐺

⊥
0,20𝐺

⊥
0,12 cos(2φ0)

)︀
cos2(φ0),

Num [𝐺sc,𝑦𝑦] = 4π𝑘2α||
(︀ [︀

𝐺⊥0,10
]︀2

+
[︀
𝐺⊥0,20

]︀2 −
8π𝑘2α||𝐺

⊥
0,10𝐺

⊥
0,20𝐺

⊥
0,12 cos(2φ0)

)︀
sin2(φ0). (C.36)

Unlike in the previous case, here one can see more clearly that for φ0 = π/4,
𝐺𝑠𝑐,𝑥𝑥 = 𝐺𝑠𝑐,𝑦𝑦, therefore, for this rotation angle 𝑔−,+ = −𝑔+,−, and there is
no asymmetry in the transition probabilities 𝑃−,+(𝑡) = 𝑃+,−(𝑡).

Another option discussed in the maintext is that both scatterers, and the
atom are in the 𝑥𝑦-plane, more specifically, they all lie on the 𝑦-axis, and
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the atom is right in-between the scatterers:

r0 =

⎛
⎝
0
0
0

⎞
⎠ , r1 =

⎛
⎝

0
+𝑦
0

⎞
⎠ , r2 =

⎛
⎝

0
0
−𝑦

⎞
⎠ . (C.37)

We will also let the long axes of both scatterers to be parallel, so that
α1 = α2 = S(φ0)·diag

(︀
α||,α⊥,α⊥

)︀
·S−1(φ0). The required vacuum Green’s

tensors in this situation are given by:

G0(r1, r0) = G0(r2, r0) = G0(r0, r1) = G0(r0, r2) =⎛
⎝
𝐺⊥0,20 0 0

0 𝐺
||
0,20 0

0 0 𝐺⊥0,20

⎞
⎠ ,

G0(r1, r2) = G0(r2, r1) =

⎛
⎝
𝐺⊥0,12 0 0

0 𝐺
||
0,12 0

0 0 𝐺⊥0,12

⎞
⎠ , (C.38)

In this case we have the following components of the Green’s tensor:

Den [𝐺sc,𝑖𝑗] = 1− 2π𝑘2(α|| + α⊥)(𝐺
||
0,12 +𝐺⊥0,12) +

16π2𝑘4α||α⊥𝐺
||
0,12𝐺

⊥
0,12 + 2π𝑘2(α|| − α⊥)(𝐺||0,12 −𝐺⊥0,12) cos(2φ0),

Num [𝐺sc,𝑥𝑦] = 4π𝑘2(α|| − α⊥)𝐺||0,20𝐺⊥0,20 sin(2φ0),

Num [𝐺sc,𝑥𝑥] = 4π𝑘2
[︀
𝐺⊥0,20

]︀2 (︀
α|| + α⊥ − 8π𝑘2α||α⊥𝐺

||
0,12 +

(α|| − α⊥) cos(2φ0)
)︀
,

Num [𝐺sc,𝑦𝑦] = 4π𝑘2
[︁
𝐺
||
0,20

]︁2 (︀
α|| + α⊥ − 8π𝑘2α||α⊥𝐺

⊥
0,12 +

(α⊥ − α||) cos(2φ0)
)︀
.

(C.39)

One can see that 𝐺𝑠𝑐,𝑥𝑦 = 0 if:
{︃
α|| = α⊥,

φ0 =
π

2
𝑚, 𝑚 ∈ Z.

(C.40)

However, unlike in the previous case of r0, r1, r2||ez, the conditions for
having 𝐺𝑠𝑐,𝑥𝑥 = 𝐺𝑠𝑐,𝑦𝑦 can not be formulated that straightforwardly, and,
probably, this happens only accidentally for a very specific choice of many
system’s parameters.
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We study the subradiant collective states of a periodic chain of two-level atoms with either transversal or
longitudinal transition dipole moments with respect to the chain axis. We show that long-lived subradiant states
can be obtained for the transversal polarization by properly choosing the chain period for a given number of
atoms in the case of no open diffraction channels. While not being robust against the positional disorder along the
chain, these highly subradiant states have a linewidth that decreases with the number of atoms much faster than
it was shown previously. In addition, our paper shows that similar states are present even if there are additional
interaction channels between the atoms, i.e., they interact via the waveguide mode of an optical nanofiber, for
instance. We develop a theoretical framework allowing us to describe the spectral properties of the system in
terms of contributions from each collective eigenstate and we show that subradiant states manifest themselves in
the transmission and reflection spectra, allowing us to observe interaction-induced transparency in a very narrow
spectral range. Such long-lived collective states may find potential applications in nanophotonics and quantum
optics.

DOI: 10.1103/PhysRevA.100.063832

I. INTRODUCTION

Cooperative effects in spatially dense atomic ensembles
have generated large interest in recent years due to the sig-
nificant induced modifications to the optical properties of
the system [1–11]. These effects come from strong dipole-
dipole interaction in a collection of quantum emitters with a
subwavelength average separation. Recent experimental ad-
vances in trapping techniques have made it possible to cre-
ate one-dimensional (1D) [12,13], two-dimensional [14–17],
and three-dimensional (3D) [18,19] spatially ordered atomic
configurations where such collective effects can play a very
important role. The most prominent phenomenon is super-
radiance [20–24], i.e., the enhancement of the collective spon-
taneous emission rate that can be explained as a constructive
interference between the emission pathways of N closely
located dipoles. Contrary to this effect, the subradiance [6,25–
30] is the suppression of the collective emission rate due to
the destructive interference between dipoles. Being interesting
due to their enhanced lifetimes, these states are, however, hard
to observe experimentally because of their weak coupling to
the light field and strong sensitivity to additional nonradiative
decay channels. Nevertheless, such states have been observed
for a pair of trapped ions [31], ultracold molecules [32], poly-
mer nanostructures [33], atomic gases [27,34], and thermal
light sources [35].

At the same time, one-dimensional systems recently gained
special attention as a possible platform for quantum light-

*d.kornovan@metalab.ifmo.ru
†alexandra.sheremet@lkb.upmc.fr

matter interfaces due to the strong transverse confinement of
the light field and the possibility of infinite-range atom-atom
interaction [36,37]. Such a system is a versatile platform for
achieving efficient light-atom coupling due to the collective
nature of atomic interaction with the evanescent field of the
guided mode [38]. The strong coupling of an atomic ensemble
with such a nanophotonic waveguide provides opportunities to
further develop the emerging field of waveguide QED [11,39–
41], in which many remarkable results were recently demon-
strated not only in the field of theoretical research [40,42–
53] but also in experiments [54–60], including observation of
subradiant states [61].

From these perspectives subradiant states in quasi-one-
dimensional atomic chains are of interest for the development
of new approaches in quantum technologies. In particular,
generation of a periodic one-dimensional atomic chain in
the subdiffractional regime, where the period of the system
is smaller than half of the resonant wavelength, can bring
new effects that cannot be achieved in free space because
of the limited mode matching between light and the atomic
system [51,52].

Optical properties of 1D systems containing a large number
of scatterers were studied previously in different contexts
from arrays of nanoparticles [62–65] to cold atoms [7,66].
In this paper, we study the subradiant effects occurring in a
periodic one-dimensional atomic chain in the subwavelength
regime, when the period of the system is smaller than λ0/2,
with λ0 = 2πc/ω0 being the resonant radiation wavelength.
We consider a regular 1D chain of two-level atoms coupled
to a single-mode nanofiber including free-space spontaneous
emission with inherent dipole-dipole coupling, as shown in
Fig. 1. In order to study the effect of subradiance, we have
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extended the formalism developed in our previous work [49]
introducing the eigenstate picture [67], and calculated trans-
mission and reflection coefficients for each eigenstate. In our
theoretical formalism, we consider the full Green’s tensor of
the electromagnetic field taking into account all of the field
modes (free-space, radiation, guided, and near-field modes)
without applying the paraxial regime as it was done in [53].
As a reference point, we first study suppression of the spon-
taneous emission rate for the atomic chain in vacuum using a
microscopic approach of light scattering. In a further step, we
extend our system considering atoms trapped near a single-
mode nanofiber. In such a system in addition to the collective
coupling to the 3D free-space vacuum modes, the nanofiber
structure introduces an additional channel of virtually infinite-
range dipole-dipole coupling. In this paper we aim to find
conditions required for manifestation of a highly subradiant
state with the collective emission rate less than the known N−3

scaling.
The paper is organized as follows. In Sec. II we first review

the theoretical framework for the case of a periodic chain in
free space and discuss different quantities relative to the stud-
ied collective effect. For the sake of intuitive understanding,
we start by considering N = 3 atoms and then increase the
number of atoms in the system. In Sec. III we discuss the
modification of the theory for the case of the waveguide mode
scattering and demonstrate a similar expansion to the one
developed in Sec. II. We show that the long-lived dark states
are present even for atoms coupled not only by a vacuum
dipole-dipole interaction but also through a guided mode.

II. LIGHT SCATTERING IN AN ATOMIC ARRAY
IN VACUUM

In this section, we consider single-photon scattering in a
one-dimensional array of N two-level atoms with a period �z
in vacuum (see Fig. 1). A single photon with a near-resonant
atomic frequency induces electric dipoles in each atom of
the array. The strength of the atomic response on the inci-
dent photon drastically depends on the interatomic distance.
Thus, atoms with a large distance between their neighbors �z
behave as independent scatters, while closely located atoms
bring a collective response. The key point of this collective
behavior is that each atom is driven not only by the incident
photon but also by the field emitted by all other atoms in the
array. The resulting dipole-dipole interaction between atoms
significantly modifies their scattering properties.

In quantum theory, the scattering process can be described
in terms of the scattering matrix, which can be linked to
observable variables such as transmittance and reflectance.
Moreover, the cooperative nature of the interaction can be
roughly characterized by the resonance widths of the total
cross-section spectra or the decay rates of the collective states.

In this section, we investigate collective effects by studying
the eigenvalues of the system. These characteristics allow us
to find decay rates for each collective state and cross-section
spectrum. The emergence of the collective effects strongly
depends on the interatomic distance �z, thus illustrating the
role of dipole-dipole interaction in the formation of subradiant
states.

γ0

ez

eρ

eφ

|e

|g
>
>

Δρ

Δz

ω0
Δ

k

ρc

E

E11

FIG. 1. Light scattering on the 1D array of two-level atoms
separated by a distance �z and trapped at a distance �ρ from the
surface of an optical nanofiber with radius ρc and permittivity ε. The
fiber radius ρc is less than the atomic resonant wavelength, so only
the fundamental mode HE11 can be guided. The red arrows indicate
the eigenvector components of the subradiant state for N = 10 atoms.

A. General theoretical formalism

In order to simplify the theoretical description, let us
consider the single-photon scattering process, where the initial
and the final states of the decoupled atom-photon system can
be represented as |l〉 = |g〉⊗N |1μ〉, |k〉 = |g〉⊗N |1μ′ 〉, where
the index μ describes a particular field mode μ = (k, s),
where k is the wave vector, s = 1, 2 denotes two orthogonal
polarizations, and |g〉⊗N means that all N atoms are in the
ground state |g〉.

The scattering process can be described by the scattering
matrix S [68] that transforms the asymptotic states from the
initial l to the final system state k and has the following form:

Skl = δkl − 2π iTkl (El + i0)δ(Ek − El ). (2.1)

Here the T matrix has the standard form [68]:

T̂ = V̂ + V̂ Ĝ(E + i0)V̂ , (2.2)

where Ĝ(E ) = (E − Ĥ )
−1

is the resolvent operator of the
total Hamiltonian Ĥ = Ĥ0 + V̂ . In the dipole approximation
the interaction operator V̂ has the form V̂ = −∑N

i=1 d̂iÊ(ri ),
where d̂i = di,egσ̂

+ + di,geσ̂
− is the dipole moment operator

of the ith atom, and Ê(ri ) is the field operator at the atomic
position ri. In the rotating-wave approximation the matrix
elements of the operator T̂ can be found as a projection
onto the Hilbert subspace of the vacuum state for the elec-
tromagnetic field and the single excited state for the atomic
subsystem [68]:

P̂Ĝ(E )P̂ = P̂
1

E − Ĥ0 − 
̂(E )
P̂,


̂(E ) = V̂
1

E − Ĥ
V̂ , (2.3)

where the projector operator can be defined as P̂ =∑N
i=1 |g1, . . . , ei, . . . gN ; {0μ}〉〈{0μ}; g1, . . . ei, . . . , gN |, and

the level-shift operator has the form 
̂(E ) ≈ V̂ (E − Ĥ0)−1V̂
in second-order perturbation theory.

We now apply the resonant approximation, where the
scattering photon frequency ω can be considered close to
the atomic transition frequency ω0. In this approximation the
level-shift operator 
̂(E ) can be assumed to be a slowly
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varying function of the argument as 
̂ ≈ 
̂(E0 = h̄ω0). The
single- and double-particle contributions to the level-shift
operator can be written as


(nn)(E0) = h̄
(
�vac

L − i
γ0

2

)
,


(mn)(E0) = −dm,eg

{
k2

0eik0R

R

[(
1 + ik0R − 1

k2
0R2

)
I

+ R ⊗ R
R2

· 3 − 3ikR − k2R2

k2R2

]}
dn,ge, (2.4)

where �vac
L is the vacuum Lamb shift, γ0 = 4|d|2ω3

0
3h̄c3 is the

free-space spontaneous emission rate for a two-level atom,
k0 = ω0/c is the resonant wave number, R = |ri − r j | is
the distance between an atom i and an atom j, I is the
unit dyad, and ⊗ stands for the outer product. Note that
Eq. (2.4) is written in CGS units, and it will be used from
now on. Here the single-particle contribution is responsible
for the vacuum Lamb shift (and it is considered to be already
included into the definition of the transition frequency ω0)
and the finite lifetime of the atomic excited state, while the
double-particle contribution describes the excitation trans-
fer between atoms and takes into account the dipole-dipole
interaction.

In general, the scattering process in free space is character-
ized by the total cross section, which can be found using the
optical theorem [69]:

σtot = −2V

h̄c
Im Tii(Ei + i0), (2.5)

where V is the quantization volume. Since the dipole-dipole
interaction alters the eigenstates of the system, it is conve-
nient to expand the total cross section Eq. (2.5) into a sum,
where each term will correspond to a particular collective
eigenstate of the system. From Eq. (2.3) one can see that
both 
(ω0) and [E − H0 − 
(ω0)]−1 share the same set of
eigenvectors, while their eigenstates are simply shifted by
E − H0. Therefore, we can rewrite the total cross section
taking into account the form of the vacuum field operator

Ê (r) = ∑
k,s i

√
2π h̄ω
V (âk,sek,seikr − H.c.) as

σtot(�) =
N∑

j=1

σ j (�) = −3π h̄γ0

k2
0

Im
N∑

j=1

f j

h̄� − λ j
, (2.6)

where � = ω − ω0 is the detuning, and f j =
[(e−ikr1 , . . . , e−ikrN )S{:, j}] × [[S−1]{ j,:}(eikr1 , . . . , eikrN )

T
]

with S being the transformation matrix to the eigenspace
of 
(ω0) with corresponding eigenvectors S{:, j} as its
columns. The parameter f j corresponds to a complex-valued
oscillator strength amplitude associated with a particular
collective eigenstate and for a collection of N two-level

atoms
N∑

j=1
f j = N . The physical meaning of the factor f j , as

can be seen from the definition above, is that it is related
to the overlap between the photon and the jth eigenstates
of the system. Furthermore from a mathematical point of
view, the expansion in Eq. (2.6) essentially simplifies the

process of finding the total cross section. Thus, instead of
inversion of a N × N matrix for each frequency point for
Eq. (2.5), it is enough to diagonalize the problem only once
for a given configuration and then to find the spectrum
analytically [Eq. (2.6)]. This property is very important for
a large number of atoms N . Note that similar decomposition
was introduced in [67] to expand the scattering cross section
for a collection of classical dipoles.

We can rewrite the total cross section Eq. (2.6) in the
following form:

σtot(�) ∼ Im
N∑

j=1

[
f j

h̄� − λ j

]
=

N∑
j=1

f ′
jλ

′′ + f ′′
j (h̄� − λ′

j )

(h̄� − λ′
j )

2 + λ′′2
j

,

(2.7)

where prime and double prime indicate real and imaginary
parts, respectively. One can see that each contribution σ j (�)
to the total cross section consists of two terms: a dissipative
term, which is proportional to f ′

j and has a Lorentzian shape,
and a dispersive term, proportional to f ′′

j , which introduces
asymmetries. Note that by analogy with the level-shift opera-
tor Eq. (2.4), here the first term, corresponding to the single-
particle contribution, is always present, while the second term
appears in the system of interacting atoms. As the second term
in Eq. (2.7) is antisymmetric, the area under a partial cross
section σ j (�) is proportional to f ′

j :
∫ α

−α
σ j (�)d� ∼ f ′

j , which
provides the contribution of a particular eigenstate to the
total cross section. Note that for α → ∞ the corresponding
integral

∫ α

−α
σ j (�)d� formally diverges, which is a well-

known problem of the Cauchy distribution having no finite
moments of order greater than or equal to 1. However, we
can integrate over a symmetric region with a sufficiently
large and physically meaningful parameter α. There is also
another reason to consider a finite value of α: integration
over the whole frequency might not be consistent with the
Markov approximation [
̂ ≈ 
̂(E0 = h̄ω0)] in some specific
situations.

B. Collective effects in the array of N = 3 atoms

In order to present the effect of subradiance in more details,
we now analytically solve the problem of light scattering in an
array of N = 3 two-level atoms, which has also been studied
before in the context of super-radiance [70] and cooperative
scattering [66].

The matrix of the level-shift operator Eq. (2.4) can be
rewritten in terms of coupling constants, which are related to
dipole-dipole interaction between atoms as follows:


 =
⎛
⎝gself g1 g2

g1 gself g1

g2 g1 gself

⎞
⎠, (2.8)

where gself = −iγ0/2, g1 is the matrix element related to the
interaction between the atoms being one period apart (1 −
2, 2 − 3), and g2 is for atoms two periods away from each
other (1 − 3). In this context, the corresponding eigenvalues

063832-3

195



KORNOVAN, CORZO, LAURAT, AND SHEREMET PHYSICAL REVIEW A 100, 063832 (2019)

FIG. 2. Scattering of a photon propagating along (left column)
and perpendicular (right column) to the chain axis. (a, b) Normalized
spontaneous emission rates γ j for the eigenstates of the regular
array of N = 3 atoms as a function of the period �z. Blue dashed,
green dash-dotted, and red dotted lines correspond to three states
with different values of the nearest-neighbor correlation function
Eq. (2.10). (c, d) The partial σ j and the total σtot scattering cross
sections in the array of N = 3 atoms with the period �z giving the
minimal γ j .

of this matrix can be easily found in the following forms:

λ1 = 1
2

(
2gself + g2 +

√
8g2

1 + g2
2

)
,

λ2 = gself − g2,

λ3 = 1
2

(
2gself + g2 −

√
8g2

1 + g2
2

)
. (2.9)

In Figs. 2(a) and 2(b) we provide the spontaneous decay rates
of these three states for the transversal and longitudinal photon
polarizations, respectively. In Fig. 2(a) we can see that for a
state corresponding to λ1 (blue dashed line) it is possible to
achieve a strong suppression of the emission rate for some
array period �z. Indeed, for the array of N = 3 atoms with
�z ≈ 0.14λ0 the imaginary part of λ1 is more than an order of
magnitude smaller than the linewidths of the two other states.

Additionally, in order to characterize the collective effects
of the system, we can introduce a nearest-neighbor correla-
tion function [66]:

〈
f j
i,i+1

〉 = 1

N − 1

N∑
i=1

cos
(
φ

j
i+1 − φ

j
i

)
, (2.10)

as shown in Fig. 2 by color grading. Here a phase angle
of the ith component of the jth eigenvector φ

j
i = arg[c j

i ]
corresponds to a probability amplitude c j

i to have the excited
atom i for the eigenstate j. The function Eq. (2.10) gives the
information about the phase correlation between neighboring
dipoles: it is equal to +1 for the neighboring dipoles with the
same phases, and −1 for the neighboring dipoles with oppo-

site phases [66]. As one can see from Fig. 2, this correlation
function provides useful information for a few-atoms case,
and allows distinguishing states with different symmetry. We
also note that the state with the smallest value of 〈 f j

i,i+1〉
also possesses the smallest emission rate γ j due to the state
symmetry; by further tuning �z it is possible to achieve a very
small γ j as seen from Fig. 2(a).

In Figs. 2(c) and 2(d) we show the partial σ j (�) and the
total σtot(�) cross sections of the photon for two cases: when
atoms have transverse [Figs. 2(a) and 2(c)] and longitudinal
[Figs. 2(b) and 2(d)] dipole moments with respect to the chain
axis. The cross-section profile of the subradiant state σ1(�) is
asymmetric due to the significant non-Lorentzian part ∼ f ′′

j , as
it appears in Eq. (2.7).

In this simple and already studied example we have shown
that there exists a specific interatomic spacing that allows us
to strongly suppress the emission rate of the system. In the
next section we demonstrate what happens in an array with a
larger number of atoms.

C. Collective effects in an array of N two-level atoms: Highly
subradiant states

In this subsection we apply the developed formalism to
the case of N two-level atoms in vacuum. Increasing the
number of atoms leads to significant manifestation of col-
lective effects. The difference between transverse and longi-
tudinal cases becomes thereby more evident: the transverse
one shows a variety of highly subradiant states for different
lattice periods �z as shown in Fig. 3(a). The difference in the
behavior between transverse and longitudinal dipolar chains
has been studied before in the context of optical properties of
1D nanoparticle arrays [62,66].

The arrangement of atoms in a 1D chain with a subd-
iffractional period leads to a strong subradiance. Figures 3(a)
and 3(b) show the collective decay rates for an array of
N = 10 atoms for various periods �z. One can see that the
strong subradiance appears only for transverse polarization.
Moreover, this effect can be obtained for different atomic
periods, as indicated by arrows in Fig. 3(a). Furthermore,
from Fig. 3(b) it can be seen that interaction of an array of
atoms with longitudinally polarized dipole moments leads to
subradiance as well. But the dependence of the eigenvalue
decay rate in this case is rather smooth and without any special
features. To understand the difference of collective effects
for different polarization in more details, let us compare the
dipole-dipole coupling constants for these two cases:

g⊥ = −3

4
h̄γ0eik0�z

[
1

(k0�z)
+ i

(k0�z)2
− 1

(k0�z)3

]
,

g|| = −3

2
h̄γ0eik0�z

[
− i

(k0�z)2
+ 1

(k0�z)3

]
. (2.11)

Now one can gain a physical intuition about the subradiance
for different polarizations: there is no far-field contribution
in the dipole-dipole coupling constant in the case of the
longitudinal polarization [Eq. (2.11)]. Therefore, the strong
subradiance results from an interplay between different types
of fields: near, intermediate, and, importantly, far fields.
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FIG. 3. Normalized spontaneous emission rates γ j of eigenstates as a function of the array period �z for N = 10 atoms. All atomic dipole
moments are either purely transversal (a) or longitudinal (b). The color grade specifies the nearest-neighbor correlation function value; the
bright red arrow points out the global minimum of the decay rate. (c) The total (black dashed) and the partial (color solid) cross sections (σtot

and σ j) for the specific case of the transverse polarization and an array period �z ≈ 0.23λ0, shown by the red arrow in (a). The inset shows the
region near the most subradiant state. (d) The effect of position disorder on a minimal collective decay rate γ j for an atomic array with a period
�zreg. The position of each atom is slightly fluctuating according to a uniform distribution and it is plotted for different maximal deviations δa.

Furthermore, comparison of Figs. 2(a) and 3(a) reveals that
the subradiant states appear at different atomic periods and
with different spontaneous emission rates, which depend on
the number of atoms N in the chain.

In Fig. 3(c) we also show the total cross section for the
system period �zsub, which allows us to achieve the minimal
possible emission rate γ j [red arrow in Fig. 3(a)]. One can see
that for N = 10 the subradiant state appears in the spectrum
as a sharp and asymmetric peak. It can be explained as a result
of several overlapping resonances which contribute to the total
cross section in this area [see inset of Fig. 3(c)] leading to a
large total cross-section value in this spectral region.

Another feature of these dark states is their sensitivity
to position disorder, when the atomic array is not perfectly
periodic. In Fig. 3(d) we show the dependence of the average
minimal collective emission rate γave on the regular atomic
array period introducing small fluctuation with uniform distri-
bution and the maximal deviation δa. We see that even with
small fluctuations δa = 0.01λ0 in the atomic positions the
resonances are almost smeared out, while a larger disorder
induces a slight reduction of the emission rate in the range
of regular system periods 0.20λ0 < �zreg < 0.25λ0.

D. Emission rate scaling with atom number N

It is also interesting to understand how the emission rate of
this highly subradiant state depends on the number of atoms
N in the chain. Previously, in [71], it has been shown that
in a subdiffractional chain of dielectric particles the quality
factor of most bound modes scales as ≈ N3. Recently this
question was also studied in the context of atomic chains,
where the spontaneous emission rate for most subradiant
states decreases as ≈ N−3 [51,72] at least in some range of
periods.

In our subdiffractional atomic array with the lattice pe-
riod �zsub taken from Fig. 3, the value of the collective
spontaneous emission rate scales as ≈ N−6.88, as shown in
Fig. 4(a). A much faster decrease of the emission rate with
number of atoms N in comparison with the aforementioned
studies [51,71,72] happens due to a proper choice of the
system period �zsub, which allows us to achieve a better
destructive interference between scattering channels. We can

see in Fig. 4(b) that this value is saturated to �zsub ∼ 0.24λ0

for a large number of atoms N .
Another physically important quantity is the oscillator

strength amplitude of the corresponding collective eigenstate
f j . We can see from Figs. 4(a) and 5(a) that | f j (N )| basically
follows the same behavior as γ j , but involves additional oscil-
lations. This can be explained if one considers the overlap be-
tween the eigenstate j with the z-propagating photon. In most
cases, the “darker” the collective state is (and the smaller the
corresponding decay rate γ j is), the smaller this overlap with
the photon. Also we note that the distance between two neigh-
boring local minima of | f j (N )| caused by the aforementioned
oscillations is close to �N ≈ 4. These oscillations are induced
by a bigger or smaller overlap between the atomic collective
eigenstate and the z-propagating photon. In Fig. 5(b) one can
also see how the total scattering cross section [Eq. (2.7)]
for the system period �zsub varies with atom number N : for
sufficiently large N subradiant states manifest themselves as a
set of very sharp peaks; however, their relative contribution to
the spectrum becomes less pronounced.

Finally, we address the scaling of the subradiant state emis-
sion rate in the presence of disorder in the atomic positions.

FIG. 4. (a) Collective emission rates for the most subradiant state
as a function of the number of atoms N : blue open squares and
red open circles correspond to �z = 0.3λ0 and �zsub, respectively;
α specifies the characteristic scaling with the number of atoms,
γ j ∼ Nα , and the corresponding fitting curves are specified by light
blue and light red solid lines. In order to find α we used only data
points for which N � 20. (b) The corresponding array periods �z vs
number of atoms N for which the subradiant state with the decay rate
γ j can be achieved; note that the red open circles approach the value
close to �zsub ≈ 0.24λ0 for large N .

063832-5

197



KORNOVAN, CORZO, LAURAT, AND SHEREMET PHYSICAL REVIEW A 100, 063832 (2019)

FIG. 5. (a) Dependence of the complex oscillator strength | f j | on
the number of atoms N ; blue dash-dotted and red solid lines are for a
fixed period (�z = 0.3λ0) and �zsub from Fig. 4(b), correspondingly.
(b) The normalized total cross section σtot(2π/λ0)2/N for different
N . For each N we choose the lattice period to be equal to �zsub.

In Fig. 6 we provide the emission rate scaling as a function
of the number of atoms N for two different disorders in the
position of an atom j: z j = zreg, j + 2δaU (0, 1). Here zreg, j =
( j − 1)�zreg is the atomic position for a regular chain and
U(0, 1) stands for a uniformly distributed pseudo random real
number between 0 and 1.

From Fig. 6 one can see that disorder leads to a sig-
nificantly slower decrease rate ≈ N−3.7 and this happens
even for relatively small deviations from perfect periodicity
(2δa = 10−3λ0). However, increasing the number of atoms N
in the chain results in a transition to another regime, where
a decrease of the emission rate is even slower. Numerical
estimations show that in this region the scaling is on the
order of ≈ N−0.3–N−0.4. The main reason for this transition
is related to disorder which induces localization of states.
It can be estimated by calculating the inverse participation
ratio (IPR) [73]: IPR−1 = ∑N

j=1 |c(k)
j |4, where k is the label

of a state of interest and c(k)
j is the probability amplitude
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FIG. 6. Average minimal emission rate, corresponding to the
most subradiant state, vs the atom number N for the case of a uniform
disorder of atomic z positions. Two maximal position deviations are
considered: 2δa = 10−3λ0 (open dark red circles) and 2δa = 10−2λ0

(open dark blue squares). Note that for both cases there are distinct
regions of a ≈ Nα behavior in the region of small N , where the linear
fit in the double-log plot was performed, which is shown in solid
bright red and solid bright blue lines, correspondingly.

that the atom j is excited in a state k. For instance, for
a positional disorder 2δa = 10−2λ0, and for a number of
atoms N = 20 (the region of min γave/γ0 ∼ N−3.7 scaling),
the average IPR of the corresponding subradiant state is
equal to IPR ≈ 7.7, while for N = 200 (where the scaling
switches to min γave/γ0 ∼ N−0.36) IPR ≈ 9.7. With this, one
can see that for a sufficiently large atom number N � 1 the
subradiant states become strongly localized (IPR � N), and
extension of the atomic chain does not modify the min γave/γ0

significantly, contrary to the case of perfect periodicity.

III. LIGHT SCATTERING ON AN ARRAY OF ATOMS
TRAPPED IN THE VICINITY OF AN

OPTICAL NANOFIBER

So far we have studied the collective subradiance of an
atomic array in vacuum. It is known that the light-atoms in-
teraction can be significantly enhanced by placing the atomic
system near a nanoscale object. Indeed, trapping atoms in
the vicinity of an optical nanofiber dramatically changes the
character of the atomic interaction and provides long-range
dipole-dipole coupling between atoms not only via vacuum
but also through the nanofiber guided mode. In this section
we study modification of coupling effects coming from the
scattering of the guided mode on an atomic chain trapped near
the nanofiber surface (Fig. 1).

A. Theoretical framework of the light scattering process for an
atomic array trapped near an optical nanofiber

In this subsection we modify the developed formalism
of light scattering in free space by introducing additional
interaction via the nanofiber guided mode. Foremost, we need
to modify the outer operators V̂ in Eq. (2.2), which are
responsible for absorption of the incoming guided photon and
emission of the photon back into the same field mode. Fur-
thermore, we are interested only in guided field modes of the
outer operators V̂ . However, the operator 
̂(E0) introduced in
Eq. (2.4) for free space should include now all possible modes.
The field subsystem in this configuration can be described
using the quantization scheme proposed in [74], where the
quantized electric field of the nanofiber guided mode can be
written as

Ê(r) =
∑

μ

Eμ(r)âμ + H.c., (3.1)

where Eμ is the electric field of the guided mode μ given by

Eμ(r) = i

√
2π h̄ωμ

L
Ẽμ(ρ, φ)ei f βμz+imφ. (3.2)

Here βμ is the propagation constant, Ẽμ(ρ, φ) is the amplitude
of the electric field, L is the quantization length, and f and
m define the direction of propagation and the mode angular
momentum, respectively. The electric field is periodic in the
z direction with βlL = 2π l , where l is a positive integer, and
the electric-field amplitude is normalized according to∫ 2π

0

∫ ∞

0
|Ẽμ(ρ, φ)|2dφρdρ = 1. (3.3)
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For simplicity, we assume that all atoms are located at
the same distance �ρ from the nanofiber surface. All matrix
elements of the outer operator V̂ have, therefore, the same
absolute values and differ only by phases. The outer operators
V̂ presented in the matrix T in Eq. (2.2) can finally be written
as

〈ea, {0}|V̂ |ga, 1μ′ 〉

= −i(da,eg · Ẽμ′ (ρa, φa))

√
2π h̄ωμ′

L
eiβμ′ za+iφa ,

〈gb, 1μ′′ |V̂ |eb, {0}〉

= i(Ẽ∗
μ′′ (ρb, φb) · db,ge)

√
2π h̄ωμ′′

L
e−iβμ′′ zb−iφb (3.4)

where βμ is the propagation constant of the guided mode μ.
In the next step, we calculate the matrix elements of the

operator 
̂ in the presence of the nanofiber. The theoretical
description of excitation transfer between atoms through the
radiation into vacuum and nanofiber guided modes was done
in [75]. Using this formalism, the Hamiltonian of our system
can be written as

Ĥ0 =
∑

n

h̄ω0σ̂
+
n σ̂−

n +
∫

dr′
∫ ∞

0
dω′h̄ω′ f̂†(r′, ω′)f̂ (r′, ω′),

V̂ = −
∑

n

d̂nÊ(rn), (3.5)

where ω0 is the atomic transition frequency. Ê(rn) is the total
electric field and f̂ (r′, ω′) and f̂†(r′, ω′) are the bosonic vector
local-field operators, which obey the following commutation
relations:

[ f̂i(r′, ω′), f̂ †
k (r, ω)] = δik · δ(r′ − r) · δ(ω′ − ω),

[ f̂i(r′, ω′), f̂k (r, ω)] = 0. (3.6)

The positive-frequency part of the total electric field has the
following form:

Ê+(r)

= i
√

4h̄
∫

dr′
∫ ∞

0
dω′ ω

′2

c2

√
εI (r′, ω′)G(r, r′, ω′)· f̂ (r′, ω′),

(3.7)

where εI (r′, ω′) is the imaginary part of the dielectric permit-
tivity of the media and G(r, r′, ω′) is the classical Green’s
tensor of the electric field. In the presence of the optical
nanofiber the Green’s tensor can be expanded into

G(r, r′, ω) = G0(r, r′, ω) + Gs(r, r′, ω), (3.8)

where G0 is the vacuum Green’s tensor, and Gs is the Green’s
tensor corresponding to light scattering from the nanofiber.
The scattering term of the Green’s tensor can be expanded
into the vector wave functions (VWFs) and the details of
these calculations are given in Appendix A. In the lowest
nonvanishing order, the matrix elements of the level-shift

operator can be written as

〈 f |
̂(E )|i〉 =
∑

|α〉,|β〉
〈 f |V̂ |α〉〈α| 1

E − Ĥ0 + iη
|β〉〈β|V̂ |i〉,

(3.9)

where |i〉 and | f 〉 are the initial and final states of the system,
respectively; |α〉 and |β〉 are the two possible intermediate
states with a single elementary excitation for the field subsys-
tem. Both atoms are either in the excited or the ground state:

|en, em〉 × f̂†(r′, ω′)|{0}〉, |gn, gm〉 × f̂†(r′, ω′)|{0}〉.
(3.10)

Further details on the derivation of the matrix elements of
the level-shift operator Eq. (3.9) can be found in [76] and here
we provide only the final expression:

〈 f |
̂(E )|i〉 = −4π
ω2

0

c2
dm,eg · G(rm, rn, ω0)dn,ge. (3.11)

The matrix 
̂(E ) can be found using Eq. (3.11). Note that
the scattering matrix Eq. (2.1) is also valid in the presence
of the nanofiber. In the field quantization scheme that we
use here one should include summation over final states into
Eq. (2.1), going into the limit L → ∞, which means that the
propagation constant β can now be continuous. This limit is

equivalent to
∑
nβ

→ L
2π

∫∞
0

dβ

dω
dω. In the end we seek the

expression for the scattering matrix:

S f ′,p′; f p = δ f ′,p′; f p − i
L

ch̄ · dk/dβ
Tf ′,p′; f p(E ), (3.12)

which can be also found in [53].

B. S matrix in the eigenstate picture

Let us now analyze the scattering process considering the
eigenstates of the system. For this, we need to diagonalize
the matrix 
(ω0), which is responsible for the coupling of
different atomic states through the field modes. We should
mention that in the case of a reciprocal problem 
 is a
symmetric matrix, while in a nonreciprocal one (when, for
example, a magnetic field is applied to separate the σ+ and
σ− transitions, making only one of them active at a given
frequency) 
 is not symmetric anymore, and it has different
right and left eigenvectors. However, the diagonalization of
the problem can be simply done by choosing the right eigen-
vectors, for instance,


(E0)v(r)
j = λ jv

(r)
j ,

(S(r) )−1 1

I h̄� − 
(E0)
S(r) = 1

I h̄� − �
, (3.13)

where the matrix S(r) is the transformation matrix to the
eigenspace the columns of which are the right eigenvectors
v(r) of 
(E0), � is the photon detuning from the atomic res-
onance, and � is a diagonal matrix having the corresponding
eigenvalues λ j as its entries.

In order to simplify the final expression for the scattering
matrix, we can express the product of two outer V̂ matrix ele-
ments Eq. (3.5) using the known relations for the spontaneous
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FIG. 7. (a) Spontaneous emission rates γ j/γ0 of the eigenstates j for a periodic chain of N = 75 atoms placed near the nanofiber at a
distance �ρ = ρc from the surface. The dipole moments of all atoms are aligned along the eρ direction. The nanofiber has radius ρc = 0.25λ0

and ε = 2.1. (b) Same as in (a), but for dipole moments aligned along the axis ez. Color grade in (a) and (b) corresponds to values of the
nearest-neighbor correlation function Eq. (2.10) for each collective eigenstate. (c, d) Local minima of the subradiant states in (a) and (b) with
the number of atoms N . The solid lines correspond to linear approximations. Only the fundamental mode HE11 was taken into account for
these calculations.

emission rate into the forward-propagating guided modes:

γ ( f )
wg =

∑
m

3π |negẼ f =+1,m|2dβ/dk

2k2
0

γ0

=
∑

m

2π |degẼ f =+1,m|2k0 · dβ/dk

h̄
. (3.14)

In this special symmetry we can push the coupling constant to
the forward-propagating guided mode γ

( f )
wg outside of the sum

over the eigenstates and finally rewrite the S matrix element
corresponding to forward scattering as

Sii = 1 − ih̄γ ( f )
wg

∑
j

f (t )
j

h̄� − λ j
, (3.15)

which has a form similar to Eq. (2.6) with f (t )
j being complex-

valued constants. We observe that indeed considering equal
coupling strengths for all of the atoms is clear: in this case
coefficients f (t )

j are dimensionless and carry information only
about the phase. However, it is possible to rewrite it for a gen-
eral situation, but the meaning of f (t )

j will be slightly different
and it will take into account the couplings of individual atoms
to the guided mode.

The light scattering in a one-dimensional configuration
can be characterized by a transmission coefficient t = |Sii|2,
which can be written in the following form, as shown in
Appendix B:

|Sii|2 = 1 + 2h̄γ ( f )
wg

N∑
j=1

[
η

(t )
j λ′′

j + ξ
(t )
j (h̄� − λ′

j )

(h̄� − λ′
j )

2 + λ′′2
j

]
,

η
(t )
j = f (t )′

j −
N∑

i=1

h̄γ ( f )
wg Im

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

]
,

ξ
(t )
j = f (t )′′

j +
N∑

i=1

h̄γ ( f )
wg Re

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

]
. (3.16)

One can see that the transmission, as with the cross sec-
tion for the vacuum case Eq. (2.7), includes Lorentzian and
non-Lorentzian terms. However, the respective dimensionless

coefficients ξ
(t )
j and η

(t )
j differ: apart from f (t )′

j and f (t )′′
j there

are also terms expressed through
f (t )

j ( f (t )
i )∗

λ j−λi
, which can be

associated with the interference of i and j resonances.
Similarly, we can expand the reflection coefficient and the

corresponding reflectance as

Sb f = −ih̄
√

γ
( f )
wg γ

(b)
wg

∑
j

f (r)
j

h̄� − λ j
,

|Sb f |2 =
∑
i, j

h̄2γ ( f )
wg γ (b)

wg

f (r)
j ( f (r)

i )∗

(h̄� − λ j )(h̄� − λ∗
i )

= 2h̄γ ( f )
wg

N∑
j=1

[
η

(r)
j λ′′

j + ξ
(r)
j (h̄� − λ′

j )
]

(h̄� − λ′
j )

2 + λ′′2
j

,

η
(r)
j = −h̄γ (b)

wg Im
N∑

i=1

[
f (r)

j ( f (r)
i )∗

λ j − λ∗
i

]
,

ξ
(r)
j = h̄γ (b)

wg Re
N∑

i=1

[
f (r)

j ( f (r)
i )∗

λ j − λ∗
i

]
. (3.17)

We analyze the subradiance in the presence of a nanoscale
waveguide in the next subsection.

C. Highly subradiant states and atom number scaling in the
presence of a nanofiber

We now apply the developed formalism to the perfectly
periodic 1D array of atoms trapped near a nanofiber. Similarly
to the free-space configuration, in Fig. 7 we show the sponta-
neous emission rate of each eigenstate of the periodic chain of
N = 75 atoms into the fundamental nanofiber mode HE11, as
well as the dependence of the spontaneous emission minima
on the number of atoms N .

The third subradiant resonance at �z ≈ 0.48λ0 can be
explained as a result of interference between the two inter-
action channels: the vacuum modes and the guided mode. In
Figs. 7(c) and 7(d) we show the scaling of these minima with
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FIG. 8. (a) Transmission (red circles, solid line) and reflection
(blue squares, dash-dotted line) of guided light in a 1D array of N
trapped atoms with a lattice period �z = �zsub corresponding to the
dark state. (b) Transmission (red solid line) and reflection (blue dash-
dotted line) spectra for N = 71, which corresponds to the highest
TDSR in (a). All fiber parameters are the same as for Fig. 7.

the number of atoms N . One can see that for sufficiently large
N all three curves follow to ≈ Nα dependency.

D. Subradiant states in the transmission and reflection spectra

In the context of the specific 1D configuration of the sys-
tem, it is interesting to study the transmission and reflection
coefficients at the subradiant resonance condition.

In Fig. 8(a) we show the dependence of the transmission
and the reflection coefficients on the number of trapped
atoms N for the first subradiant state. One can see that
these coefficients have oscillating behavior making the system
either transparent with T � 0.75 and R ∼ 0 or opaque with
T � 0.10 and R ≈ 0.10. A corresponding spectrum in the first
subradiant state range of �z is shown in Fig. 8(b) for N = 71
atoms, where one can see many distinct subradiant states and
a very sharp resonance with T ≈ 0.90. The nature of such
oscillations in TDSR and RDSR is the same as was discussed for
the scattering of a photon on a transverse chain in vacuum: it
appears due to an oscillating value of the overlap between the
atomic eigenstate and the photon, and these oscillations have
the same distance between the local minima of �N = 4.

The transmission and reflection for the second subradiant
state that appears at the Bragg resonance condition for the
fundamental guided mode are shown in Fig. 9. One can see
that at the second subradiant state the atom-atom interaction
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FIG. 9. (a) Same as in Fig. 8(a), but at the second subradiant
resonance condition. (b) Transmission (red) and reflection (blue)
spectra for N = 35 (dash-dotted line) and N = 69 (solid line) atoms.
All other relevant parameters are the same as for Fig. 7.
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FIG. 10. (a) Same as in Fig. 8(a), but for the third subradiant
resonance condition. (b) Transmission (red solid line) and reflection
(blue dash-dotted line) spectra for N = 202. All other relevant pa-
rameters are the same as for Fig. 7.

has different behavior. Effectively, one can say that the total
spectrum mainly consists of the super-radiant and a very long-
lived subradiant state T = |Sii|2 = 1 + T BS + T DS, where BS
and DS correspond to bright and dark states [77]. Futhermore,
increasing the number of atoms N makes this dark state more
distinguishable and leads to an increase of the transmission
and reduction of the reflection [see Fig. 9(a)]. At the same
time, the system can be purely transparent or purely reflective
for a small number of atoms at this resonance condition and
can have a very narrow transparency window near �/γ0 ≈ −1
for the large number of atoms, as it is shown in Fig. 9(b).

The third subradiant state, which is the result of interac-
tion between the vacuum and the nanofiber guided modes,
does not show any particularly interesting behavior: both the
transmission and the reflection are small (less than 0.1) for
the considered number of atoms N , as shown in Fig. 10(a). At
the same time, the subradiant state manifests itself as a sharp
resonance with a small amplitude of both the transmission T
and the reflection R [see Fig. 10(b)].

IV. CONCLUSION

In conclusion, we have studied the subradiant collective
states for a periodic array of two-level atoms with a given
dipole moment transition in the subdiffractional regime. We
considered the atomic array both in free space and trapped
in the vicinity of an optical nanofiber. Trapping atoms with
transversal dipole moments in a one-dimensional array with
specific lattice periods �z provides a significant reduction
of the collective emission rate; the emission rate can be
decreased further by taking a bigger number of atoms N .
Importantly, we have shown that this dependency on the
number of atoms is ≈ N−6–N−7, unlike the known so far
≈ N−3 scaling. We have found that the corresponding period
has an asymptotic value �z ≈ 0.24λ0 for a large number
of atoms N in vacuum. In addition, we studied the scaling
of the collective emission rate in the presence of positional
disorder along the chain. We have shown that the introduction
of disorder in the system leads to a slower decrease of the
emission rate up to ≈ N−3.6. There is also a transition to a
significantly slower decrease rate after a certain number of
atoms N , which happens due to disorder-induced localization
of states.
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Moreover, we have studied the subradiant states when the
interaction between the atoms is also provided by the funda-
mental guided mode of an optical nanofiber. We showed that
in this scenario there are extremely subradiant states similar
to those mentioned before for the vacuum case and they affect
the optical properties of the system like transmittance and
reflectance leading to the presence of very sharp peaks in
the spectra. We found that in the corresponding resonance
frequency the system becomes either highly transparent or
opaque depending upon the number of atoms N .

There are also two other types of subradiant states that ap-
pear in the presence of a nanofiber. These states are present for
both transverse and longitudinal cases: one can be observed
on the first Bragg resonance for the nanofiber guided mode
and the other one is the result of an interplay between the
vacuum and guided mode interaction channels. The former
one allows the subradiant state on the first Bragg resonance to
be visible in the transmission or reflection spectra opening a
very narrow window of a partial transparency for sufficiently
large N . The latter is weakly pronounced in the spectra at least
for the considered set of parameters.

Extremely subradiant states studied in this paper may find
applications in both atomic optics and quantum information
science in relation to the problem of quantum memory, for
instance [51]. We also want to note that such states might
be studied in the context of not only cold atoms physics but
also nanophotonics, e.g., 1D arrays of dielectric or plasmonic
nanoparticles. In this field of research long-lived states might
be exploited in order to create tunable discrete waveguides,
where the optical properties of an overall system are defined
by characteristics of individual elements and their arrange-
ment.
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APPENDIX A

The classical electromagnetic Green’s tensor of our system
can be found from the vector Helmholtz equation:[

−ω2

c2
ε(r, ω) + ∇ × ∇×

]
G(r, r′, ω) = Iδ(r − r′),

(A1)

where ε(r, ω) is the complex dielectric function and I is
the unit dyad. In our case we consider a dielectric cylin-
drical waveguide of radius ρc and dielectric permittivity ε

being constant inside the cylinder. To find the solution we
apply the scattering superposition method [78,79], which
allows us to expand the Green’s tensor into homogeneous and

inhomogeneous terms:

G(r, r′, ω) = G0(r, r′, ω) + Gs(r, r′, ω). (A2)

As soon as we consider dielectric particles in the vicinity
of the waveguide, so that r and r′ are outside the cylinder,
the homogeneous term is always present and describes the
field directly generated at the field point r by the source
placed at the point r′. This term can be obtained analytically
from the Green’s tensor written in Cartesian coordinates using
the transformation from Cartesian to cylindrical coordinates
S(φ)GCart

0 (r, r′, ω)ST (φ′), where GCart
0 has an analytic expres-

sion [80] and is given by

GCart
0 (r, r′, ω) =

(
I + 1

k2
∇ ⊗ ∇

)
G0(r, r′, ω), (A3)

where G0(r, r′, ω) is the Green’s function of the scalar
Helmholtz equation.

The scattering term can be calculated via the integral
representation of the homogeneous part. To obtain this repre-
sentation we apply the method of VWFs explained in details
in [78,79], here we cover only the basic ideas and provide the
final expressions. To find the solution of the vector Helmholtz
equation (A1), we introduce the scalar Helmholtz equation
and the solution of this equation in the cylindrical coordinates:

∇2φ(k, r) + k2φ(k, r) = 0, φn(kz, r) = Jn(kρρ)einθ+ikzz,

(A4)

where Jn(x) is the Bessel function of the first kind,
r = (ρ, θ, z) are the cylindrical coordinates and kρ and kz are
the projections of the wave vector k. The solution of the vector
Helmholtz equation may be written in terms of the following
vector wave functions:

Mn(kz, r) = ∇ × [φn(kz, r)ez],

Nn(kz, r) = 1

k
∇ × Mn(kz, r) (A5)

where ez is the so-called pilot vector, the unit vector point-
ing in the z direction. These VWFs Mn(kz, r) and Nn(kz, r)
correspond to TE and TM modes of the field.

One can show [78] that the homogeneous part of the
Green’s function can be expanded in terms of these vector
wave functions in the following way:

G0(r, r′, ω) = −eρeρ

k2
0

δ(r − r′)

+ i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
0ρ

Fn(kz, r, r′) (A6)

and the Fn(kz, r, s) function is given by

M(1)
n (kz, r)Mn(kz, r′) + N(1)

n (kz, r)Nn(kz, r′)

Mn(kz, r)M
(1)
n (kz, r′) + Nn(kz, r)N

(1)
n (kz, r′) (A7)

where the first line holds for ρr > ρr′ while the second one

holds for ρr < ρr′ , and k0 = ω/c, k0ρ =
√

k2
0 − k2

z , and the
superscript (1) in vector wave functions denotes that the
Bessel function of the first kind Jn(kρρ) should be replaced
with the Hankel function of the first kind H (1)

n (kρρ). Here we
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provide the explicit form of VWFs:

Mn(kz, r) =
⎛
⎝ in

ρ
Jn(k0ρρ)

−k0ρ (Jn[k0ρρ)]′
0

⎞
⎠einθ+ikzz,

Nn(kz, r) =

⎛
⎜⎝

ikzk0ρ

k [Jn(k0ρρ)]′

− nkz

ρk Jn(k0ρρ)
k2

0ρ

k Jn(k0ρρ)

⎞
⎟⎠einθ+ikzz,

Mn(kz, r′) =
⎛
⎝ − in

ρ ′ Jn(k0ρρ
′)

−k0ρ[Jn(k0ρρ
′)]′

0

⎞
⎠

T

e−inθ ′−ikzz′
,

Nn(kz, r′) =

⎛
⎜⎝

− ikzk0ρ

k [Jn(k0ρρ
′)]′

− nkz

ρ ′k Jn(k0ρρ
′)

k2
0ρ

k Jn(k0ρρ
′)

⎞
⎟⎠

T

e−inθ ′−ikzz′
(A8)

where Jn(kρρ)′ corresponds to the derivative with respect to
the dimensionless argument.

Now having the integral representation of the homoge-
neous term of the Green’s function, we can construct the
scattering term in a similar fashion. Let us denote the medium
outside the dielectric cylinder as 1 and the medium inside
as 2. The particular form of the Green’s tensor depends on the
position of a source point r′: whether it is inside or outside the
cylinder. We are interested in a situation when both source and
receiver are outside the cylinder, and in the latter we consider
only the second case. Thus, the total Green’s tensor can be
written as

G11(r, r′, ω) = G11
0 (r, r′, ω) + G11

s (r, r′, ω),

G21(r, r′, ω) = G21
s (r, r′, ω), (A9)

where the two superscripts denote the positions of the receiver
and the source point, respectively, and the two scattering parts
of the Green’s tensor have the following forms:

G11
s (r, r′, ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F11(1)
M;n,1(kz, r)M

(1)
n,1(kz, r′)

+ F11(1)
N;n,1(kz, r)N

(1)
n,1(kz, r′),

F11(1)
M;n,1(kz, r) = R11

MMM(1)
n,1(kz, r) + R11

NMN(1)
n,1(kz, r),

F11(1)
N;n,1(kz, r) = R11

MN M(1)
n,1(kz, r) + R11

NN N(1)
n,1(kz, r), (A10)

G21
s (r, r′, ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F21
M;n,2(kz, r)M

(1)
n,1(kz, r′)

+ F21
N;n,1(kz, r)N

(1)
n,1(kz, r′),

F21
M;n,2(kz, r) = R21

MMMn,2(kz, r) + R21
NMNn,2(kz, r),

F21
N;n,2(kz, r) = R21

MN Mn,2(kz, r) + R21
NN Nn,2(kz, r), (A11)

where the scattering Fresnel coefficients Ri j
AB are introduced

and the second subscript in the VWFs denotes that k and kρ

should be replaced with their values inside the corresponding

media ki = εi(r, ω)k0, kρi =
√

k2
i − k2

z . We should notice that,
unlike the case of the homogeneous term, here we have
products of M and N, which is due to the fact that the normal
modes in our case have hybrid natures.

The form of the Fresnel coefficients mentioned above can
be found by imposing the boundary conditions on the Green’s
tensor at the surface of the cylinder:

eρ × [G11(r, r′, ω) − G21(r, r′, ω)]|ρr=ρc = 0, eρ × ∇r × [G11(r, r′, ω) − G21(r, r′, ω)]|ρr=ρc = 0. (A12)

Solving for this, we can find the Fresnel coefficients Ri j
AB and, finally, construct the scattering part of the Green’s tensor

Gs(r, r′, ω). We provide the explicit expressions for the Fresnel coefficients below:

DT (kz ) = −
(

1

k2
ρ2

− 1

k2
ρ1

)2

k2
z n2 +

(
[Jn(kρ2ρc)]′

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′

kρ1H (1)
n (kρ1ρc)

)
×
(

[Jn(kρ2ρc)]′k2
2

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′k2
1

kρ1H (1)
n (kρ1ρc)

)
ρ2

c ,

R11
MM (kz ) = Jn(kρ1ρc)

H (1)
n (kρ1ρc)

⎡
⎣( 1

k2
ρ2

− 1

k2
ρ1

)2

k2
z n2 −

(
[Jn(kρ2ρc)]′

kρ2Jn(kρ2ρc)
− [Jn(kρ1ρc)]′

kρ1Jn(kρ1ρc)

)

×
(

[Jn(kρ2ρc)]′k2
2

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′k2
1

kρ1H (1)
n (kρ1ρc)

)
ρ2

c

⎤
⎦ 1

DT (kz )
,

R11
NM (kz ) = Jn(kρ1ρc)

H (1)
n (kρ1ρc)

1

kρ1

(
1

k2
ρ1

− 1

k2
ρ2

)(
[Jn(kρ1ρc)]′

Jn(kρ1ρc)
− [H (1)

n (kρ1ρc)]′

H (1)
n (kρ1ρc)

)
k1kznρc

DT (kz )
,

R11
MN (kz ) = R11

NM

R11
NN (kz ) = Jn(kρ1ρc)

H (1)
n (kρ1ρc)

⎡
⎣( 1

k2
ρ2

− 1

k2
ρ1

)2

k2
z n2 −

(
[Jn(kρ2ρc)]′

kρ2Jn(kρ2ρc)
− [H (1)

n (kρ1ρc)]′

kρ1H (1)
n (kρ1ρc)

)

×
(

[Jn(kρ2ρc)]′k2
2

kρ2Jn(kρ2ρc)
− [Jn(kρ1ρc)]′k2

1

kρ1Jn(kρ1ρc)

)
ρ2

c

⎤
⎦ 1

DT (kz )
. (A13)
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In order to extract the fundamental guided mode contribution to the Green’s tensor, one needs to take the common
denominator of all of the Fresnel coefficients and expand it near the corresponding βHE11 value up to the first order: DT (kz ) ≈
∂DT (kz )

∂kz
|
kz=βHE11

(kz − βHE11 ) + . . .. Then one needs to calculate the pole contribution to the integral by using the residue theorem

and finding the value of βHE11 from the dispersion relation.

APPENDIX B

Starting from Eq. (3.15), where Sii = 1 − ih̄γ
( f )
wg
∑

j

f (t )
j

h̄� − λ j
, we want to express the transmission spectra t = |Sii|2 in a

convenient way. For this, let us consider different kinds of terms:

|Sii|2 = 1 +
N∑

j=1

⎛
⎝
∣∣∣∣∣h̄γ ( f )

wg

f (t )
j

h̄� − λ j

∣∣∣∣∣
2

+ 2h̄γ ( f )
wg Im

f (t )
j

h̄� − λ j
+ (h̄γ ( f )

wg )2
N∑

i=1,i �= j

f (t )
j ( f (t )

i )∗(
h̄� − λ j

)
(h̄� − λ∗

i )

⎞
⎠. (B1)

The second term can be simply written into a form similar to Eq. (2.7):

Im
f j

(t )′ + i f j
(t )′′

h̄� − λ′
j − iλ′′

j

= f j
(t )′λ′′

j + f j
(t )′′(h̄� − λ′

j )

(h̄� − λ′
j )

2 + λ′′2
j

. (B2)

The last term contains cross products of contributions from different eigenstates having different eigenvalues and we want to
rewrite it in a similar way, which can be done through a sequence of the following transformations:

N∑
j=1

N∑
i=1,i �= j

f (t )
j ( f (t )

i )∗

(h̄� − λ j )(h̄� − λ∗
i )

=
N∑

j=1

N∑
i=1,i �= j

f (t )
j ( f (t )

i )∗

λ j − λ∗
i

[
1

h̄� − λ j
− 1

h̄� − λ∗
i

]

=
N∑

j=1

N∑
i=1,i �= j

f (t )
j ( f (t )

i )∗

λ j − λ∗
i

(
1

h̄� − λ j

)
−

N∑
i=1

N∑
j=1, j �=i

f (t )
j ( f (t )

i )∗

λ j − λ∗
i

(
1

h̄� − λ∗
i

)
= |i ↔ j for the second term|

=
∑
i �= j

2Re
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

1

h̄� − λ j

=
∑
i �= j

2Re

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

(
h̄� − λ∗

j

)] 1

(h̄� − λ′
j )

2 + λ′′2
j

=
∑
i �= j

{
2Re

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

](
h̄� − λ′

j

)− 2Im

[
f (t )

j ( f (t )
i )∗

λ j − λ∗
i

]
λ′′

j

}
1

(h̄� − λ′
j )

2 + λ′′2
j

. (B3)

Finally, by combining all terms together we seek Eq. (3.16). Similarly to this, Eq. (3.17) for the reflection coefficient can be
obtained.

[1] R. Dicke, Coherence in spontaneous radiation processes, Phys.
Rev. 93, 99 (1954).

[2] R. H. Lehmberg, Radiation from an N-atom system, Phys. Rev.
A 2, 883 (1970).

[3] A. V. Andreev, V. I. Emel’yanov, and Yu. A. Ill’inski, Collective
spontaneous emission (Dicke superradiance), Sov. Phys. Usp.
23, 493 (1980).

[4] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93, 301
(1982).

[5] I. M. Sokolov, M. D. Kupriyanova, D. V. Kupriyanov, and M. D.
Havey, Light scattering from a dense and ultracold atomic gas,
Phys. Rev. A 79, 053405 (2009).

[6] D. Plankensteiner, L. Ostermann, H. Ritsch, and C. Genes,
Selective protected state preparation of coupled dissipative
quantum emitters, Sci. Rep. 5, 16231 (2015).

[7] R. T. Sutherland and F. Robicheaux, Collective dipole-dipole
interactions in an atomic array, Phys. Rev. A 94, 013847
(2016).

[8] W. Guerin, M. T. Rouabah, and R. Kaiser, Light interaction
with atomic ensembles: Collective, cooperative and mesoscopic
effects, J. Mod. Opt. 64, 895 (2016).

[9] D. V. Kupriyanov, I. M. Sokolov, and M. D. Havey, Meso-
scopic coherence in light scattering from cold, optically
dense and disordered atomic systems, Phys. Rep. 671, 1
(2017).

063832-12

204



EXTREMELY SUBRADIANT STATES IN A PERIODIC … PHYSICAL REVIEW A 100, 063832 (2019)

[10] A. S. Kuraptsev and I. M. Sokolov, Spontaneous decay of an
atom excited in a dense and disordered atomic ensemble: Quan-
tum microscopic approach, Phys. Rev. A 90, 012511 (2014).

[11] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung,
and H. J. Kimble, Colloquium: Quantum matter built from
nanoscopic lattices of atoms and photons, Rev. Mod. Phys. 90,
031002 (2018).

[12] Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster,
M. Khudaverdyan, D. Meschede, D. Scharader, and A.
Rauschenbeutel, An atom-sorting machine, Nature (London)
442, 151 (2006).

[13] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, and A. Krajenbrink, Atom-by-atom assembly of
defect-free one-dimensional cold atom arrays, Science 354,
1024 (2016).

[14] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A.
Vernier, T. Lahaye, and A. Browaeys, Single-Atom Trapping in
Holographic 2D Arrays of Microtraps with Arbitrary Geome-
tries, Phys. Rev. X 4, 021034 (2014).

[15] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, An atom-by-atom assembler of defect-free arbitrary
two-dimensional atomic arrays, Science 354, 1021 (2016).

[16] H. Kim, W. Lee, H.-G. Lee, H. Jo, Y. Song, and J. Ahn, In situ
single-atom array synthesis using dynamic holographic optical
tweezers, Nat. Commun. 7, 13317 (2016).

[17] D. Ohl de Mello, D. Schäffner, J. Werkmann, T. Preuschoff, L.
Kohfahl, M. Schlosser, and G. Birkl, Defect-Free Assembly of
2D Clusters of More Than 100 Single-Atom Quantum Systems,
Phys. Rev. Lett. 122, 203601 (2019).

[18] K. D. Nelson, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 3, 556
(2007).

[19] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A.
Browaeys, Synthetic three-dimensional atomic structures as-
sembled atom by atom, Nature (London) 561, 79 (2018).

[20] R. A. de Oliveira, M. S. Mendes, W. S. Martins, P. L. Saldanha,
J. W. R. Tabosa, and D. Felinto, Single-photon superradiance in
cold atoms, Phys. Rev. A 90, 023848 (2014).

[21] A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O.
Painter, and H. J. Kimble, Superradiance for Atoms Trapped
Along a Photonic Crystal Waveguide, Phys. Rev. Lett. 115,
063601 (2015).

[22] S. L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J.
Schachenmayer, T. L. Nicholson, R. Kaiser, S. F. Yelin, M. D.
Lukin, A. M. Rey, and J. Ye, Collective atomic scattering and
motional effects in a dense coherent medium, Nat. Commun. 7,
11039 (2016).
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Anisotropic nanophotonic structures can couple the levels of a quantum emitter through the quantum
interference effect. In this paper we study the coupling of quantum emitter excited states through the modes
of a fully anisotropic structure, a structure for which all directions are physically nonequivalent. We consider
an anisotropic metasurface as an illustrative example of such a structure. We point out another degree of
freedom in controlling the temporal dynamics and spectral profiles of quantum emitters; namely, we show that a
combination of the metasurface anisotropy and tilt of the emitter quantization axis with respect to the metasurface
normal results in nonsymmetric dynamics between the transitions of electrons from the left-circular state to the
right-circular state and in the inverse process. Our findings give an additional mechanism for control over light
emission by quantum systems and can be utilized for probing active transitions of quantum emitters.

DOI: 10.1103/PhysRevA.100.033840

I. INTRODUCTION

The field of nanophotonics provides unique opportunities
for controlling the polarization state of light that governs
light-matter interaction. For example, the nonzero transverse
optical spin momentum density of the electric field localized
close to structure interfaces allows for achieving artificial chi-
rality of light-matter interactions [1]. Considered for the first
time decades ago [2,3], chiral quantum optics has acquired
an experimental platform for the observation of the chiral
coupling of light with individual quantum emitters (QEs) in
photonic crystal waveguides [4,5], nanofiber systems [6–8],
bottle microresonators [9], and planar grating systems [10].
The nonsymmetric interaction of quantum emitters with pho-
tonic modes propagating in opposite directions allows one to
achieve, for instance, incremental spontaneous entanglement
generation [11], unidirectional quantum transport [12,13],
unusual optomechanics [14,15], and modified radiative col-
lective properties of quantum emitter ensembles [12,16]. An
alternative to atoms and quantum dots, semiconducting two-
dimensional materials are a promising source of quantum
chirality [17] due to circular optical transitions related to the
spin states of valley electrons. Important progress has been re-
cently demonstrated in coupling excitons in two-dimensional
materials with plasmonic waveguides [18] and metasurfaces
(MSs) [18–22]. The latter are naturally considered as photonic
counterparts to two-dimensional semiconductor materials.
Metasurfaces have already demonstrated unprecedented flex-
ibility in the engineering of the polarization state of reflected
and transmitted light [23] as well as localized surface waves
[24–26], and the enhancement of the spontaneous emission
rate of quantum sources [24].

Another intriguing feature of light-matter interactions in
nanophotonics is that the intrinsic anisotropy of a nanostruc-
ture’s interface results in the coupling of quantum transitions
[27,28] due to the quantum interference effect [29]. Recently,
it has been demonstrated that the coupling of orthogonal chiral
states in two-dimensional materials with MS modes leads
to the formation of strongly coupled exciton-polariton states

[19], and coherence buildup during spontaneous transition
was predicted [30]. The possibility of an effective coupling
of chiral transitions through the MSs motivated us to study
the dynamics of transitions between two states with different
total angular momentum projections, which become coupled
due to the quantum interference enabled by the anisotropy
of a MS [see Fig. 1(a)]. We consider the coupling of tran-
sitions with opposite helicities through the anisotropic MS,
including the hyperbolic regimes. We predict that one can
achieve noninverse dynamics in transitions between the states
by tilting the local quantization axis of the emitter. Control
over the orientation of the emitter quantization axis can be
achieved, for example, by applying a magnetic [31] or electric
field, which can be utilized in field sensing [32]. Moreover, it
has been shown that orientation of a weak external magnetic
field can control the spontaneous emission process from a
multilevel atom into the modes of the structure [33,34]. The
orientation of transition dipole moments can be also con-
trolled by the strains induced in quantum dots, which has
been demonstrated experimentally [35]. The results proposed
in this paper open a way for the reconstruction of the initially
excited spin state of a quantum emitter based on its optical
response, thus realizing the optical tomography of quantum
states with fully anisotropic structures.

II. METASURFACE INDUCED QUANTUM
INTERFERENCE

We start with a QE having optically allowed transition with
three degenerate excited states |e−1〉, |e0〉, and |e+1〉 and a
single ground state |g〉. The corresponding transition dipole
moments are denoted by d−1, d0, and d+1 and their direc-
tions are given by the corresponding vectors e−1 = +(ex −
iey)/

√
2, e0 = ez, and e+1 = −(ex + iey)/

√
2, while the am-

plitudes are assumed to be equal to |d−1| = |d0| = |d+1| =
d . Note that at this stage d−1 and d+1 are in the interface
plane, while d0 is parallel to a normal of the structure. Hav-
ing different angular momentum projections, these states are
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FIG. 1. General scheme of the setup. (a) A four-level atom with
an s → p transition placed near an anisotropic metasurface. The rot-
ating transition dipole moments of the atom lie in the interface
plane. The x and y axes are chosen in such a way that the surface
conductivity tensor σ is diagonal. (b) The same setup but with the
local quantization axis z′ rotated by angles α and β.

orthogonal in the vacuum due to its isotropy, but if placed in
an anisotropic environment these states may couple with each
other via anisotropy induced quantum interference [29]. An
anisotropic metasurface is an example of such a nanophotonic
system, breaking the isotropy in all three directions. The
anisotropic response of the metasurface can be well described
[25] with the use of the effective conductivity tensor σ̂ (ω). In
the coordinate system (laboratory frame) coinciding with the
main axes of the conductivity tensor, one obtains

σ̂ (ω) =
(

σxx(ω) 0
0 σyy(ω)

)
,

where the diagonal entries are modeled with the Lorentzians
σ j j (ω) = Aj

ic
4π

ω

ω2−�2
j+iγ jω

with Aj being the normalization

factor, � j the resonance frequency, and γ j the damping rate.
Note that from now on we will use CGS units rather than SI.

The in-plane anisotropy of the metasurface allows for
coupling between the two transitions with opposite helici-
ties [Fig. 1(a)]. Indeed, the interaction between the states is
described by the coupling constant g−,+, which acquires a
nonvanishing value: g−,+ = −4πk2

0d∗
−1G(ra, ra, ω0)d+1/h̄ ∼

Gxx(ra, ra, ω0) − Gyy(ra, ra, ω0), where k0 is the wave num-
ber and G(ra, ra, ω0) is the electromagnetic Green’s tensor.
The total Green’s tensor consists of the vacuum and scattered
contributions, G = G0 + GSC; it is known that for equal field
and source points the real part of the vacuum contribution di-
verges. However, we will only take into account the imaginary
part of it and consider the vacuum Lamb shift as being already
included into the definition of the emitter’s bare transition
frequency ω0.

The nonzero coupling between the states results in the
redistribution of the quantum excitation if the system was
initially pumped in any of the excited states. The temporal
dynamics of the system is governed by the evolution op-
erator Û (t, 0) [36], which gives the probability Pe f ,ei (t ) =
|Ue f ,ei (t, 0)|2 for the atom to be in the excited state |e f 〉 at time
t given that it was in the state |ei〉 initially. This allows us to
implicitly reduce our attention to the subspace of the excited
states only.

The evolution operator can be expressed as

〈e f |Û (t, 0)|ei〉 =
∫

C

dz

2π i
e−izt/h̄〈e f |Ĝ(z)|ei〉, (1)

where Ĝ(z) = (z − Ĥ )−1 is the resolvent operator of the full
Hamiltonian Ĥ = Ĥ0 + V̂ , consisting of the unperturbed Ĥ0

part and perturbation V̂ , and |ei〉 and |e f 〉 are the initial and
final states, respectively.

The unperturbed Hamiltonian consists of the atomic and
field parts Ĥ0 = ĤA + ĤF . In order to describe the field itself
and its interaction with the atom for a very general case of a
medium with, possibly, dispersion and absorption, we employ
the approach introduced in Ref. [37]. In this case we can write

ĤA =
∑

q=−1,0,+1

h̄ω0|eq〉〈eq|,

ĤF =
∫

dr′
∫ ∞

0
dω′h̄ω′f̂†(r′, ω′)f̂ (r′, ω′), (2)

V̂ = −
∑

q

d̂qÊ(ra ),

where ω0 is the resonance frequency of the atomic transition,
f̂†(r′, ω′) is the local-field creation operator, and Ê(ra )
is the total electric field at the position of the atom ra.
The electromagnetic field operator in this case reads
as Ê(r) = i

√
4h̄

∫
dr′ ∫ ∞

0 dω′ ω′2
c2

√
εI (r′, ω′)G(r, r′, ω′)f̂

(r′, ω′) + H.c., where the bosonic field operators obey
the commutation relation [ f̂i(r′, ω′), f̂ †

k (r, ω)] = δikδ(r′ −
r)δ(ω′ − ω), G(r, r′, ω′) is the classical electromagnetic
Green’s function, and εI (r′, ω′) is the imaginary part of
permittivity.

The resolvent operator Ĝ(z) projected onto the subspace of
interest reads as

P̂Ĝ(z)P̂ = P̂
1

z − Ĥ0 − �̂(z)
P̂, (3)

where P̂ is the projector onto the subspace of emitter excited
states, Ĥ0 is the unperturbed Hamiltonian, and �̂(z) is the
level-shift operator or self-energy part. �̂(z) here provides
the energy shifts to the unperturbed eigenstates of Ĥ0 due to
the interaction and has the form

�̂(z) = V̂ + V̂ Ĝ(z)V̂ ≈ V̂ + V̂ Ĝ0(z = h̄ω0)V̂ , (4)

where the last equation implies the two approximations. The
first one is the near resonant case, which ignores possible
dependence of �̂(z) on z, also called the flat spectrum approx-
imation. The second one is the case that �̂(z) is calculated up
to the second order in V̂ .

The matrix elements of �q′,q(h̄ω0) = 〈eq′ |�̂(h̄ω0)|eq〉 rep-
resent the coupling of excited states through the modes
of the field and can be found in Ref. [38]: �q′,q(h̄ω0) =
−4πk2

0d∗
q′G(ra, ra, ω0)dq, where k0 = ω0/c and dq is the

transition dipole moment.
Once we construct the Green’s tensor (see Appendix A)

of a metasurface, we can compute the coupling elements
�q′q(h̄ω0) and solve for the dynamics of the atomic state
populations. In the setup considered [Fig. 2(a)] the states
|e−1〉 and |e+1〉 are mutually coupled while both being de-
coupled from |e0〉 as a consequence of the Green’s tensor
G(ra, ra, ω) being diagonal. Therefore, when studying the
interaction between the states |e+1〉 and |e−1〉, we can ignore
|e0〉 and immediately find the probability for the system to be

033840-2

208



NONINVERSE DYNAMICS OF A QUANTUM EMITTER … PHYSICAL REVIEW A 100, 033840 (2019)

FIG. 2. (a) Excited-state probability P−,−(t ) in the extreme
anisotropy limit [see Eq. (6)]. The strong-coupling regime appears
for an atom-metasurface distance z = 0.05λ0. (b) 2D map of the
strong-coupling parameter −|Re[g−,+]|/Im[g−,−] as a function of
�x , �y. The three specified regions correspond to (I) inductive
(Im[σxx], Im[σyy] > 0), (II) hyperbolic (Im[σxx] · Im[σyy] < 0), and
(III) capacitive (Im[σxx], Im[σyy] < 0) regimes. Other relevant pa-
rameters are z = 0.05λ0, γx = γy = 0.1ω0, εsubs = 1.

in the state |e−1〉 explicitly:

P−1,−1(t, 0) = 1
2 e2Im[g−,−]t {cos(2Re[g−,+]t )

+ cosh(2Im[g−,+]t )}. (5)

g−,− and g−,+ represent the diagonal and nondiagonal entries
of �(h̄ω0)/h̄, respectively. The expression describing the
dynamics of quantum states consists of two parts: a purely
decaying term and an oscillatory part. If one can achieve
Re[g−,+] � −Im[g−,−] then the oscillations will be under-
damped, which corresponds to a strong coupling of states
|e+1〉 and |e−1〉 through the modes of the structure.

It is illustrative to consider the case of the extreme
anisotropy, when σxx → 0i and σyy → ∞i, which corresponds
to the ideal conductance in the y direction and isolation in the
x direction. This gives us a very simple analytical result for
the coupling constants:

h̄g−,+ =
(

1 − ikz − 2k2z2

4z3

)
|d|2eik2z,

h̄g−,− = −
(

ikz + 2k2z2

4z3

)
|d|2eik2z. (6)

In Fig. 2(a) we plot the dynamics of the initially excited
state for the case of strong anisotropy in the absence (red
solid) and the presence (blue dashed) of strong coupling.
However, for a more realistic case of finite loss and γ j �= 0,
Fig. 2(b), the strong-coupling regime can almost be achieved
for the considered atom-surface distance z = 0.05λ0 when
at least one of the quantities �x and �y is close to the atomic
transition frequency ω0 only. One of the simplest ways to
achieve strong coupling is to consider smaller atom-surface
distances z; however, at some point it might be necessary
to consider also the Casimir-Polder interactions [39] with the
modes of the nanostructure.

The requirement for the strong-coupling regime
(Re[g−,+] � −Im[g−,−]) derived from Eq. (5) makes sense
for the case of two interacting transitions. However, as we will
show in the next section, it is still possible to achieve not only
a measurable population transfer between the states but also
nonequivalent dynamics for |e−1〉 → |e+1〉 and |e+1〉 → |e−1〉
processes. This can be done if the transition dipole moments
are arbitrarily oriented and all three of them are coupled.

III. NONINVERSE DYNAMICS OF
THE FOUR-LEVEL EMITTER

The dynamics of the system is fully defined by the elec-
tromagnetic properties of the MS through the coupling con-
stants gq′,q and is given by Eq. (5). The asymmetry in the
quantum dynamics, i.e., when the dynamics of a transition
from |e+1〉 → |e−1〉 and |e−1〉 → |e+1〉 will be different, is
also defined by the same coupling constants g. Thus, in order
to obtain the asymmetry in the dynamics one should achieve
g−,+ �= g+,−. From the Green’s-function perspective the cou-
pling constants read as g−,+

+,− ∼ Gyy − Gxx ∓ i(Gxy + Gyx ). One
can expect that applying a strong magnetic field along the
z axis should break the time-reversal symmetry, making
the conductivity tensor σ nondiagonal and antisymmetric
[40]. This results in nonzero nondiagonal components of the
Green’s tensors Gxy and Gyx; however, they have opposite
signs Gxy = −Gyx in this case, which still makes the coupling
constants equal, g−+ = g+−.

However, there is another less direct way of breaking the
symmetry between the |e−1〉 and |e+1〉 states, if one considers
the atomic quantization axis to be tilted with respect to the
laboratory axis ez at an arbitrary angle as shown in Fig. 1(b).
Mathematically, this can be described by considering the
level-shift operator in the metasurface frame after the rotation
of the quantization axis:

�̃(h̄ω0) = S†M†�(h̄ω0)MS = T†�(h̄ω0)T.

Here S is the matrix of Cartesian components of the spher-
ical tensors of rank 1 as columns; M is the rotation matrix
on Euler angles α, β, and γ (active representation, right-hand
rule, z′′-y′-z convention), and T = MS is the composition of
these transformations.

All of the information about the dynamics of the system is
contained in the eigenvalues and eigenstates of �̃(h̄ω0). Note
that the rotation of the quantization axis does not change the
eigenvalues, but alters the eigenstates of the system, and the

033840-3

209



KORNOVAN, PETROV, AND IORSH PHYSICAL REVIEW A 100, 033840 (2019)

evolution matrix can be expressed as

Uq′q(t, 0) =
∑

j=x,y,z

C(q′,q)
j e−ig j t ; q, q′ = {−1, 0,+1}, (7)

where gj are the complex eigenvalues of �, and C(q′,q)
j =

(T −1)q′, jTj,q. We should note that, since our nanostructure
is the planar conducting interface, the physical meaning of
eigenstates of the system is that they correspond to three linear
dipole moments aligned along highly symmetric directions of
the environment (main axes of the nanostructure); therefore,
h̄g j = −4πk2

0d†
j G(ra, ra, ω)dj are the self-couplings of three

linear dipole moments oriented along x, y, and z.
The coefficients C(q′,q)

j for the case of the excitation transfer
from |e+1〉 → |e−1〉 have the following explicit form:

C(−1,+1)
x = −e−2iγ

2
[cos(α) cos(β ) − i sin(α)]2,

C(−1,+1)
y = e−2iγ

2
[cos(α) − i cos(β ) sin(α)]2,

C(−1,+1)
z = −e−2iγ

2
sin2(β ). (8)

First, one can notice that since γ enters as an overall
phase for all of the coefficients C(q′,q)

j it does not affect the
population dynamics Pq′,q(t, 0) = |Uq′,q(t, 0)|2. This means
that the last rotation around the new e′

z axis by angle γ is
redundant and without loss of generality we can set γ = 0.
From the unitarity of T(α, β, γ ) it follows that C(+,−)

j =
(C(−,+)

j )∗. This fact immediately gives us a straightforward
result that for arbitrary values of α and β one can achieve
noninverse dynamics between the two transitions as the coef-
ficients are not equal anymore. Indeed, the asymmetry in the
excitation transport between the states manifests itself in the
following way:

P−,+(t ) − P+,−(t )

= f (α, β )
(x,y),(y,z),(z,x)∑

(k,l )

e(g′′
k+g′′

l )t sin[(g′
k − g′

l )t], (9)

where gj = g′
j + ig′′

j and f (α, β ) = 1
8 sin(2α) sin(2β ) sin(β ).

Equation (9) is the central result of the paper, and it has several
important consequences. First, one can see that the difference
vanishes in two cases: (i) when f (α, β ) = 0 or, equivalently,
when either α or β is an integer multiple of π/2; and (ii) when
any two directions are equivalent, so that gk = gl . Thus, to
obtain the noninverse dynamics of the excitation we need to
have both the atomic system quantization axis tilted at an
arbitrary angle relative to the metasurface and full anisotropy
of the environment.

We want to stress that this effect can be observed for the
process involving any pair of states with q, q′ = {−1, 0,+1},
not only the processes coupling |e−1〉 and |e+1〉. It is also
important to mention that from the form of transport asym-
metry (9) one can formulate the explicit way to describe the
difference of P−1,+1(t ) and P+1,−1(t ). Indeed, we can calculate

the actual probabilities given by Pq′,q(t ) = |Uq′,q(t, 0)|2:

Pq′,q(t ) =
∑

k=x,y,z

C(q′,q)
k,k e2g′′

j t +
(x,y),(y,z),(z,x)∑

(k,l )

2
∣∣C(q′,q)

k,l

∣∣
× cos

[
(g′

k − g′
l )t − ϕ

(q′,q)
k,l

]
e(g′′

k+g′′
l )t , (10)

where g j are, as in Eq. (7), the eigenvalues of �q′,q(h̄ω0)/h̄

(self-couplings of linear dipoles along x, y, and z); C(q′,q)
k,l =

C(q′,q)
k (C(q′,q)

l )∗; and ϕ
(q′,q)
k,l = arg (C(q′,q)

k,l ). Note that the sec-
ond sum is responsible for the interference of contribu-
tions from different eigenstates. From the property C(q′,q)

k,l =
(C(q,q′ )

k,l )
∗

it immediately follows that ϕ
(q′,q)
k,l = −ϕ

(q,q′ )
k,l , which

means that the difference in population transfer probabilities
Pq′,q(t ) and Pq,q′ (t ) manifests itself as the phase delay in the
interference part of the dynamics.

In this section we described the physical origin of the
effect under study in terms of internal degrees of freedom of
the emitter-transition probabilities Pq′,q(t ). In the next section
we proceed by considering how the observable quantities
like detected light intensity or emitted spectrum are affected,
which might be of special interest if one keeps in mind a
possible experimental verification.

IV. THE EFFECT ON THE MEASURABLE OBSERVABLES

A. Far-field intensity dynamics

The temporal dynamics can be detected by measuring the
far-field radiation generated by the atom. Basing on the results
presented in Refs. [41,42], we will obtain the detected light
intensity, the temporal profile of which is given by Ref. [42]:

Iq0 (t ) =
∣∣∣∣∑

q′
4k2

0

∫ t

0
dt ′Cq′,q0 (t ′)

∫ ∞

0
dω Im[G(rd, ra, ω)]dq′

e−i(ω−ω0 )(t−t ′ )
∣∣∣∣
2

, (11)

with rd and ra being the positions of the detector and atom,
respectively, and Cq′,q0 (t ) the probability amplitude that state
q′ is excited at time t , while initially the system was in the q0

state.
If we want to find the intensity detected in the far-field

zone, we need to replace the full Green’s tensor with its
far-field part G(rd, ra, ω) → GFF(rd, ra, ω). According to a
superposition principle [43,44] this far-field Green’s tensor
can be written as a sum of free-space and scattered parts:
GFF(rd, ra, ω) = GFF,0(rd, ra, ω) + GFF,sc(rd, ra, ω) or

GFF(rd, ra, ω) = f0(rd, ra, ω)eikR− + fSC(rd, ra, ω)eikR+ ,

(12)

where R± =
√

(xd − xa)2 + (yd − ya)2 + (zd ± za)2. The
phases in the exponent differ as these two contributions
are created by two dipoles: one is located at the position
ra and the other one is its mirror image located at
(xa, ya,−za). However, if we put a dipole very close
to a surface so that z0/λ0  1 then we can ignore
this discrepancy and set R− = R+ = R, obtaining that
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GFF(rd, ra, ω) ≈ feikR. Now using Im[f (rd, ra, ω)eikR] =
Re[f (rd, ra, ω)] sin(kR)+Im[f (rd, ra, ω)] cos(kR) and mak-
ing the expansion near the resonance frequency k(ω) ≈
k(ω0) + k′(ω0)(ω − ω0), we can proceed by taking the
frequency integral in Eq. (11). The f (rd, ra, ω) function in
our case can be regarded as a slowly varying function of
frequency and put in front of the ω integral taken at resonance
frequency ω0. Then we can perform the ω integral and arrive
at the following result:

Iq0 (t ) ≈
∣∣∣∣∣∣
4πk2

0

i

∑
q′

Cq′,q0 (t − R/c)GFF(rd, ra, ω0)dq′

∣∣∣∣∣∣
2

. (13)

One should note that this form naturally expresses the total
amplitude as a sum of contributions from three dipole mo-
ments associated with each active transition q′ = (−1, 0,+1)
multiplied by the probability amplitude of the corresponding
excited state at the retarded time τ = t − R/c. We can rewrite
Eq. (13) by making use of the dq definition and Eq. (7) in the
form

Iq0 (τ ) ≈ ∣∣4πk2
0d

∣∣2

∣∣∣∣∣∣
∑

j

fje
−ig jτ

∣∣∣∣∣∣
2

, (14)

where τ = (t − R/c), c is the speed of light, fj =
GFF

:,j (rd, ra, ω0)(MS j,q0 ) is related to the field generated at
the detector’s position rd, ra is the position of a QE, and
GFF

:,j (rd, ra, ω0) is the jth column of the far-field classical
Green’s tensor of the system. It is clear that the temporal
dynamics described by Eq. (7) is directly mapped onto this
quantity.

In order to observe the manifestation of the effect it is
convenient to compare the intensity dynamics for the two
initial conditions (an atom being in |e−1〉 and |e+1〉 initially)
in the case of isotropic and anisotropic metasurfaces. The
results are presented in Fig. 3(a). Notice that the position of
the detector is rotated with respect to the axis origin in the
same way as the atomic local quantization z axis is rotated:
it is simply rd||Mẑ. This keeps the number of degrees of
freedom constant as the orientations of atomic quantization
axis and detector position relative to an atom are now related
and described only by (α, β ). One can notice in Fig. 3(a)
that for the setup considered for the anisotropic metasurface
there is a difference in temporal dynamics of the detected
field intensity Iq0 (τ ) for initially excited states with opposite
helicities A, q0 = −1 (blue dash-dotted), and A, q0 = +1
(blue dotted). For the isotropic case the difference between
the B, q0 = −1 (solid dark red line), and B, q0 = +1 (bright
red circles), intensity profiles vanishes, as expected.

It is also important to mention that it might be natural to
consider a hyperbolic regime for a metasurface when it comes
to studying light-matter interactions as the surface-plasmon
polariton (SPP) modes are prominent in this case. Despite
the fact that the SPPs might have a very strong local field
(leading to the increase of Re[gj]), they also carry the energy
away from the system due to strongly enhanced spontaneous
emission (and, therefore, high −Im[g j]). One can conclude
that for the problem considered in our paper the near field

0 1 2 3

4

0.2

0.4

0.6

0.8

1

I
Te

m
po

ra
l i

nt
en

si
ty

Sp
ec

tru
m

q 0(
)/I

(0
)

q 0

t

τ

0Time

Detuning
-8 -4 0

/ 0

0

0.2

0.4

0.6

S q 0(
)/S

q 0(0
)

A: q0=-1
A: q0=+1

B: q0=-1
B: q0=+1

(a)

(b)

rd

R
detector

ra
 -1

 +1

FIG. 3. (a) Local-field intensity registered at the detector position
rd vs time τ = t − R/c measured in the units of an inverse of a
free-space emission rate γ0. Zero time corresponds to a moment
when the emitted light reaches the detector. The atom is initially
in the |eq0 〉 state. Two cases are studied: case A, an isotropic
metasurface (�x = �y = 1.5k0); and case B, an anisotropic metasur-
face (�x = 1.5k0, �y = 1.1k0). There are also two initial conditions
considered with four cases in total: isotropic case A, q0 = −1
and +1 (solid dark red line and bright red circles, respectively);
and anisotropic case B, q0 = −1 and +1 (blue dash-dotted and
dotted line, respectively). The parameters are �x = 0.6k0, �y =
1.0k0, γx = γy = 0.1k0, εsubs = 1.0, z = 0.05λ0, ra = (0, 0,z),
rd = R(cos(α) sin(β ), sin(α) sin(β ), cos(β )), R = 100λ0, α = π/4,
and β = π/4. Normalization factor I (0)

q0
is the intensity detected at

moment t = R/c in the absence of a metasurface. (b) The total emit-
ted light spectra. The relevant parameters and the cases considered
are the same as for Fig. 3(a). S(0)

q0
is the resonant value of the total

emitted light spectrum for an atom in the vacuum. Comments on how
we choose parameters for cases A and B are given in Appendix B.

modes which are forbidden to propagate in any direction are
of interest, but not the propagating modes.

B. Far-field emitted light spectrum

In the previous section we studied how the temporal inten-
sity profile is affected by the described phenomenon. In order
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to obtain insight into the spectral manifestation of the afore-
mentioned asymmetry, we calculate the far-field spectrum of
the initially excited atom. According to Ref. [42] one can find
the emitted light spectrum in the Markov approximation:

Sq0 (ω) =
∣∣∣∣∣∣
∑

q′

∫ ∞

0
dt ′Cq′,q0 (t ′)ei(ω−ωq′ )t ′

Fq′
(rd, ra )

∣∣∣∣∣∣
2

, (15)

where ωq′ is the transition frequency |g〉 → |eq′ 〉, Cq′,q0 (t ′) is
the excited-state |eq′ 〉 probability amplitude (with q0 being the
initial state) given by (7), and Fq′

(rd, ra ) is

Fq′
(rd, ra ) = 4

ω2
q′

c2

∫ ′
dω′Im[G(rd, ra, ω

′)]dq′ζ (ωq′ − ω′)

= �(rd, ra )dq′ , (16)

with ζ (x) = iP 1
x + πδ(x).

The unrotated transition dipole moments are given by
dq′ = |d|S:,q′ , where S = [e−1, e0, e+1] is the matrix, where

each column is a spherical tensor in Cartesian coordinates.
We need to rotate each vector written in Cartesian coordinates
on Euler angles using the matrix M(α, β, γ ), so the rotated
vectors are MS:,q′ .

Also, unlike in Ref. [42], to make our paper more coherent
we consider that the unperturbed Hamiltonian does not take
into account the Lamb shift for each excited state and we
account for it in �rot. Formally, this means that in the Green’s-
function argument ω0 has to be replaced by the corrected
atomic transition frequency with the Lamb shift included. We
need to note that this cannot lead to any significant changes
as the corresponding corrections are on the order of ∼γ0,
while we consider that ω0 � γ0 and the Green’s tensor in
our problem varies significantly in the frequency range on the
order of ω0.

We also take only the πδ(x) part of ζ (x) in (16) for the
sake of simplicity. Even though the principal value part can
be significant, it will not affect the result qualitatively.

Now, taking the integral over t ′ in (15) we arrive at the
following result:

Sq0 (ω) =
∣∣∣∣∣∣
∑

j

i
∑

q′ Fq′ (rd, ra )C(q′,q0 )
j

(δ − g j )

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑

j

i
∑

q′ �(rd, ra )dq′C(q′,q0 )
j

(δ − g j )

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑

j

i
∑

q′ |d|�(rd, ra )MS:,q′ [(MS)−1]q′, j (MS) j,q0

(δ − g j )

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑

j

i|d|�:, j (rd, ra )(MS) j,q0

(δ − g j )

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑

j

f q0
j (rd, ra )

(δ − g j )

∣∣∣∣∣∣
2

, (17)

where we used the fact that C(q′,q0 )
j is nothing but [(MS)−1]q′, j (MS) j,q0 . Another way of representing the total spectrum can be

obtained as follows:
N∑

j=1

N∑
i=1

(
f q0

i

)†
f q0

j

(δ − g j )(δ − g∗
i )

=
N∑

j=1

N∑
i=1

(
f q0

i

)†
f q0

j

g j − g∗
i

[
1

δ − g j
− 1

δ − g∗
i

]

=
N∑

j=1

N∑
i=1

2 Re

[(
f q0

i

)†
f q0

j

g j − g∗
i

1

δ − g j

]
=

N∑
j=1

N∑
i=1

2 Re

[(
f q0

i

)†
f q0

j (δ − g∗
j )

g j − g∗
i

]
1

|δ − g j |2 , (18)

where in the transition from the first to the second line the
interchange i ↔ j in the second term is made.

We can define the following two quantities:

ξ j =+2Re

[∑
i

(
f q0

i

)†
f q0

j

g j − g∗
i

]
, η j =−2Im

[∑
i

(
f q0

i

)†
f q0

j

g j − g∗
i

]
,

(19)

and, finally, we obtain the following:

Sq0 (δ) ≈
∣∣∣∣∣∣
∑

j

f q0
j (rd, ra )

(δ − g j )

∣∣∣∣∣∣
2

=
∑

j

(ξ j (δ − g′
j ) + η jg′′

j )

(δ − g′
j )

2 + g′′2
j

. (20)

The last part of Eq. (20) simply shows that the spectrum for
three eigenstates can be decomposed into three symmetric
Lorentzian lines ∼η j and three antisymmetric parts ∼ξ j ,
and depending upon their values the line shape can vary
significantly.

Here we also want to note that it is easy to calculate the
emitted spectrum of a certain polarization. Formally, this can
be done by replacing the vector f q0

j (rd, ra ) with a scalar
f qd ,q0

j (rd, ra ) = e†
qd

· f q0
j (rd, ra ), where qd is a polarization to

which the detector is sensitive, and e†
qd

is the corresponding
normalized polarization vector. In this case the total emitted
light spectrum is simply Sq0 (δ) = ∑

qd
Sqd ,q0 (δ) as a result of

the completeness relation
∑

qd
eqd ⊗ e†

qd
= 1.

As expected, the total emitted light spectra also differ
for two initially excited states of opposite helicities in the
case of an anisotropic structure, and with the tilted atomic
quantization axis [see Fig. 3(b)]. It should be stressed that
tilting the quantization axis is not the only way to observe the
difference between S−1(δ) and S+1(δ). Namely, the introduc-
tion of the substrate with εsubs �= 1 leads to a similar result.
However, this happens not due to different populations of
atomic energy levels but rather due to the mixing of the fields
emitted by different eigenstates. The details can be found in
Appendix C.
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The described effect opens a route towards the optical to-
mography of the internal state of a quantum emitter. Namely,
placing an isolated emitter or an array of them in the vicin-
ity of the structure would allow the reconstruction of the
symmetry axes of the nanosized object by the scattering
spectra or intensity dynamics. The effect under study is also of
importance for spectroscopy and has to be taken into account.

V. CONCLUSION

We have shown that the combined effect of the metasurface
anisotropy and the tilt of the quantum emitter quantization
axis leads to an observable difference both in temporal
dynamics and in spectral properties of the emitter initially
pumped into states of opposite helicities. This is a somewhat
counterintuitive result since it states that optical activity can
emerge due to the anisotropy of the system and it originates
through the quantum interference of the multiple decay
channels of the emitter.

The results presented here are applicable not only for
metasurfaces but for any structure that is fully anisotropic, for
example, planar cavities with in-plane anisotropy, elliptical
micropillar cavities [45], or an ensemble of ultracold atoms
trapped near the optical nanofiber [8]. Moreover, in the
case of a cavity it should be enhanced by the order of the
quality factor while the field localization is usually smaller
for the case of cavities than for metasurfaces or waveguide
structures. These findings not only open avenues towards
the engineering of quantum optical systems at the nanoscale
but can be readily used for the relatively simple optical
tomography of nano-objects.
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APPENDIX A: GREEN’S TENSOR OF A METASURFACE

According to a superposition principle [43,44], the total
Green’s tensor of the problem can be expanded into the
following sum:

Gij(r, r′, ω) = G0(r, r′, ω) + Gij
SC(r, r′, ω), (A1)

where G0(r, r′, ω) is the free-space Green’s tensor and
GSC(r, r′, ω) is the scattered part, which contains all the
information about the modes of the structure. The superscripts
i and j describe the position of the field and the source points
with respect to the interface of the structure. We label the
upper half space as 1 and the lower one as 2. We are especially
interested in constructing the G11(r, r′, ω) tensor, and we
also want to find G21(r, r′, ω) = G21

SC(r, r′, ω) to satisfy the
boundary conditions on the interface.

In order to find the scattered part we want to use the
approach described in Ref. [46] and begin by introducing
the following vector functions, corresponding to TE and TM
modes:

tj,± = 1

κ

⎛
⎝−κy

+κx

0

⎞
⎠, pj,± = 1

k j

⎛
⎝∓k j,zκx/κ

∓k j,zκy/κ

κ

⎞
⎠, (A2)

where κ =
√

κ2
x + κ2

y and k j,z =
√

k2
j − κ2 . The first sub-

script (in t and p functions j) labels the media, while the ±
sign defines the propagation direction along the z axis.

The expansions for both free and scattered parts have
the form

G0(r, r′, ω) = −ezezδ(R) + i

8π2

∫∫
dκxdκy

1

k1z
[t1±t1± + p1±p1±] exp(ik1±R),

G11
SC(r, r′, ω) = i

8π2

∫∫
dκxdκy

k1,z

[
R11

tt t1,+t1,− + R11
t p t1,+p1,− + R11

pt p1,+t1,− + R11
ppp1,+p1,−

]
exp(ik1,+r − ik1,−r′),

G21
SC(r, r′, ω) = i

8π2

∫∫
dκxdκy

k1,z

[
R21

tt t2,−t1,− + R21
t p t2,−p1,− + R21

pt p2,−t1,− + R21
ppp2,−p1,−

]
exp(ik2,−r − ik1,−r′), (A3)

where R = r − r′. In G0(r, r′, ω) the upper (lower) signs in
the field vector functions are for the case z > z′ (z < z′).
Here we also introduced the Fresnel coefficients Ri j

kl account-
ing for the scattering of the mode “l” into the mode “k.”
Note that since our structure is, in general, anisotropic in
the xy plane, there are modes of a hybrid nature which can
be identified by the cross terms involving products of tj,±
and pj,±.

The coefficients Ri j
kl can be found by satisfying the bound-

ary conditions for both electric and magnetic fields:{
ez × (E1 − E2) = 0,

ez × (H1 − H2) = 4π

c
σE1,2,

(A4)

where σ is a surface conductivity tensor. The first condition
on the electric field allows one to relate different Fresnel
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FIG. 4. Ĩ−1,+1 and S̃−1,+1 parameters defined by (B1) and (B2) vs
metasurface resonance frequencies �x and �y. All other parameters
are the same as in Fig. 3. The two specific points correspond to
isotropic (A, �x = �y = 1.5k0) and anisotropic (�x = 1.5k0, �y =
1.1k0) cases.

coefficients to each other in a rather simple form:

1 + R11
tt = R21

tt ,

R11
pt

k1,z

k1
= −R21

pt

k2,z

k2
,

R11
t p = R21

t p ,

−1 + R11
pp = −R21

pp

k2,zk1

k2k1,z
. (A5)

By using this along with the second line of (A4) we can find
the rest of the coefficients.

The optical properties of such a metasurface can be charac-
terized by effective surface conductivity tensor σ , which can
be chosen to be diagonal in some reference frame. To describe
the optical properties of a metasurface we use the effective
conductivity described by Ref. [25]:

σ =
(

σxx 0
0 σyy

)
, σ j j = Aj

ic

4π

ω

ω2 − �2
j + iγ jω

, (A6)

where Aj is the normalization constant, � j is the resonance
frequency, and γ j is the bandwidth.

In the absence of a substrate (ε1 = ε2) and in the case
of a strong anisotropy (σyy → i∞, σxx → i0), we can per-
form the double integral in Eq. (A3) and obtain G11

SC(r, r, ω)
analytically:

Gsc,11
xx (r, r, ω) = 1

32πk2z3
eik2z,

Gsc,11
yy (r, r, ω) = −1 + 2ikz + 4k2z2

32πk2z3
eik2z,

Gsc,11
zz (r, r, ω) = 1 − ikz

16πz3k2
eik2z. (A7)

APPENDIX B: A MEASURE OF THE DISCREPANCY
BETWEEN THE INTENSITY AND SPECTRAL PROFILES

As we are interested in both intensity Iq0 (τ ) and spectrum
Sq0 (δ) for two initial conditions (q0 = −1,+1), it is good to
study how the difference between these two cases depends
upon the metasurface parameters. For this we need to fix the
orientation of the local quantization z axis (angles α and β)
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FIG. 5. The total emitted light spectra for two initial conditions:
q0 = −1 (solid red lines) and q0 = +1 (dashed blue lines) in the
case of an absent substrate εsubs = 1 (a) and with substrate εsubs =
2.2 (b) for the in-plane situation (α = β = 0). The other relevant
parameters are the same as in Fig. 3. S(0)

q0
is the resonant value of

the total emitted light spectrum for an atom in the vacuum.

and introduce the following two quantities:

Ĩ−1,+1 =
∫ ∞

0 |I−1(τ ) − I+1(τ )|dτ∫ ∞
0 [I−1(τ ) + I+1(τ )]dτ

, (B1)

S̃−1,+1 =
∫ ∞
−∞ |S−1(δ) − S+1(δ)|dδ∫ ∞
−∞[S−1(δ) + S+1(δ)]dδ

. (B2)

Clearly, these two quantities are always between 0 and 1
and can be used to measure how much the two graphs are
similar or different. Therefore, we can plot the map of (B1)
and (B2) versus resonance frequencies �x and �y presented
in Figs. 4(a) and 4(b). Note that for �x = �y the metasurface
is isotropic and both Ĩ−1,+1 and S̃−1,+1 are equal to zero. Even
though the local maxima of Ĩ−1,+1 and S̃−1,+1 do not overlap,
there is a region where both of these quantities exceed the
value of ≈0.2–0.3, which is sufficient in order to observe the
discrepancy for q0 = −1 and + 1 cases [see Figs. 4(a) and
4(b)].

APPENDIX C: EMITTED LIGHT INTENSITY AND
SPECTRUM IN THE CASE OF A SUBSTRATE

One major difference between observing the probabilities
of some processes Pe f ,ei (t ) and looking at either detected
intensity Iq0 (t ) or spectrum Sq0 (δ) is that in the latter two
cases the position of the detector with respect to the atom and
nanostructure is involved. One can consider the case when
d−1 and d+1 rotate in the interface plane (α = β = 0) and
put the detector right above the atom in the far-field zone
so that it has the position rd = (0, 0, R). Note that in this
scenario the eigenstate with the associated z-oriented dipole
moment does not contribute to the result as it does not have
the far-field term. If there is no substrate εsubs = 1 then the
corresponding Green’s tensor GFF(rd, ra, ω0) is diagonal and
the two relevant contributions in Eqs. (14) and (20) from x and
y dipole moments do not interfere with each other. However,
if one introduces the substrate εsubs �= 1 then there are
nonzero components of the Green’s tensor GFF

xy (rd, ra, ω0) =
GFF

yx (rd, ra, ω0) �= 0, which leads to the mixing of the fields
generated by x and y dipoles resulting in the observable
difference in S−1(δ) and S+1(δ). However, one should not
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confuse this with the effect described in the main text
as in this case the transition probabilities will be equal:
P−,+(t ) = P+,−(t ).

Indeed, as can be seen from Fig. 5, the presence of the
substrate leads to an observable difference in the emitted light
spectra, for instance.
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Abstract – In this work we focus on studying the temporal dynamics of a V-type quantum
emitter with two excited states, which allows to observe an interplay between different sponta-
neous emission channels. We show that the presence of an anisotropic metasurface enables an
interaction between the two active transitions and makes it possible to achieve a strong coupling
regime. We also show that if the rotation plane of the transition dipole moments is arbitrar-
ily oriented with respect to the metasurface interface, it is possible to observe a non-reciprocal
behavior.

I. INTRODUCTION

The subject of anisotropic vacuum has been attracting a lot of attention since the proposal by G. Agarwal [1],
where the idea of exploiting the interference between different emission channels was considered for the first time.
A major interest was in trying different photonic systems in order to control this effect and allow for the suppression
of the emission rate due to destructive interference between the decay channels [2].

Fig. 1: System under consideration: a V-type atom with two rotating transition dipole moments placed near an
anisotropic metasurface.

II. THEORETICAL FRAMEWORK AND RESULTS

In this work we investigate the time evolution of a three level V -type atom with two excited states |e1〉, |e2〉
with the corresponding transition dipole moments dσ+ and dσ− (Fig. 1). The two orthogonal dipole moments
are decoupled in the isotropic media, but they can interact with each other via the electromagnetic modes of
some photonic/plasmonic structure, for example, an anisotropic metasurface. The optical properties of such a
metasurface can be characterized by the tensor of the effective surface conductivity σ, which can be chosen to
be diagonal in some reference frame. To describe the optical properties of a metasurface we use the effective
conductivity described by [3]:

σ =

(
σxx 0
0 σyy

)
, σjj = Ajj

ic

4π

ω

ω2 − Ω2
jj + iγjjω

, (1)
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where Ajj is the normalization constant, Ωjj is the resonance frequency, γjj is the bandwidth.
In order to solve for the temporal dynamics of the emitter we employ the approach of the resolvent operator

[4, 5], when it is possible to find the matrix elements of the evolution operator Û(t, 0) using:

〈ef |Û(t, 0)|ei〉 =

∫

C

dz/(2πi)e−izt/h̄〈ef |Ĝ(z)|ei〉, (2)

where Ĝ(z) = (z − Ĥ)−1 is the resolvent operator of the full Hamiltonian Ĥ . Using this relation we can find
probabilities for the atom to be in the excited state |ef 〉 at time t given that it was in the state |ei〉 initially by simply
calculating Pef (t) = |Uefei(t, 0)|2.

We should note that here we work in the single excitation domain since we are studying the excited states
evolution of a single atom. In this single excitation subspace of a Hilbert space the resolvent can be found to be:

〈ef |Ĝ(z)|ei〉 = 〈ef |
[
z − Ĥ0 − Σ̂(z)

]−1

|ei〉 ≈
[
(z − h̄ω0) δefei + 4πk2

0d
∗
ef
G(r0, r0, ω0)dei

]−1
, (3)

here Ĥ0 is the unperturbed Hamiltonian and Σ(z) is the level shift operator, δij is the Kronecker delta. The
level-shift operator in the latter expression is written within two approximations: near-resonant interaction of the
states (z = h̄ω0) and taking into account only proccesses of the second order [6], leading to a form of a classical
dipole-dipole coupling constants. From now on we will notate the diagonal matrix elements of Σejej (h̄ω0) =
gnd = h̄ (∆ei − iγei/2) and non-diagonal as Σekel(h̄ω0) = gnd = h̄ (∆ekel − iγekel/2), where ∆ek , γek are
the Lamb shift and the total decay rate of the state |ek〉, and ∆ekel , γekel are the coherent and dissipative parts of
the interaction constant of levels |ek〉, |el〉. All of these parameters can be expressed via classical electromagnetic
Green’s function Σefei = −4πk2

0d
∗
ef
G(r0, r0, ω0)dei

. Therefore, in order to describe the interaction of the
emitter with the electromagnetic modes of the field we only need to construct the Green’s function of a metasurface,
which can be done by following the procedure outlined in [7].

We begin by studying the interaction of the two excited states of a quantum emitter in the case, when transition
dipole moments rotate in the plane of the interface of the structure considered. In this case the dynamics of the
excited states can be found to be:

|Ue1e1(t, 0)|2 = e−γe1 t [cosh (γe1e2t) + cos (2∆e1e2t)] /2,

|Ue2,e1(t, 0)|2 = e−γe1 t [cosh (γe1e2t])− cos (2∆e1e2t)] /2 (4)

The solutions (4) consist of two parts: purely exponentially decaying and the oscillating one, which accounts for
the population exchange between the states. From the answers above one can conclude that in order to obtain a
strong coupling between orthogonal transitions one needs to achive a regime, when the coherent coupling strength
between the states exceeds the dissipations, which in our case takes the form: |Re[gnd]| > Im[gd] or equivalently
ξ = 2|∆e1e2 |/γe1 > 1, where ξ is the strong coupling parameter. From Fig. 2, a) one can see that for given
parameters, this condition can be satisfied when the atom-surface distance is about ∆z ≈ λxx/20, where λxx =
2πc/Ωxx. Fig. 2, b) shows that the probabilities Pe1e1(t) and Pe2e1(t) clearly undergo oscillations as a signature
of a strong coupling regime. We should note that this strong coupling is not due to the surface plasmon modes of
a metasurface [3], but rather due to the radiation modes and near-fields as surface plasmons as propagating modes
lead to the energy dissipation in this system.

Another interesting phenomena appears if we let the quantization axis (the new ez′ axis) to point into an arbitrary
direction), which means that the rotation transition dipole moments de1 ,de2 rotate in the plane, which generally
does not coincide with the metasurface interface. This can be formally done by considering the level-shift operator
matrix in the Cartesian coordinate system ΣCart(h̄ω0), which physically expresses the coupling of linear dipoles
dj, j = x, y, z and then using a transformation matrix S: S†ΣCartS, which first make the transformation from the
Cartesian coordinate system into the basis of spherical tensors ej, j = σ−, π,, and then rotate the spherical tensors
with Wigner matrix Dmm′

1 (α, β, γ), where α, β, γ are the Euler angles. In this case the dynamics can be described
by a rather general form:

Pe1e2(t) =
∑

j

C(jj)
e1e2e

−γjjt +
∑

i,j;i6=j
C(ij)
e1e22cos

(
[∆ii −∆jj ] t− φ(ij)

e1e2

)
e−(γii+γjj)t/2, (5)
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Fig. 2: a) Strong coupling parameter ξ (blue) and both real and imaginary parts of 2gnd and 2gd (orange), re-
spectively, versus emitter-interface distance ∆z measured in λxx = 2πc/Ωxx. b) Population dynamics for the
initially excited state |e1〉, and for the state |e2〉, when the emitter-surface distance is ∆z/λxx = 0.05. Here γ0 is
a free-space spontaneous emission rate from |e1〉/|e2〉 to the ground state. c) Excitation transfer from e1 to e2 and
vice versa along with the initially excited state population. The parameters for both figures are: Axx = Ayy = 1,
Ωxx = 1, Ωyy = 3, γxx = γyy = 0.01, ε2 = 4, k0 = 0.5. Note that the strong coupling regime is achieved at
∆z/λxx ≈ 0.06. The dip at ∆z/λxx ≈ 0.15 is due to the destructive interference between different modes of the
structure. for c) the rotation angles were α = β = π/4, γ = 0.

here i, j = x, y, z, C(ij)
ekel are some real-valued constant pre-factors, −4πk2

0d
∗
iG(r0, r0, ω0)di = h̄

[
∆ii − i

γii
2

]
,

and φ(ij)
e1e2 are the phaseshifts. Note that both C(ij)

ekel and φ(ij)
e1e2 depend only upon the Euler angles and that for

constant pre-factors it does not matter whether we study the population transfer from |e1〉 to |e2〉 or vice versa:
C

(ij)
ekel = C

(ij)
elek . However, this is not the case for the phase factors: φ(ij)

e1e2 = −φ(ij)
e2e1 , which leads to a phase delay

in the oscillatory part of the dynamics, making the transfer non-reciprocal even though the time reversal symmetry
is preserved (see Fig. 2, c) ).

III. CONCLUSION

In this work we study the dynamics of a V-type quantum emitter with two excited states being initially excited.
We show the possibility to achieve a strong coupling between the excited states via electromagnetic modes of
a nanostructe, which in our case was an anisotropic metasurface. We also demonstrate that in the case, when
quantization has an arbitrary orientation then it is possible to observe a non-reciprocity, which manifests itself in a
phase delay in the oscillating part of the dynamics.
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[6] H. T. Dung, and L. Knöll, and D.-G. Welsch, ”Resonant dipole-dipole interaction in the presence of dispersing and
absorbing surroundings”, Phys Rev A, vol. 66, p. 063810, (2002).

[7] A. Lakhtakia, ”Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane”,
International Journal of Infrared and Millimeter Waves, vol. 13, p. 161-170, (Feb. 1992).

230

219



Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Temporal dynamics of a quantum emitter with multiple excited states in
the vicinity of an anisotropic metasurface
To cite this article: D. F. Kornovan et al 2018 J. Phys.: Conf. Ser. 1092 012063

 

View the article online for updates and enhancements.

This content was downloaded from IP address 83.102.217.201 on 14/09/2020 at 11:26

220



1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

METANANO 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1092 (2018) 012063  doi :10.1088/1742-6596/1092/1/012063

Temporal dynamics of a quantum emitter with

multiple excited states in the vicinity of an

anisotropic metasurface

D. F. Kornovan1, I. D. Toftul1, A. V. Chebykin1, M. I. Petrov1,2, and
I. V. Iorsh1

1 ITMO University , Nanophotonics and Metamaterials Department, Birjevaja line V.O., 14,
199034, St. Petersburg, Russian Federation
2 University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland

E-mail: d.kornovan@metalab.ifmo.ru

Abstract. In this work we focus on studying the temporal dynamics of a quantum emitter
with few (3) excited states, which allows to observe an interplay between different spontaneous
emission channels. We show that if the quantization axis is being rotated with respect to the
normal of a metasurface it is possible to observe a difference in the transfer dynamics from one
state to another and vice versa.

1. Introduction
The topic of anisotropic vacuum has been attracting a lot of attention since the first time it
was discussed in [1] by G. Agarwal. The author proposed an idea that one can exploit the
interference between different emission channels of a quantum emitter due to the anisotropy of
the surrounding. An interesting manifestation of this effect is that it is possible to suppress
the total emission rate due to destructive interference between the decay channels, which was
studied in [2]. In this paper we want to study further the topic of coupling the orthogonal
transitions of a single quantum emitter through the field modes of a metasurface.

2. Theoretical Framework and results
In this work we investigate the time evolution of a four level inverse tripod-type atom with a
single ground state |g〉 and three excited states |e−1〉, |e0〉 , |e+〉 with the corresponding transition
dipole moments d−1, d0, and d+1 as shown in Fig. 1, (a). These three dipole moment vectors
form an orthonormal set in R3, which leads to the fact that the three corresponding excited states
are decoupled in the isotropic environment. However, they might interact with each other via
the modes supported by a photonic or plasmonic structure. From this perspective a metasurface
presents an interesting system to consider, since it can be anisotropic in the interface plane. The
optical properties of it can be characterized by the tensor of the effective surface conductivity
σ, which can be chosen to be diagonal in some coordinate system. To describe the optical
properties of a metasurface we use the effective conductivity described by [3]:
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Figure 1. a) Schematic picture of the system: an atom with 3 excited states in the vicinity
of an anisotropic metasurface. The dotted arrows represent the lab coordinate system, the blue
solid arrows - the rotated on 2 Euler angles. b) Excitation transfer from e1 to e2 and vice versa
along with the initially excited state population. The parameters are: Axx = Ayy = 1, Ωxx = 1,
Ωyy = 3, γxx = γyy = 0.01, k0 = 0.65Ωxx/c, the rotation angles were α = β = π/4, γ = 0.
The substrate was considered as an infinite dielectric half-space with ε2 = 4. The atom-surface
distance is ∆z = 0.05 c/Ωxx.

σ =

(
σxx 0
0 σyy

)
, σjj = Ajj

ic

4π

ω

ω2 − Ω2
jj + iγjjω

, (1)

where Ajj is the normalization constant, Ωjj is the resonance frequency, γjj is the bandwidth
of the corresponding resonance.

In order to solve for temporal dynamics of the emitter’s states we employ the approach of
the resolvent operator [4, 5], when it is possible to find the matrix elements of the evolution

operator Û(t, 0) using:

〈ef |Û(t, 0)|ei〉 =

∫

C

dz

2πi
e−izt/~〈ef |Ĝ(z)|ei〉, (2)

where Ĝ(z) = (z− Ĥ)−1 is the resolvent operator of the full Hamiltonian Ĥ. Using this relation
we can find probabilities for the atom to be in the excited state |ef 〉 at time t given that it was
in the state |ei〉 initially by simply finding Pef (t) = |Uef ei(t, 0)|2.

We should note that here we work in the single excitation domain since we are studying the
excited states evolution of a single atom. In this single excitation subspace of a Hilbert space
the resolvent can be found to be:

〈ef |Ĝ(z)|ei〉 = 〈ef |
[
z − Ĥ0 − Σ̂(z)

]−1
|ei〉 ≈

[
(z − ~ω0) δef ei + 4πk2

0d
∗
ef
G(r0, r0, ω0)dei

]−1
, (3)

here Ĥ0 is the unperturbed Hamiltonian and Σ(z) is the level shift operator, δij is the Kronecker
delta. The level-shift operator in the latter expression is written within two approximations:
near-resonant interaction of the states (z = ~ω0) and taking into account only proccesses
of the second order [6], leading to a form of a classical dipole-dipole coupling constants:
Σef ei = −4πk2

0d
∗
ef
G(r0, r0, ω0)dei . Therefore, in order to describe the interaction of the emitter

with the electromagnetic modes of the field we only need to construct the Green’s function of a
metasurface, which can be done by following the procedure outlined in [7].
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Now we want to rotate the transition dipole moments dq with respect to the original
coordinate system, in which σ tensor is diagonal. The rotation of dipole moments will alter
the way excited states couple with each other, therefore, altering the time dynamics. Formally
this can be done by first considering the level-shift operator matrix in the Cartesian coordinate
system ΣCart(~ω0), which expresses the couplings of linear dipoles dj , j = x, y, z. Then we can
use the transformation matrix S, which transforms the Σ from the Cartesian coordinate system
into the spherical tensor basis dq, q = +1, 0,−1. Finally, we can simply rotate the spherical
tensors written in Cartesian coordinates with rotation matrix M(α, β, γ) (active representation,
right-hand rule, z′′ − y′ − z convention), where α, β, γ are the Euler angles:

Σ′Sph = T−1(α, β, γ)ΣCartT (α, β, γ),

T (α, β, γ) = M(α, β, γ)S. (4)

After performing this, we can express the evolution operator matrix elements (2) through the
matrix elements of T (α, β, γ), and the diagonal entries of ΣCart as:

Ukl(t, 0) =
3∑

j=1

T ∗j,kTj,le
−iΣjjt/~ =

3∑

j=1

C
(kl)
j e−iΣjjt/~, (5)

Note that for ΣCart index j labels the Cartesian coordinates as 1 − x, 2 − y, 3 − z, and for the
case of spherical basis - 1− (−1), 2− (0), 3− (+1).

Let us focus on the case, when we study how excitation is transferred between the two excited
states: |e+1〉 → |e−1〉 and the inverse process |e−1〉 → |e+1〉. For them we can write explicitly
the corresponding coefficients before the exponents:

C
(13)
1 = −e

2iγ

2
(cos(α)cos(β)− isin(α))2 ,

C
(13)
2 =

e2iγ

2
(cos(α)− icos(β)sin(α))2 ,

C
(13)
3 = −e

2iγ

2
sin2(β), (6)

and for the inverse process we have C
(31)
j = (C

(13)
j )∗. One can notice from (6) that the Euler

angle γ enters as an overall phase factor, therefore, the probabilities given by |Ukl(t, 0)|2 are
independent of it. This is natural since γ represents the rotation around the new quantization
axis e′z and such a rotation should not change the behavior of the system. It is also important

to note that in a general situation, for arbitrary α and β, the coefficients C
(ij)
k are complex. It

means that when finding the probabilities |Ukl(t, 0)|2, the e−iΣjjt/~ terms will interfere in such
a way that the oscillating parts of the dynamics for |e+1〉 → |e−1〉 and |e−1〉 → |e+1〉 will have
different initial phases as can be seen in Fig. 1, (b). Indeed,

Pe−1e+1(t) =
∑

j

ξ(jj)
e−1e+1

e−γjjt +
∑

i<j

2ξ(ij)
e−1e+1

cos
(

[∆ii −∆jj ] t− φ(ij)
e−1e+1

)
e−(γii+γjj)t/2, (7)

where ∆ii = Re[Σii], γii = −2Im[Σii], ξ
(ij)
e−1e+1 are some real-valued constants, φ

(ij)
e−1e+1 are the

initial phases of oscillations. Notice that both ξ
(ij)
e−1e+1 and φ

(ij)
e−1e+1 depend only upon the Euler
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angles and have the following properties: ξ
(ij)
e−1e+1 = ξ

(ij)
e+1e−1 , but φ

(ij)
e−1e+1 = −φ(ij)

e+1e−1 . The latter
leads to a phaseshift in the oscillatory dynamics for the probabilities of the two processes under
study. Also notice from (7) that in order to observe this effect the anisotropy of the structure is
needed as if ∆ii = ∆jj , then the contributions from the phaseshifts can be simply absorbed in

the definition of the constant ξ
(ij)
e1e3 and there will be no difference in the dynamics.

3. Conclusion
In our work we studied the dynamical behavior of an inverse-tripod type quantum emitter
with three excited states interacting though the modes of an anisotropic metasurface. We
demonstrated that if the quantization axis has an arbitrary orientation then it is possible to
observe a non-reciprocity, which manifests itself in a phase delay in the oscillating part of the
dynamics arising from the anisotropic properties of the structure.
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Transport and collective radiance in a basic quantum chiral optical model
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In our work, we theoretically study the dynamics of a single excitation in a one-dimensional array of two-level
systems, which are chirally coupled through a single mode waveguide. The chirality is achieved owing to a strong
optical spin-locking effect, which in an ideal case gives perfect unidirectional excitation transport. We obtain
a simple analytical solution for a single excitation dynamics in the Markovian limit, which directly shows the
tolerance of the system with respect to the fluctuations of emitters position. We also show that the Dicke state,
which is well known to be superradiant, has twice lower emission rate in the case of unidirectional quantum
interaction. Our model is supported and verified with the numerical computations of quantum emitters coupled
via surface plasmon modes in a metallic nanowire. The obtained results are based on a very general model and can
be applied to any chirally coupled system that gives a new outlook on quantum transport in chiral nanophotonics.

DOI: 10.1103/PhysRevB.96.115162

I. INTRODUCTION

The recently emerged field of chiral quantum optics [1]
promises new prospectives for manipulation and control of
quantum states of matter. The chiral coupling of quantum
sources with photonic excitations can be implemented, for
example, through the interaction with topological edge states
[2,3]. However, one of the most simple routes for chiral cou-
pling is employment of transverse spin angular momentum of
light (SAM), which has recently attracted significant research
interest [4,5]. In the simplest setup of an electromagnetic
surface or a waveguide mode, the nonzero optical SAM density
emerges due to the π/2 phase shift between the electric field
projections onto the interface plane and to its normal [4].
An important feature of the electromagnetic waves carrying
transverse SAM is the spin-momentum locking: the spin
projection is defined by the propagation direction of the wave
[6,7]. This effect, which can be regarded as spin-orbit coupling,
has been studied both theoretically and experimentally in many
applications related to nano-optomechanics [8–10], topo-
logical photonics with surface waves [11], electromagnetic
routing [12], and electromagnetically assisted unidirectional
spin transfer [13] and others. Moreover, the spin-orbit coupling
in quasi-one-dimensional photonic structures can be used
to engineer a new class of quantum information networks
[14–16]. The basic model under consideration is a one-
dimensional array of two-level systems (TLS) coupled to a
quasi-one-dimensional photonic nanostructure (see Fig. 1).
The current technology allows for measuring light scattering
on such one-dimensional TLS arrays consisting of thousands
of cooled atoms trapped near an optical nanofiber [17].
Moreover, in Refs. [18,19] it was shown that the chiral coupling
of an atom with nanofiber mode leads to strong modification
of Bragg reflection spectrum as well as the modification of
the collective emission of two atoms near the nanofiber was
demostrated theoretically [20].

In this prospective the inherent spin-orbit coupling of
light in conjunction with the chiral light-matter coupling
(which can be achieved to be, e.g., transverse magnetic

*newparadigm.dk@gmail.com

field) can allow deterministic transfer of the initial quantum
state of the TLS unidirectionally along the channel. Such an
approach allows for the engineering of the large scale cascaded
quantum networks [21], which are immensely in demand in
quantum information processing. Despite the importance of
this field, the dynamical picture of the excitation transport in a
unidirectionally coupled system has not been studied before.

In this work we focus on the spatiotemporal dynamics of
the excited state in such a chiral chain. We adopt the formalism
of the Green’s function which was proven to be a powerful tool
for the studies of quantum dynamics in open systems [22]. We
reveal that under certain approximation the problem of finding
the excited states probability amplitude dynamics allows an
elegant yet simple analytical solution which agrees well with
the rigorous numerical calculations.

II. SINGLE MODE COUPLING

We begin by considering an ensemble consisting of N

two-level systems (TLS) forming a one-dimensional linear
chain placed parallel to a surface of a photonic/plasmonic
nanostructure supporting a single fundamental guided mode.
Assuming that coupling is mediated by the guided mode only
in the strong spin-locking regime, we formulate the equations
descibing the dynamics of the system [23]:

Ċn(t) = −i�Cn(t) +
n−1∑
m=1

GnmCn(t), (1)

where Cn(t) is the complex probability amplitude of the
n-th TLS to be excited at time t , the diagonal parameter
� = �L + iγtot/2 contains �L which is the Lamb shift and
γtot which is the total spontaneous emission rate consisting of
two contributions: emission into radiation and guided modes
(γtot = γr + γg). The single mode coupling coefficients Gnm

between the TLSs with numbers m and n can be written
as Gnm = − γg

2 eiφnm , where γg/2 is the coupling strength,
φnm = kg(zn − zm) is the phase acquired by the photon due
to the propagation from emitter m to emitter n, and kg is
the corresponding propagation constant of the guided mode.
We assume strong spin-locking regime, which leads to a
unidirectional coupling, i.e., Gnm �= 0 only for n > m. The

2469-9950/2017/96(11)/115162(9) 115162-1 ©2017 American Physical Society
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FIG. 1. Schematic image of the periodic chain of two level
systems on top of a waveguide. Initially, only one two level system is
excited. The excitation can be transferred either by symmetric short
range dipole-dipole or radiative coupling, or by asymmetric long-
range coupling via the waveguide mode. The transverse magnetic
field B breaks the symmetry of coupling of the two-level system to
left- and right-propagating waveguide mode.

system of equations (1) can be formulated in the matrix
form Ċ(t) = M̂C(t), with M̂ being a lower triangular matrix,
which means that the problem is already diagonalized and,
moreover, it is degenerate. All quantum oscillators have equal
transition frequencies and lifetimes and, therefore, the system
has only one eigenstate in which the last atom is excited.
For this state the corresponding eigenfrequency is complex
and a single excitation is not transferred between the atoms;
it can only decay to the field modes due to the spontaneous
emission process, which is significantly different from the case
of symmetric coupling [24,25].

We focus on the problem of the excitation transport through
the TLS chain, and for that we consider the initial condition
in which the first atom is excited, while all the rest are in
the ground state: C1(0) = 1, Cn(0) = 0,n � 2. Exploiting the
triangular form of the matrix M̂ and the given form of the initial
condition, one can build an exact solution of the problem,
which in its compact form can be written as (see Appendix A
for the details)

C1
n(t) = e−i�t+iφn1L

(−1)
n−1 (γgt/2), (2)

where C1
n(t) is the probability amplitude of the n-th emitter

to be excited at time t and superscript 1 means that this
solution holds only for the case when the first emitter is excited
initially; L(α)

n (x) are the generalized Laguerre polynomials
of degree n,α. This simple solution gives all the insights
on the one-directional transport in quantum chains, which
we would like to briefly discuss here. First, as expected, in
the case of lossless guided mode the excitation dynamics is
irrelevant of the spatial distribution of the emitters along the
z coordinate as |eiφmn | = 1. This makes this system tolerant
with respect to positional fluctuations, which is a consequence
of the perfect one-way transport: the phase of the excitation
transported between two emitters, the 1st and n-th always
sums up giving the total phase kg(zn − z1). However, this
irrelevance of the distribution of the quantum emitters on the
final result is also due to the enforced initial condition that
only a single (the first) emitter is excited. If we impose a
very general initial condition C(t = 0) = (c1; c2; c3; . . . ; cN ),
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FIG. 2. Probabilities for different emitters to be excited at
particular time moments Pn(t) for a chain of N = 5 emitters; time is
measured in the units of γ0t , where γ0 is the free-space spontaneous
emission rate for a single emitter. The solid and dashed lines are for the
numerical and analytical results, correspondingly. For the numerical
case the probabilities were averaged over 20 distributions of emitters
around their regular positions and the distribution is uniform. The
regular separation �z = 2.0λ0, where λ0 is the resonant wavelength
of the transition, and the maximal deviation from regular positions
a = λSPP/2. The parameters for the numerical case: nanowire radius
is ρc = 0.05λ0, ε ≈ −16.00 + 0.44i, and �ρ = ρc.

which corresponds to the case when a single excitation is
distributed among different atoms meaning that

∑N
i=1 |ci |2 =

1, the answer will depend on the atomic positions. Secondly,
the time evolution of the n-th atom excitation probability
P 1

n (t) = |C1
n(t)|2 has trivial exponentially decaying factor

e−γtott , where γtot = Im �, and the stationary solution in such
system is zero. Finally, the nontrivial temporal dynamics of
the n-th emiter’s excitation depends on the amplitude of the
coupling constant γg through the corresponding Laguerre
polynomial. According to Laguerre’s polynomial properties
[26] the number of local excitation maxima for a particular
emitter n equals the number of emitters positioned before it.
This dynamics is shown in Fig. 2 (solid lines) for a chain
consisting of N = 5 emitters.

III. METALLIC NANOWIRE

The analytical model we have proposed is based on the
interaction of TLSs via arbitrary guided mode. To support
these results we consider the interaction of dipole emitters
through the plasmonic modes of a nanowire. We adopt
the exact solution of this problem in terms of the Green’s
function approach. We are interested in the probabilities of
excitation being transferred from the first emitter of a chain
to the n-th Pn1 = |〈en|Û (t,0)|e1〉|2 as before. Here Û (t,0)
is the evolution operator for our system and |en〉 are the
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states, where only the n-th emitter is excited initially, while
all the rest are in the ground state. We can rewrite the matrix
elements of the evolution operator according to [27]:

〈en|Û (t,0)|e1〉 =
∫

C

dp

2πi
e−ipt/h̄〈en|Ĝ(p)|e1〉, (3)

where Ĝ(p) = (p − Ĥ )−1 is the resolvent operator of the
Hamiltonian Ĥ and the contour C here is traversed in the
counterclockwise direction and encloses all complex poles of
the resolvent (since we consider a subspace containing only
discrete states). The total Hamiltonian Ĥ can be expanded in
a sum of unperturbed part Ĥ0 and the interaction term V̂ such
that Ĥ = Ĥ0 + V̂ :

Ĥ0 =
∑

n

h̄ω0σ̂
+
n σ̂−

n +
∫

dr
∫ ∞

0
dω h̄ω f̂†(r,ω)f̂(r,ω), (4)

V̂ = −
∑

n

d̂nÊ(rn), (5)

where ω0 is the atomic transition frequency and σ̂+
n = |en〉〈gn|

and σ̂−
n = |gn〉〈en| are raising and lowering atomic operators.

Here the interaction part of the Hamiltonian V̂ is considered
in the dipole approximation, where Ê(rn) = Ê+(rn) + Ê−(rn)
is the total electric field and d̂n is the transition dipole moment
operator of the n-th atom. We employ the Green’s function
approach proposed in Ref. [28] in order to quantize the radi-
ation field in the case of absorptive and dispersive media. The
electromagnetic field operator in this case reads as Ê+(r) =
i
√

4h̄
∫

dr′ ∫ ∞
0 dω′ ω′2

c2

√
Im(ε(r′,ω′))G(r,r′,ω′)f̂(r′,ω′), where

the bosonic field operators obey the commutation relation
[f̂i(r′,ω′),f̂ †

k (r,ω)] = δikδ(r′ − r)δ(ω′ − ω); G(r,r′,ω′) is the
classical electromagnetic Green’s function. The local field
operators define the photon energy part in the unperturbed
Hamiltonian in Eq. (4).

We then find the projections of the resolvent operator on
states with a single atomic excitation which are given by [27]

P̂ Ĝ(p)P̂ = P̂
1

p − Ĥ0 − �̂(p)
P̂ , (6)

�̂(p) = V̂ + V̂ Ĝ(p)V̂ ≈ V̂ + V̂ Ĝ0(p = h̄ω0)V̂ , (7)

where P̂ = ∑N
j=1 |ej 〉〈ej | is the projection operator onto the

corresponding subspace and �̂(p) is the level-shift operator
[27], also known as self-energy part, which provides us with
the correction to the unperturbed Hamiltonian Ĥ0 due to the
interaction between the quantum emitters.

By inverting the operator standing in the denominator
of Eq. (6) one can obtain the projection of the resolvent
operator and, consequently, build the dynamics of the system
according to Eq. (3). We impose two approximations in
Eq. (7): (i) we limit ourselves in the calculation of the
self-energy only up to the second order in V̂ ; (ii) we consider
a near-resonant interaction between TLS computing Ĝ at the
resonant frequency p = h̄ω0. Within these approximations
the matrix elements 〈ek|�̂(p)|el〉 = �kl(p) show the coupling
strength of two emitters with numbers k and l. It is defined by
the electromagnetic Green’s function of the system [29] and
reads as �kl(ω0) = −4πk2

0d∗
kG(rk,rl ,ω0)dl , where k0 = ω0/c

and dk is the transition dipole moment. By taking the exact
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FIG. 3. Absolute values of the coupling strength �
(wire)
kl (h̄ω0)

through the nanowire modes for two atoms spaced by �z and
placed at a distance �ρ from the surface of the metallic nanowire
measured in h̄γ0. The quantization axis is chosen to be ey, therefore,
eσ+ = −(iex + ez)/

√
2, eσ− = −e∗

σ+ . The parameters ρc, �ρ, and ε

are the same as for Fig. 2.

Green’s function of a metallic nanowire (see Appendix B),
we have studied the interaction strength between two emitters
mediated by the propagating surface plasmon-polariton modes
(SPP). One can expand the Green’s function G = G0 + Gs
into a sum of vacuum part G0 and scattered part Gs,
which includes the interaction through the structure. This
allows for introducing the parameter of coupling strength
through the nanowire �

(wire)
kl (ω0) = −4πk2

0d∗
kGs(rk,rl ,ω0)dl .

By introducing an external magnetic field along y axis one
can achieve efficient coupling of the emitters with circular
transitions only with dipole moment dσ+ = −d0(iex + ez)/

√
2

or dσ− = d0(−iex + ez)/
√

2. Due to the spin-locking two
σ+ atoms are coupled well through the SPP mode for
positive distance between them �z, while two σ− atoms
have much weaker coupling Fig. 3. For negative values of
�z the picture will be opposite. The considered nanowire
has ε(ω0) ≈ −16 + 0.44i, which corresponds to the silver
permittivity at λ0 = 2π c

ω0
= 600 nm [30], the nanowire radius

ρc = 0.05λ0 ≈ 30 nm, and the distance from the fiber surface
is �ρ = ρc. As the distance between the TLS increases,
the interaction through the guided mode of the wire plays
the dominant role. Any visible oscillations occur due to
the interference between the fundamental guided mode and
higher-order radiation modes. As can be seen clearly in Fig. 3,
for such a thin fiber, supporting only one fundamental guided
mode with radial eigenvalue n = 0, the interaction strength
is very different for the transition dipole moments rotating in
the opposite directions (σ+ and σ−). The perfect spin-orbit
coupling requires exact circular polarization of the SPP mode,
which can be achieved at the resonance [31], when Re(ε) = −1
and the z component of the wave vector goes to infinity.
Though the TLS transition frequency is far from the SPP
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resonance, the asymmetry of the coupling strength is of the
order of 10 as shown in Fig. 3. Thus the interaction is not
perfectly unidirectional and there is a finite probability for the
excitation to propagate backwards. The property of a complete
independence of the dynamics upon the distribution of emitters
along z does not hold in this case. But due to the strong
asymmetry, it can be still quite robust to positional disorder.
In order to take it into account for the numerical calculation
we perform averaging over 20 distributions of emitters along z

near their regular positions (regular separation between the
neighboring emitters �z). The distribution is taken to be
uniform and the maximal deviation from the regular positions
into a given direction is λp/2 (λp is the plasmon wavelength),
allowing for a full phase randomization due to the plasmon
propagation between emitters. This allows us to apply the
unidirectional model and compare this to the solution of the
numerical one; the latter is shown in Fig. 2 (solid lines).
We get almost perfect correspondence between our simplified
model (dashed line) and the obtained numerical solution (solid
line), which confirms that all the unique properties of the
unidirectional transport formulated before can be observed
in realistic structures.

We also plot the excitation probability versus both time
t and emitter number N . One can observe that there are
excitation waves propagating in the chain, which can be
indicated by tracking the positions of zeros in dynamics; the
fronts of these waves can be described with the help of an
asymptotic relation connecting the Laguerre polynomials and
the Bessel functions for large n and fixed time t : L(α)

N (γgt/2) ≈
Nα/2e

γg t

4
Jα(2

√
Nγgt/2)

(γgt/2)α/2 , and zeros of this function were plotted
for the case of continuous N in Fig. 4 with blue lines.
Defining the argument of the Bessel function as a phase of
the probability oscillation, one can think of negative phase

FIG. 4. Distribution of excitation between different emitter n in a
chain of total N = 15 emitters. In a computational model parameters
�z, �ρ, ρc, and ε are the same as for Fig. 2. Yellow circles correspond
to exact positions of zeros in dynamics for each emitter for the case
of a perfect unidirectionality, while the dark blue lines are zeros of
J1(2

√
Nγgt/2). The inset figure shows analytical results calculated

with Eq. (2).

velocity as for a larger emitter number N zeros appear at
earlier time moments.

IV. COLLECTIVE EMISSION

In the previous chapters we have considered the redistri-
bution of a single excitation initially localized at the first
atom in the chain. However, the physical mechanisms lying
beyond the emission of specially prepared states attracts much
interest. One of the common cases is the Dicke state having
superradiant property. The collective emission of excitation
in the case of unidirectional coupling can significantly differ
from symmetrical coupling.

For such a collective state in the absence of retardation the
dynamics can be found as

C(t) = Cfinal
†U(t)Cinit, (8)

with Uk,l(t) = e−i�tL
(−1)
k−l (γgt/2)eiφk,l being a lower triangular

matrix, this matrix represents probability amplitudes for kth
atom to be excited at time t , while initially at t = 0 only the
lth atom was excited, and it has a form similar to (2); Cinit

and Cfinal are the column vectors for the final and initial states
of the system, correspondingly. Since we are interested in the
decay of a particular initial state we set Cfinal,l = Cinit,l = eiψl√

N
.

We proceed by considering that atoms in our chain are spaced
regularly φk,l = (k − l)φ and that ψl = (l − 1)ψ . Here both φ

and ψ are purely real and denote the phase acquired by the
SPP mode propagating between the neighboring atoms and
the phase difference in probability amplitudes between them
in the initial state. In this case it can be found that C(t) =
e−i�t

N

∑N
k=1(N − (k − 1))ei(k−1)ξL

(−1)
k−1 (γgt/2) with ξ = φ − ψ

(a more general solution one can find in Appendix C). Next,
we consider sufficiently small times and expand C(t) to the

-3 -2 -1 0 1 2 3
Phase parameter ξ

2

4

6

Γ
(0

) /γ
g

(a)

0 0.5 1 1.5 2 2.5 3
Normalized time, tγ

g

0

0.5

1

P
(t

)

(b)
exp(-Γ(0)t), ξ=π
Exact, ξ=π
exp(-Γ(0)t), ξ=0
Exact, ξ=0

FIG. 5. (a) Dependence of the initial spontaneous emission rate
�(0) on phase difference parameter ξ for a chain of N = 10 atoms,
when γg = γr . (b) Dynamics for the case of out of phase (blue)
and in phase (purple) neighboring emitters. Solid lines represent the
exact solution and dashed exponential with �(0) given by (9). The
parameters are the same as for (a).
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first order in t finally obtaining

C(t → 0) ∼ 1 −
[
i� + γg

2

eiξ (N + eiNξ − Neiξ − 1)

N (eiξ − 1)2

]
t

∼ 1 − �(0)

2
t, (9)

where �(0) is the initial spontaneous emission rate being a real
part of the expression in square brackets. Its dependence upon
ξ is illustrated in Fig. 5(a).

It is reasonable to proceed by considering the two cases
corresponding to the situations when the neighboring atoms
are emitting photons in and out of phase:

�(0)

2
=

{−i� − γg

2
(N−1)

2 , if ξ = 2πm,

−i� + γg

2
(2N−1+eiNπ )

4N
, if ξ = π (2m + 1).

(10)

Notice that for even N in the second case the coefficient �(0)

reaches its absolute minimum. In the limit of strong coupling
with the guided mode γg � γr and large emitter number N �1
for the ξ = 2πm case �(0) = Nγg/2 unlike the Nγg factor
known for the emission of the symmetric Dicke superradiant
state [32]. For the out-of-phase case when ξ = 2π (m + 1)
the initial decay rate is �(0) = γg/2. The dynamics for both
situations are illustrated in Fig. 5(b).

V. CONCLUSION

Concluding, we have proposed a simple analytical model of
the unidirectional quantum transport mediated by spin-locked
coupling to an arbitrary waveguide mode. We have obtained
the exact analytical solution, showing that the dynamics of the
TLS is described by the Laguerre polynomials. The behavior
of the chiral TLS system is fully defined by the amplitude of
the coupling coefficient of a single emitter with the waveguide
mode. From the obtained solution it immediately follows that
the unidirectional system possesses the tolerance with respect
to the positional disorder. Our model also predicts that, for
systems with perfectly asymmetric coupling, the symmetric
Dicke superradiant state in a special case of phase-matched
positions of the emitters has the emission rate equal to Nγg/2,
contrary to a value Nγg typical for systems with symmetrical
interaction. In order to verify our model of the excitation
quantum transport, we have performed the simulation through
SPP mode of a metallic nanowire, constructing the evolution
operator, based on the exact electromagnetic Green’s function
of the system. The simulations have shown a good agreement
with the proposed analytical model, which allows its applica-
tion for describing any chiral quantum system unidirectionally
coupled to a waveguide mode.
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APPENDIX A: SOLUTION FOR THE UNIDIRECTIONAL
TRANSPORT PROBLEM

In order to study the transfer of an excitation in a chain of
coupled two-level systems we can formulate our problem (1)
in the main text in the matrix form Ċ(t) = M̂C(t), where M̂ is
given by

M̂ =

⎛
⎜⎝

−i� 0 · · · 0
geiφ21 −i� · · · 0
· · · · · · · · · · · ·

geiφN1 geiφN2 · · · −i�

⎞
⎟⎠. (A1)

One of the possible ways to solve this system of equations is to
find the matrix exponent of M̂ using the Jordan decomposition.
Our problem, as can be seen from (A1), is diagonalized and
degenerate, meaning that it has only one eigenvector, which is
due to all diagonal elements being the same. Since our matrix
has N dimensions and only a single eigenvalue −i� of the
N -th order, the solution is of the form

C(t) = e−i�t (C0 + C1t + C2t
2 + · · · + CN−1t

N−1)

= e−i�t

N−1∑
j=0

Cjt
j , (A2)

where Cj are the column vectors. Substituting it in the equation
we can find that

(M̂ − Î(−i�))Cj = (j + 1)Cj+1,Cj = (M̂ − Î(−i�))j

j !
C0,

C(t) = e−i�t

N−1∑
j=0

1

j !
(M̂ + i�Î)j t j C0. (A3)

Here Î is the identity matrix; C0 is the vector of the initial
condition. Since our two-level system is one-way coupled, the
addition of TLSs to the system does not affect the dynamics of
all the previous oscillators in the chain, and we can set N →
∞ and obtain a formal solution C(t) = e−i�t e(M̂+i�Î)tC0. We
need then to find the exponent of the following matrix:

B̂ = M̂ + i�Î

=

⎛
⎜⎜⎜⎝

0 0 0 · · · 0
gteiφ2,1 0 0 · · · 0
gteiφ3,1 gteiφ3,2 0 · · · 0

· · · · · · · · · · · · · · ·
gteiφN,1 gteiφN,2 gteiφN,3 · · · 0

⎞
⎟⎟⎟⎠. (A4)

This matrix has only one eigenvalue λ = 0 and the Jordan
normal form of this matrix is equal to

ĴM̂ =

⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 0

⎞
⎟⎟⎟⎠. (A5)

As can be seen from the form of matrix ĴM̂, we need to
construct the full Jordan basis as soon as there is only
one eigenvector for this matrix: v1 = (0,0, . . . ,1). The rest
of the vectors needed to construct the full Jordan basis
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can be found by consistently solving B̂fj = fj−1, where fj are the generalized eigenvectors and f0 = v1 is a regular eigenvector.
Solving for this, we can find transformation matrix Ŝ:

Ŝ =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . (−1)N+i+j+1C0
N−2e

−iφN,1

0 0 0 . . . (−1)N+i+j+1C1
N−2e

−iφN,2

. . . . . . . . . . . . . . .

0 e−iφN,N−1 −e−iφN,N−1 . . . (−1)N+i+j+1CN−2
N−2e−iφN,N−1

1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠,

Ŝ−1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 1
C0

N−2e
iφN,1 C0

N−3e
iφN,2 C0

N−4e
iφN,1 . . . 0

. . . . . . . . . . . . . . .

CN−2
N−2eiφN,1 CN−3

N−3eiφN,2 0 . . . 0

CN−2
N−2eiφN,1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠, egt Ĵ =

⎛
⎜⎜⎜⎜⎜⎝

1 gt
(gt)2

2! . . .
(gt)N−1

(N−1)!

0 1 gt . . .
(gt)N−2

(N−2)!
. . . . . . . . . . . . . . .

0 0 0 . . . gt

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠, (A6)

where Ck
n are the binomial coefficients. By substituting

into C(t) = e−i�t Ŝegt ĴM̂ Ŝ−1C0, it can be found that C1
N (t) =

e−i�t eiφN,1

(N−1)!

∑N−1
j=0 L(N − 1,j )(−γgt/2), where g = −γg/2 and

L(n,k) are so-called Lah numbers [33] known in combina-
torics. For Lah numbers there is a relation which interconnects
them with the generalized Laguerre polynomials of order
minus one according to L

(−1)
N (x) = 1

N!

∑N
j=0 L(N,j )(−x)j .

By making use of this relation we can write the final answer
in a simple and compact form

C1
N (t) = e−i�t+iφN,1L

(−1)
N−1(γgt/2). (A7)

The correctness of the obtained result can be easily checked by
substituting this solution into the equation for the (N + 1)th
emitter in the chain C1

N+1(t) and making use of the relation∫ x

0 L
(α)
N (x)dx = L

(α−1)
N+1 (0) − L

(α−1)
N+1 (x).

APPENDIX B: GREEN’S TENSOR

In order to obtain the �mn matrix elements we need to
construct the Green’s tensor of the system, which can be found
from[

−ω2

c2
ε(r,ω) + ∇ × ∇×

]
G(r,r′,ω) = Iδ(r − r′), (B1)

where ε(r,ω) is the complex dielectric function and I is the
unit dyad. In our case we consider a dielectric cylindrical
waveguide of radius ρc and dielectric permittivity ε being
constant inside the cylinder. To find the solution we apply
the scattering superposition method [34,35], which allows
us to expand the Green’s tensor into the homogeneous and
inhomogeneous terms:

G(r,r′,ω) = G0(r,r′,ω) + Gs(r,r′,ω). (B2)

As soon as we consider atomic dipoles in the vicinity of the
waveguide, so that r,r′ are outside the cylinder, the homoge-
neous term is always present and describes the field generated
directly by the source placed at the point r′ at the field point r.
This term can be obtained analytically from the Green tensor
written in Cartesian coordinates using the transformation from
Cartesian to cylindrical coordinates S(φ)GCart

0 (r,r′,ω)ST (φ),

where GCart
0 has an analytic expression [36] and is given by

GCart
0 (r,r′,ω) =

(
I + 1

k2
∇ ⊗ ∇

)
G0(r,r′,ω). (B3)

Here G0(r,r′,ω) is the Green’s function of the scalar Helmholtz
equation.

The scattering term can be calculated via the integral
representation of the homogeneous part. To obtain this
representation we apply the method of VWF explained in
details in Refs. [34,35]; here we cover only the basic ideas and
provide the final expressions. To find the solution of the vector
Helmholtz equation (B1) we introduce the scalar Helmholtz
equation and the solution of this equation in the cylindrical
coordinates:

∇2φ(k,r) + k2φ(k,r) = 0,
(B4)

φn(kz,r) = Jn(kρρ)einθ+ikzz.

Here Jn(x) is the Bessel function of the first kind, r = (ρ,θ,z)
are the cylindrical coordinates, and kρ , kz are the projections
of the wave vector k. The solution of the vector Helmholtz
equation may be written in terms of the following vector wave
functions:

Mn(kz,r) = ∇ × [φn(kz,r)ez],
(B5)

Nn(kz,r) = 1

k
∇ × Mn(kz,r),

where ez is the so-called pilot vector, the unit vector pointing
in the z direction. These WVFs M, N correspond to T E/T M

modes of the field.
One can show [34] that the homogeneous part of the

Green’s function can be expanded in terms of these vector
wave functions in the following way:

G0(r,r′,ω) = −eρeρ

k2
0

δ(r − r′)

+ i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
0ρ

Fn(kz,r,r′) (B6)

and the Fn(kz,r,s) function is given by

M(1)
n (kz,r)Mn(kz,r′) + N(1)

n (kz,r)Nn(kz,r′),

Mn(kz,r)M
(1)
n (kz,r′) + Nn(kz,r)N

(1)
n (kz,r′).

(B7)
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Here the first line holds for ρr > ρr ′ while the second
one for ρr < ρr ′ , and k0 = ω/c, k0ρ =

√
k2

0 − k2
z , and the

superscript (1) in vector wave functions denotes that the Bessel
function of the first kind Jn(kρρ) should be replaced with the
Hankel function of the first kind H (1)

n (kρρ). Here we provide
the explicit form of WVF:

Mn(kz,r) =
⎛
⎝ in

ρ
Jn(k0ρρ)

−k0ρ(Jn(k0ρρ))′
0

⎞
⎠einθ+ikzz,

Nn(kz,r) =

⎛
⎜⎝

ikzk0ρ

k
(Jn(k0ρρ))′

− nkz

ρk
Jn(k0ρρ)

k2
0ρ

k
Jn(k0ρρ)

⎞
⎟⎠einθ+ikzz,

(B8)

Mn(kz,r′) =
⎛
⎝ − in

ρ ′ Jn(k0ρρ
′)

−k0ρ(Jn(k0ρρ
′))′

0

⎞
⎠

T

e−inθ ′−ikzz
′
,

Nn(kz,r′) =

⎛
⎜⎝

− ikzk0ρ

k
(Jn(k0ρρ

′))′

− nkz

ρ ′k Jn(k0ρρ
′)

k2
0ρ

k
Jn(k0ρρ

′)

⎞
⎟⎠

T

e−inθ ′−ikzz
′
,

where Jn(kρρ)′ means derivative with respect to the dimen-
sionless argument.

Now having the integral representation of the homogeneous
term of the Green’s function, we can construct the scattering
term in a similar fashion. Let us denote the medium outside
the dielectric cylinder as 1 and the medium inside as 2. The
particular form of the Green’s tensor depends on the position of
a source point r′: whether it is inside or outside the cylinder. As
soon as we are interested in a situation, when both source and
receiver are outside the cylinder and in the latter we consider
only the second case. Thus the total Green’s tensor can written
as

G11(r,r′,ω) = G11
0 (r,r′,ω) + G11

s (r,r′,ω),

G21(r,r′,ω) = G21
s (r,r′,ω).

(B9)

Here two superscripts denote position of the receiver and the
source point, respectively, and the two scattering parts of the

Green’s tensor have the following form:

G11
s (r,r′,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F11(1)
M;n,1(kz,r)M

(1)
n,1(kz,r′)

+ F11(1)
N;n,1(kz,r)N

(1)
n,1(kz,r′),

F11(1)
M;n,1(kz,r) = R11

MMM(1)
n,1(kz,r) + R11

NMN(1)
n,1(kz,r),

F11(1)
N;n,1(kz,r) = R11

MNM(1)
n,1(kz,r) + R11

NNN(1)
n,1(kz,r).

G21
s (r,r′,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F21
M;n,2(kz,r)M

(1)
n,1(kz,r′)

+ F21
N;n,1(kz,r)N

(1)
n,1(kz,r′),

F21
M;n,2(kz,r) = R21

MMMn,2(kz,r) + R21
NMNn,2(kz,r),

F21
N;n,2(kz,r) = R21

MNMn,2(kz,r) + R21
NNNn,2(kz,r). (B10)

Here the scattering Fresnel coefficients R
ij

AB are introduced and
the second subscript in the VWFs denotes that k and kρ should
be replaced with their values inside the corresponding media
ki = εi(r,ω)k0, kρi =

√
k2
i − k2

z . We should notice that unlike
the case of the homogeneous term, here we have products of
M and N, which are due to the fact that the normal modes in
our case have hybrid nature.

The form of the Fresnel coefficients mentioned above can
be found by imposing the boundary conditions on the Green’s
tensor at the surface of the cylinder,

eρ × [G11(r,r′,ω) − G21(r,r′,ω)]|ρr=ρc
= 0,

eρ × ∇r × [G11(r,r′,ω) − G21(r,r′,ω)]|ρr=ρc
= 0.

(B11)

Solving for this, we can find the Fresnel coefficients R
ij

AB

and, finally, construct the scattering part of the Green’s tensor
Gs(r,r′,ω).

APPENDIX C: COLLECTIVE EMISSION

According to Eq. (6) from the main text, the collective
emission can be studied by considering C|�〉 = C†

initU(t)Cinit:

C|�〉(t) = A2e−i�t

⎛
⎜⎜⎝

e−iψ∗
1

e−iψ∗
2

· · ·
e−iψ∗

N

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

eiφ1,1F0(t) 0 · · · 0
eiφ2,1F1(t) eiφ2,2F0(t) · · · 0

· · · · · · · · · · · ·
eiφN,1FN−1(t) eiφN,2FN−2(t) · · · eiφN,N F0(t)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

eiψ1

eiψ2

· · ·
eiψN

⎞
⎟⎟⎠. (C1)

Here A is defined from the normalization condition. Notice that both φi,j and ψj can be complex. Let φl,k = (l − k)φ
(φ = φ′ + iφ′′) and ψj = (j − 1)ψ (ψ = ψ ′ + iψ ′′). Therefore, the normalization constant can be found to be A−2 =
eψ ′′(1−N)csch(ψ ′′)sinh(Nψ ′′), where csch(x) and sinh(x) are cosecant and sine hyperbolic.

The product can be written as C†BC, where Ck = ei(k−1)ψ , Bl,k = ei(l−k)φFl−k(t)�l,k , C
†
l = e−i(l−1)ψ∗

, where �l,k = 1 for
l � k and zero otherwise.

(BC)l =
l∑

k=1

Bl,kCk =
l∑

k=1

ei(l−k)φFl−k(t)ei(k−1)ψ =
l∑

k=1

Fl−k(t) × eik(ψ−φ)eilφ−iψ ,

N∑
l=1

C
†
l (BC)l =

N∑
l=1

e−i(l−1)ψ∗
l∑

k=1

Fl−k(t)eik(ψ−φ)eilφ−iψ =
N∑

l=1

l∑
k=1

ei(l−k)(φ′−ψ ′)+2ψ ′′−(l+k)ψ ′′−(l−k)φ′′
Fl−k(t).
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Finally, we have

C|�〉(t) = A2
N∑

l=1

l∑
k=1

ei(l−k)(φ′−ψ ′)+2ψ ′′−(l+k)ψ ′′−(l−k)φ′′
Fl−k(t)

= A2
N∑

s=1

ei(s−1)(φ′−ψ ′)−(s−1)φ′′
e2ψ ′′

N−(s−1)∑
j=1

e−(s−1)ψ ′′
e−2jψ ′′

Fs−1(t). (C2)

Here Fs−1(t) = e−i�tL
(−1)
s−1 (γgt/2)�(t − (s − 1)τ ), and we expand e−i�tL

(−1)
s−1 (γgt/2) to the first order in t :

e−i�tL
(−1)
s−1 (γgt/2) =

{
1 − i�t, if s = 1,

−γgt/2, if s > 1.
(C3)

A very general form of the expansion looks cumbersome, however, for a specific case when both ψ and φ are real the answer
has the following form:

C(t → 0) ∼ 1 +
[
−i� − γg

2

eiξ (N + eiNξ − Neiξ − 1)

N (eiξ − 1)2

]
t ∼ 1 − �(0)

2
t, (C4)

where ξ = φ′ − ψ ′ and �(0) = −Re[−i� − γg

2
eiξ (N+eiNξ −Neiξ −1)

N(eiξ −1)2 ] is the modified initial spontaneous emission rate. Following the

main text we proceed by considering the two cases: the neighboring emitters are emitting photons in and out of phase:

�(0)

2
=

{−i� − γg

2
(N−1)

2 , if ξ = 2πm,

−i� + γg

2
(2N−1+eiNπ )

4N
, if ξ = π (2m + 1).

(C5)

In order to have a simple interpretation of these results we can consider our initial state to be a symmetric Dicke superradiant
state |�init〉 = |D〉 = 1√

N

∑N
j=1 |ej 〉|{0}〉 and have a look at two situations: when the propagation phase acquired by the photon

between the neighboring atoms is φ = 2πm or 2π (m + 1) for all j . We can find out a probability amplitude of every k emitter
to be excited at some later time �t ,

〈ek|Û (�t)|�init〉 = 1√
N

⎛
⎜⎝

0
· · ·
1k

· · ·

⎞
⎟⎠

T
⎛
⎜⎜⎝

1 − γtot

2 �t 0 · · · 0

± γg

2 �t 1 − γtot

2 �t · · · 0
· · · · · · · · · · · ·

± γtot

2 �t − γtot

2 �t · · · 1 − γtot

2 �t

⎞
⎟⎟⎠

⎛
⎜⎝

1
1

· · ·
1

⎞
⎟⎠

=
{ 1√

N

(
1 − γtot

2 �t + (1 − k mod 2) γg

2 �t
)
, if φ = π (2m + 1),

1√
N

(
1 − γtot

2 �t − (k − 1) γg

2 �t
)
, if φ = 2πm,

(C6)

where we have replaced −i� with −γtot/2, T stands for
transpose, an upper sign is for φ = π (2m + 1) and a lower
is for φ = 2πm, and we also consider N to be even for
simplicity, which does not affect the answer in the limit of
large N . Here �t is some sufficiently small time, meaning that
Im[�]�t, γg�t � 1.

Now we can calculate the probability for every emitter to
be excited at �t as P|ek〉(�t) = |〈ek|Û (�t)|�init〉|2. We should
note that an excitation in principle might jump many times
between the atoms before escaping the atomic subsystem
and, therefore, there are a lot of ways how our system can
emit a photon. However, for small times �t it is reasonable
to consider only a single jump of the excitation from one
emitter to another, after which it goes into the field subsystem.
Therefore, we can find the probability that excitation is not
in the atomic subsystem as 1 − ∑N

k=1 P|ek〉(�t) keeping only
terms with the first power of �t . The corresponding coefficient

before �t can be thought of as the modified initial spontaneous
emission rate �(0) we have discussed before,

�(0) =

⎧⎪⎨
⎪⎩

γtot + N−1
2 γg

γg�γr−−−→
N→∞

N
2 γg, if φ = 2πm,

γtot − N div2
N

γg

γg�γr−−−→
N→∞

γg

2 , if φ = π (2m + 1),

(C7)

where div means integer division.
There is also another way to interpret the (N + 1)γg/2

result for the in-phase initial spontaneous emission rate �(0).
By making use of the relation

∑N
l=0 L

(α)
l (x) = L

(α+1)
N (x) we

can find the probability amplitude of the kth emitter to be
excited Ck(t) like in Eq. (C6), but without making a small
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argument expansion

Ck(t) = 〈k|Û (t)|D〉 =
k∑

j=1

e−i�t

√
N

L
(−1)
j−1 (γgt/2)

= e−i�t

√
N

L
(0)
k−1(γgt/2), (C8)

and then we can take d|Ck(t)|2
dt

|t→0 ≈ ( 1
N

− �
(0)
k t) and make the

coupling to the guided mode strong � = −iγg/2, obtaining
�

(0)
k = k

N
γg . Here a factor of 1

N
simply arises from the fact that

since the initial state is |D〉 = ∑N
j=1 |ej 〉 × |{0}〉, an individual

atom shares N -th fraction of an initial excitation. The obtained
result tells us that emitters in a chain have a position dependent
emission rate. The reason for that is also due to the perfect
unidirectionality: each emitter simply behaves itself as it would
as a part of a chain which is efficiently a k

N
th fraction of the

original one, since an emitter “senses” only other emitters
positioned before it.

Now it can be seen that the emission rate of the Dicke
superradiant state itself for the in-phase emission is a simple
arithmetic sum of the emission rates of individual emitters:∑N

k=1 �
(0)
k = 1

N

∑N
k=1 kγg = N+1

2 γg .
We also want to note that when studying the emission of a

Dicke superradiant state itself for the in-phase emission, the
dynamics in our toy model can be found exactly:

CD(t) = 〈D|Û (t)|D〉 =
N∑

k=1

k∑
j=1

e−i�t

N
L

(−1)
j−1 (γgt/2)

= e−i�t

N
L

(1)
N−1(γgt/2), (C9)

where we applied the aforementioned relation for the sum of
Laguerre polynomials two times. At small times it gives, of
course, the same expressions as in the top line of Eq. (C7) for
the initial spontaneous emission rate.
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Abstract – In this work we considered light interaction with two-level quantum systems chirally
coupled to a single guided mode with account for a spin-locking effect. The chiral coupling
allows achieving asymmetric interaction between the two-level systems, which strongly affects
the light scattering of a guided mode of an optical nanofiber by one-dimensional atomic chain.
We have also build an analytical model of unidirectional transport of quantum excitation and
verified it with modelling of atoms coupled with surface plasmon polariton mode of a metallic
nanowire. In particularly, we showed the tolerance of the unidirectionally coupled systems over
the positional disorder of the two-level systems.

I. INTRODUCTION

Controlling the interaction of quantum emitters with optical nanostructures at the single-photon level is a key
tool for the realization of quantum technologies [1]. It is supported by the recent experimental progress in coupling
single quantum sources to surface plasmon polaritons [2], and to photonic crystal waveguide modes [3], as well
as by the results in neutral atoms trapping in the vicinity of an optical nanofiber [4, 5]. All of these realizations
are characterized by interaction of quantum system with an evanescent guided mode of nanophotonic structure. In
recent years attention of researches is paid also paid to optical spin properties of evanescent guided modes: in such
systems the direction of optical spin is not parallel to the direction of electromagnetic wave propagation [6]. The
presence of the transverse optical spin component opens a possibility to control the direction of propagation by
means of the so called spin-locking effect [7]. In this case the polarization of an active transition of the quantum
source of light defines the direction of surface-localized wave propagation. Theoretical studies on possible applica-
tions as well as experimental realization were demonstrated for both plasmonic and photonic nanostructures [8, 9].
Fascinating effects were also observed for quantum systems including a single atom near whispering-gallery mode
microresonator[10], a large bragg reflection from an array of just 2000 ultracold atoms trapped near an optical
nanofiber [11]. These achievements make the fundamental studies of quantum systems with chiral unidirectional
coupling highly important and timely.

II. RESULTS

We consider a one-dimensional (1D) array of N two-level atoms with a period Δz and in the vicinity of 1D
cylindrical waveguide (see Fig. 1 (a)). We consider both dielectric nanofiber to study the process of light scattering,
and plasmonic nanowire to achieve strong spin-locking effect and unidirectional transport of a single quantum
excitation.

A. Light scattering with account for chiral coupling

In the first turn, we have considered [12] single-photon scattering by the atomic chain in the regimes of symmet-
ric coupling to the guided mode, and asymmetric (chiral) coupling. We compared scattering of the incident photon
on atoms with (i) radial component of the dipole moment d0 and (ii) σ+ polarized dipole having both radial dρ

and z-component dz (see Fig. 1 (b)). In the latter case the two components have π/2 phase shift but the absolute
dipole moment equals | − dρ + idz|/

√
2 = d0. Contrary to radially polarized atom the σ+ atoms has a strong

asymmetry in coupling with the forward and backward propagating fiber mode [7]. We have made the calculation
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for the fiber backscattering regime, when the symmetry should be conserved for linearly polarized atom, but not
for the circularly polarized atom. In Fig.1 the normalized scattering losses spectra are shown for the case of the
first and second fiber Bragg resonance in the case of radially polarized atoms (dashed line) and in the case of σ+

atoms. We see the pronounced switching from the Lorentzian spectral shape to a notched shape. For the first fiber
Bragg condition Δz = 0.5λf , see Fig.1 (a), one can see sharp peaks in the center of the band due to scattering
by the long-lived collective atomic states. In the case of the second Bragg resonance, see Fig.1 (b) there the sharp
peaks are smeared out as all the polaritonic states are above light cone and, thus, have high losses.
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Fig. 1: (a) The general view of the considered problem. λf is the wavelength of the fiber mode at the atomic
transition frequency. (b,c) the spectrum of scattering losses in case of symmetric (dashed line) and asymmetric
(solid line) shown for two periods of an atomic chain.

B. Unidirectional quantum transport

Further on, we have analyzed spatial and temporal dynamics of quantum excitation propagation in chiral cou-
pled atomic chain, which allows achieving unidirectional transport due to the spin-locking effect. Assuming that
coupling is mediated by the guided mode only in the strong spin-locking regime, we formulate the equations
describing the dynamics of the system [13]:

Ċn(t) = −iΩCn(t) +
n−1∑

m=1

GnmCm(t), (1)

where Cn(t) is the complex probability amplitude of the n-th TLS to be excited at time t, the diagonal parameter
Ω = ΔL + iγtot/2 contians ΔL, which is the Lamb Shift and γtot, which is the total spontaneous emission rate
(total damping rate) comprising two contributions: emission into radiation and guided modes (γtot = γr + γg).
The single mode coupling cefficients Gnm between the TLSs with number m and n and can be written as Gnm =
−(γg/2)eiφnm , where γg/2 is the coupling strength, φnm = kg(zn − zm) is the phase acquired by the photon due
to the propagation from emitter m to emitter n, and kg is the corresponding propagation constant of the guided
mode. We assume strong spin-locking regime, which leads to unidirectional coupling, i.e. Gnm �= 0 only for
n > m. The system of equations (1) can be formulated in the matrix form Ċ(t) = M̂C(t), with M̂ being
a lower triangular matrix, which means that the problem is already diagonalized and moreover, it is degenerate.
All quantum oscillators have equal transition frequencies and lifetimes and, therefore, the system has only one
eigenstate in which the last atom is excited, which significantly differs from the case of symmetric coupling [12].

We focus on the problem of the excitation transport through the chain of TLSs, and for that we consider the initial
condition in which the first atom is excited, while all other are in the ground states: C1(0) = 1, Cn(0) = 0, n ≥ 2.
We have build an exact solution of the problem, which in its compact form can be written as:

C1
n(t) = e−iΩt+iφn1L

(−1)
n−1 (γgt/2) (2)

here L
(α)
n (x) is the generalized Laguerre polynomials of degree n, α. This simple solution gives all the insights

on the one-directional transport in quantum chains: (i) irrelevannce of the spatial distribution of the emitters along
the z-coordinate; (ii) the time evolution of the n-th atom excitation probability has trivial exponentially decaying
factor e−γt; (iii) finally, the number of local excitation maxima for a particular emitter n equals to the number of
emitters positioned before it according to Laguerre’s polynomials properties. This dynamics is clearly shown in
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Fig. 2: The probabilities for different emitters to be excited at particular time moments for a chain of N = 5
emitters. The solid and dashed lines are for the numerical and analytical results, correspondingly. In the numerical
case the parameters are: Δz = 3.75λpl, a = λpl, where λpl is the wavelength of surface plasmon polariton mode.
For the numerical case the probabilities were averaged over 20 distributions of emitters and the distribution is
uniform.

Fig. 2 (solid lines) for a chain consisting of N = 5 emmiters separated with equal distance Δz and coupled to
surface plasmon polariton mode (SPP) of metallic nanowire. The dashed lines correspond to the results obtained
with exact numerical model based on a Green’s function approach. Good coincidence between two approaches
supports the obtained analytical results.

III. CONCLUSION

In this work we have shown that the chiral coupling significantly influences the properties of light scattering
on a chain of two-level quantum systems, resulting in the changing of the scattering losses spectrum. We have
obtained the exact analytical solution, showing that the dynamics of single quantum excitation in chirally coupled
system is described by the Laguerre polynomials. The behaviour of the chiral TLS system is fully defined by the
amplitude of the coupling coefficient of a single emitter with the waveguide mode. From the obtained solution it
immediately follows, that unidirectional system possesses the tolerance with respect to the positional disorder.
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In this paper we develop a microscopic analysis of the light scattering on a periodic two-level atomic array
coupled to an optical nanofiber. We extend the scattering matrix approach for two-level system interaction with
nanofiber fundamental guided mode HE11, which allows us to model the scattering spectra. We support these
results by considering the dispersion of the polaritonic states formed by the superposition of the fundamental
mode of light HE11 and the atomic chain states. To illustrate our approach we start by considering a simple
model of light scattering over an atomic array in free space. We discuss Bragg diffraction in the atomic array and
show that the scattering spectrum is defined by the nonsymmetric coupling of a two-level system with nanofiber
and vacuum modes. The proposed method allows consideration of two-level system interactions with a full
account of dipole-dipole interactions via both near fields and long-range interaction owing to nanofiber mode
coupling.

DOI: 10.1103/PhysRevB.94.245416

I. INTRODUCTION

Controlling interactions of quantum emitters with optical
nanostructures at the single-photon level is a key tool for the
realization of quantum technologies [1,2]. Most experimental
efforts focus on the reversible mapping of quantum states
between light and matter and the implementation of quantum
networking protocols using this interaction [3,4]. In this
context localization of photonic modes at the nanoscale object
opens a feasible route for on-chip quantum communica-
tion [5,6] and allows implementation of quantum networking
protocols [7,8]. At the same time the evanescent character of
the electromagnetic field manifested near a nano-object reveals
fundamentally new features of light-matter interactions [9,10].
It is supported by the recent experimental progress in coupling
single quantum sources to surface plasmon polaritons [11]
and to photonic crystal waveguide modes [12], as well as
by the results in neutral atoms trapped in the vicinity of an
optical nanofiber [13–15]. The latter system is a versatile
platform for achieving efficient light-atom coupling due to the
collective nature of atomic interaction with an evanescent field
of the single-photon mode [16]. This provides an exceptional
opportunity to develop new approaches to the study of optical
interactions of quantum many-body systems at the nanoscale
level.

From this perspective the interaction between a two-
level system and the evanescent field of the photonic mode
yields to the formation of mixed polaritonic states with a
modified dispersion relation [17,18]. Strong modification of
dispersion is observed in a system of coupled plasmonic
or dielectric resonators [19–22], which manifest themselves

*newparadigm.dk@gmail.com

as classically coupled dipole-dipole particles. Nevertheless,
considering the cold-atomic system trapped in the vicin-
ity of an optical nanofiber the origin of the polaritonic
states and their dispersion is significantly overlooked. The
existing theoretical approaches are based on reflection and
transmission spectroscopy of an incident fiber mode [23].
Theoretical predictions [24,25], and experimental verifica-
tion [14] have shown that the spectral distribution of atomic
fluorescence is strongly affected by the presence of the
nanofiber. This has been experimentally examined [26,27]
by detecting Bragg diffraction in the atomic chain. Despite
its universality and technical convenience this approach does
not clarify the exact picture of atom-atom interaction in
the presence of a nanofiber, as it omits the exact details
of dipole-dipole coupling. This paper aims to eliminate
this gap by considering the eigenstates of the atomic array
coupled to the nanofiber modes, which manifest themselves
as polaritonic states. We apply the T -matrix method to
study the scattering of the nanofiber mode over the con-
structed polaritonic states. Contrary to the reflectance and
transmittance spectroscopy approach, this method can be
universally extended to an arbitrary dense atomic array. In
order to expose the full picture of the atom-photon interaction,
we start our consideration with single-photon scattering at
the atomic chain in vacuum and identifying the polaritonic
states.

The paper is organized as follows: in Sec. II we describe
in detail the theoretical approach to the considered problem in
the case of an atomic chain in vacuum and in the vicinity of a
nanofiber; in Sec. III we discuss the calculated scattering cross
sections and interpret them using a polaritonic band diagram;
and in Sec. IV we extend the approach to the case of the
nanofiber and observe strong backscattering into the nanofiber
mode when the Bragg condition is satisfied.

2469-9950/2016/94(24)/245416(11) 245416-1 ©2016 American Physical Society

237



D. F. KORNOVAN, A. S. SHEREMET, AND M. I. PETROV PHYSICAL REVIEW B 94, 245416 (2016)

eρ ez

eφ

Δρ

Δz

k

|e

|g
ω0

Δω

ρc

HE11

(a)

(b)

E

0 1 2 3
k

z
/k

0

0

0.5

1

1.5

2

k/
k 0

vacuum
dielectric (n=2.1)
HE11 mode

FIG. 1. Light scattering on the 1D array of two-level atoms with
period �z. (a) A single photon with the polarization vector parallel
to the dipole moment of the atomic transition scatters and propagates
along the atomic chain axis. (b) The scattering of a quasicircularly
polarized single photon from the fundamental guided mode HE11 on
the array of atoms trapped in the vicinity of the optical nanofiber. All
atoms are positioned at the same distance �ρ from the fiber surface.
Inset: Dispersion of a photon in vacuum (solid red line), dielectric
with n = 2.1 (dashed blue line), and HE11 mode dispersion (solid
purple line).

II. THEORETICAL APPROACH

We consider light scattering on a one-dimensional (1D)
array of N two-level atoms with period �z and compare this
process for two systems: (i) the atomic chain in vacuum [see
Fig. 1(a)] and (ii) the atomic chain in the vicinity of an optical
silica nanofiber (n = 2.1) [see Fig. 1(b)]. In the first case we
consider single-photon scattering with a wave vector directed
along the atomic chain, and in the presence of a nanofiber
we consider the propagation of a guided light field in the
fundamental mode HE11 [Fig. 1(b)]. All atoms are placed
at the same distance �ρ = 0.3λ0 from the fiber surface with
radius ρc = 0.25λ0, which is a typical value for such systems
realized experimentally [15,28]. Here λ0 is the wavelength of
the atomic transition.

A. Interaction of a single photon with an atomic chain in
a vacuum

In microscopic quantum theory the light scattering process
can be described using the standard T -matrix formalism [29].
The total Hamiltonian Ĥ describing the interaction between
propagating light and the atomic chain can be expanded as the
sum of the nonperturbed part Ĥ0 and the interaction term V̂

such that Ĥ = Ĥ0 + V̂ , where

Ĥ0 =
∑

n

�ω0σ̂
+
n σ̂−

n +
∑

μ

�ωkâ
†
μâμ,

V̂ = −
∑

n

d̂nÊ(rn). (1)

Here the interaction part of the Hamiltonian V̂ is considered
in the dipole approximation, where d̂n is the transition dipole
moment operator of the nth atom, σ̂+

n = |en〉〈gn| and σ̂−
n =

|gn〉〈en| are raising and lowering atomic operators, â†
μ (âμ)

are the bosonic creation (annihilation) operators, the index μ

describes a particular field mode μ = (k,s), where k is the
wave vector, s = 1,2 denotes two orthogonal polarizations,
and Ê(rn) is the total microscopic electric-field operator, which
can be written as

Ê(r) =
∑

μ

√
2π�ωk

V
(ieμâμeikr + H.c.), (2)

where V is the quantization volume and eμ is the unit
polarization vector.

The T matrix then can be written in the form [29]

T̂ = V̂ + V̂ Ĝ(E + i0)V̂ , (3)

where Ĝ(z) = (z − Ĥ )−1 is the resolvent operator of the
total Hamiltonian. In accordance with the rotating-wave
approximation the matrix elements of the T̂ operator can be
found as a projection onto the Hilbert subspace of the vacuum
state for the field subsystem and the single excited state for the
atomic subsystem,

P̂ Ĝ(E)P̂ = P̂
1

E − Ĥ0 − �̂(E)
P̂ , (4)

where we have defined the projector operator as follows:

P̂ =
N∑

n=1

|g1, . . . ,en, . . . ,gN ; {0μ}〉〈{0μ}; g1, . . . ,en, . . . ,gN |.

(5)

In Eq. (4) we introduced the level-shift operator �̂ [29].
The form of this operator can be found as perturbative series
in powers of V̂ .

At the lowest order of the perturbation theory the operator
�̂ can be described by two contributions corresponding to
single-particle and the double-particle interactions [30]. The
single-particle contribution leads to the Lamb shift and the
finite lifetime of the atomic excited state, while the double-
particle contribution is responsible for the excitation transfer
between atoms.

Here we work in the resonant approximation, which allows
consideration of the scattering of a photon with a carrier
frequency ω close to the atomic transition frequancy ω0. In this
approximation �̂(E) is assumed to be a slowly varying func-
tion of the argument so that �̂(E) ≈ �̂(E0). The single- and
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double-particle contributions can be written as

�(nn)(E0) = �
(
�L − i

γ0

2

)
,

�(mn)(E0) = −d∗
m

[
eikR

R

((
1 + ikR − 1

k2R2

)
I

+ R ⊗ R
R2

· 3 − 3ikR − k2R2

k2R2

)]
dn, (6)

where �L is the Lamb shift, γ0 is the spontaneous emission
rate, k = ω/c is the wave number of a vacuum photon, R =
|rm − rn| is the distance between atom m and atom n, I is the
unit dyad, and ⊗ stands for the outer product.

Once the operator matrix �̂ is computed we can construct
the denominator in (4) and, by inverting it, obtain the matrix
for the projected resolvent and the T matrix. We are interested
in the scattering of the photon back into the same field mode,
which is an elastic scattering channel, corresponding to the
diagonal matrix element of the T matrix Tii(E).

In the case of a vacuum, this matrix element is connected
to the total scattering cross section according to the optical
theorem [30,31]: σtot(E) ∼ ImTii(E). In the presence of a
nanofiber this exact formula for the total scattering cross
section is not applicable. We introduce the quantity, which
shows the enhancement of the scattered energy in a chain of N

atoms, compared to the maximal energy scattered on a single
atom,

σN (E) = Im T
(N)
ii (E)

Im T
(1)
ii (Eres)

, (7)

where ImT
(1)
ii (Eres) corresponds to a resonant value of the T

matrix for a single photon scattering off a single atom.

B. Interaction of a guided light with an atomic chain in the
presence of a nanofiber

However, to correctly take into account the optical fiber we
need to modify the approach discussed in Sec. II A, and we do
this in two steps. First, we need to modify the “outer” operators
V̂ in Eq. (3), which are responsible for the absorption of the
incoming guided photon and emission of the photon back into
the same field mode. To describe the field subsystem at this
step we use the quantization scheme proposed in [32], where
the quantized electric field of the guided mode of the nanofiber
can be written as

Ê(r) =
∑

μ

Eμ(r)âμ + H.c., (8)

where Eμ is the electric field of the guided mode μ:

Eμ(r) = i

√
2π�ωμ

L
Ẽμ(ρ,φ)eifβμz+imφ. (9)

Here βμ is the propagation constant, Ẽμ(ρ,φ) is the amplitude
of the electric field, L is the quantization length, the index
μ = (βl,f,m) describes a particular guided mode, and f and
m define the direction of propagation (+1/ − 1) and the mode
angular momentum (+1/ − 1), respectively. The electric field
is periodic in the z direction and the periodicity condition can
be written as βlL = 2πl, where l is a positive integer number.

The electric-field amplitude is normalized according to∫ 2π

0

∫ ∞

0
|Ẽμ(ρ,φ)|2dφρdρ = 1. (10)

At the next step, we need to calculate the matrix elements
of the operator �̂ in the presence of a nanofiber. To account
for the excitation transfer between atoms through the radiation
of vacuum modes and modes of the nanofiber, we need to
introduce the proper quantum-electrodynamical description of
the electromagnetic field, which was developed by Welsch
et al. in Ref. [33]. Using this formalism we can modify
Hamiltonian (1) to describe our system as

Ĥ0 =
∑

n

�ω0σ̂
+
n σ̂−

n +
∫

dr′
∫ ∞

0
dω′�ω′f̂†(r′,ω′)f̂(r′,ω′),

V̂ = −
∑

n

d̂nÊ(rn), (11)

where ω0 is the atomic transition frequency, Ê(rn) is the total
electric field, and f̂(r′ω′) and f̂†(r′,ω′) are the bosonic vector
local-field operators, which obey the following commutation
relations:

[f̂i(r′,ω′),f̂ †
k (r,ω)] = δikδ(r′ − r)δ(ω′ − ω),

[f̂i(r′,ω′),f̂k(r,ω)] = 0. (12)

The positive-frequency part of the total electric field has the
form

Ê+(r) = i
√

4�
∫

dr′
∫ ∞

0
dω′ ω

′2

c2

√
εI (r′,ω′)

× G(r,r′,ω′)f̂(r′,ω′), (13)

where εI (r′,ω′) is the imaginary part of the dielectric per-
mittivity of the media and G(r,r′,ω′) is the classical Green’s
tensor of the electric field. In the presence of the optical fiber
the Green’s tensor can be expanded into

G(r,r′,ω) = G0(r,r′,ω) + Gs(r,r′,ω), (14)

where G0 is the vacuum Green’s tensor and Gs is the Green’s
tensor corresponding to the light scattering from the fiber.
The scattering term of the Green’s tensor can be expanded
into the vector wave functions (WVFs), and the details of
these calculations are given in the Appendix. At the lowest
nonvanishing order the matrix elements of the level-shift
operator in this case can be written as

〈f |�̂(E)|i〉 =
∑

|α〉,|β〉
〈f |V̂ |α〉〈α| 1

E − Ĥ0 + iη
|β〉〈β|V̂ |i〉,

(15)

where |i〉 and |f 〉 are the initial and final states of the system,
respectively, |α〉 and |β〉 are the two possible intermediate
states with a single elementary excitation for the field subsys-
tem, and both atoms are in either the excited or the ground
state:

|en,em〉 × f̂†(r′,ω′)|{0}〉,
|gn,gm〉 × f̂†(r′,ω′)|{0}〉. (16)
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The derivation of these matrix elements of the level-shift
operator can be found elsewhere [34,35] and here we provide
only the final expression:

〈f |�̂(E)|i〉 = −4π
ω2

0

c2
d∗

mG(rm,rn,ω0)dn. (17)

We should note that in the case of a single-particle contri-
bution, where |i〉 = |f 〉 and, thus, rn = rm, the homogeneous
part of the Green’s function has a singularity in the real
part Re[G0(rn,rn,ω0)] → ∞ which corresponds to the infinite
Lamb shift due to the interaction with the vacuum modes.
This term is renormalized and can be thought of as already
incorporated into the definition of the transition frequency of
atomic dipoles ω0. However, Re[Gs(rn,rn,ω0)] is finite and it
leads to the presence of a Lamb shift due to the interaction of
the excited atom with the fiber modes.

Now using (17) we can find the matrix �(E), the T -matrix
elements, and, consequently, the normalized scattering losses
σN (E). In this case when calculating the denominator of Eq. (7)
the atom is placed at the same distance �ρ from the fiber
surface as atoms in our periodic chain. Also, we note that Eres

now differs from �ω0 because of the Lamb shift.

III. RESULTS: ATOMIC CHAIN IN A VACUUM

We consider photon scattering in an atomic chain in vacuum
in the geometry shown in Fig. 1(a). In this case we assume that
the dipole moments of the atoms are aligned parallel to photon
polarization.

We have applied the T -matrix approach to plot the spectra of
the scattering cross section for different interatomic distances.
The scattering intensity is shown in Fig. 2. One can note
that it changes in a nonmonotonous way as the distance

FIG. 2. Normalized total scattering cross section’s dependence
on photon frequency detuning �ω = ω − ω0 for different periods of
chain �z in vacuum. The dipole transition is oriented parallel to the
field polarization d||E. The number of atoms is N = 100.

between the atoms varies. The most pronounced changes are
observed when the period is approximately mλ0/2, where m

is an integer. For instance, changing the interatomic distance
from �z = 0.49λ0 to �z = 0.55λ0 results in a decrease in
the intensity and a widening of the peak. A similar but much
weaker effect is observed when the distance is changed from
0.95λ0 to 1.05λ0. This behavior is related to the opening of the
diffraction channels each time the Bragg condition is satisfied.
On the other hand, this process can be easily understood by
analyzing the eigenstates of the atomic system, which manifest
themselves in polaritonic states.

A. Polaritonic states in an atomic chain

Polaritonic states can be constructed by defining the
eigenstates of the level-shift operator, which is, in our
approximation, the operator of dipole-dipole atomic coupling.
In the limit of resonant excitation the eigenproblem can be
formulated as follows:

�(ω0)v = Ev. (18)

Here �(ω0) is the matrix representation of the level-shift
operator. The solution of this equation gives us N complex
eigenvalues Ei = �ωi and column eigenvectors vi , which are
the energies and eigenstates of the system described in the
basis of states with a single atomic excitation. We utilize
the solution of a finite eigensystem to plot the dispersion
curve for an infinite chain [19,36]. A problem of this type
was also considered for one- and two-dimensional structures
with excitons in [37], but formulated in a self-consistent way,
where the energy dependence of �(ω) is kept. In our case,
we calculate �(ω) at frequency ω0, which is a simplification
giving adequate results [4,36].

For this we correlate the eigenvector with the corresponding
wave number kz enumerating the eigenstates in accordance
with the number of nodes l in the profile of the eigenmode vi.
Then we can assign the corresponding wave number kz to each
mode according to

k(l)
z

K
= (l + 1)

2N
, (19)

where K = 2π/�z is the reciprocal lattice vector of a periodic
chain and l = 0,1,2, . . . is the mode number. For l = 0 relation
(19) gives λl = 2Nd, so there is a single antinode in the profile
of this fundamental mode, while for l = N − 1 we have λl =
2d, and therefore, the neighboring atoms are exactly out of
phase for this mode.

This procedure allows us to plot both the real and the
imaginary parts of the eigenfrequencies of our system as
functions of kz, where the real part accounts for the dispersion
of normal modes and the imaginary part describes radiative
losses or the inverse lifetimes of the eigenstates.

In order to support the scattering cross-section spectra
shown in Fig. 2 we illustrate the light interaction with the
atomic chain by plotting the dispersion curves for transversal
(d ⊥ ez) polaritonic states (see Fig. 3). We consider subd-
iffractional (K > 2k0) [Fig. 3(a)] and diffractional (K < 2k0)
[Fig. 4(b)] regimes, where the first Bragg condition is satisfied.
The light line, which is vertical on the scale of the polaritonic
bandwidth as γ0  ω0, divides the states into radiative and
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FIG. 3. Real (green curve) and imaginary (red curve) parts of
the eigenfrequencies of the transversal polaritonic states with d ⊥
ez versus the corresponding kz values for (a) the sub-diffractional
case K > 2k0 (�z = 0.3λ0) and (b) the diffractional case K < 2k0

(�z = 0.75λ0). The dispersions of the vacuum photon modes (light
line) are shown by dashed horizontal lines. Regions of radiative and
nonradiative states are marked.

nonradiative ones. In the vicinity of point kz = k0 the atomic
states undergo hybridization with vacuum photon modes. For
the diffractional case [see Fig. 3(b)], all the eigenmodes
become radiative as they appear above the light line. However,
one should note that hybridization features are preserved but
are shifted from the light line for quantity K , as the wave vector
kz is a quasivector of the polaritonic state and is conserved up
to a reciprocal vector. Moreover, states near the band edges
(kz > K − k0) become more radiative than states in the band
center, as they have two channels of radiation: they can emit (i)
a photon with k

ph
z = k∗

z and (ii) a photon with k
ph
z = k∗

z − K .
The dispersion of the longitudinal modes (d ‖ ez), similarly

to the transversal modes, can also be divided into radiative
and nonradiative regions (see Fig. 4). However, hybridization
with the vacuum modes in the vicinity of the light line is not
observed due to polarization mismatch: the vacuum modes
have transversal polarization and the polaritonic excitations
are longitudinal.

FIG. 4. Real (green curve) and imaginary (red curve) parts of
the eigenfrequencies of the longitudinal polaritonic states with d ‖ ez

versus the corresponding kz values for (a) the subdiffractional case
K > 2k0 (�z = 0.3λ0) and (b) the diffractional case K < 2k0 (�z =
0.75λ0). The dispersions of the vacuum photon modes (light line) are
shown by dashed horizontal lines.

B. Bragg diffraction

The plotted dispersion curves clarify the character of the
cross-section spectra shown in Fig. 2, in particular, the opening
of the first Bragg diffraction channel when the period changes
from �z = 0.49λ0 to �z = 0.51λ0. The kz component of the
incident photon equals k0 according to Fig. 1(a), and for the
subdiffractional regime the scattering occurs on states near
the light line kz ≈ k0 [see Fig. 5(b)]. In the subdiffractional
regime, when k0 � K/2 these states have low losses, which
generates a narrow cross-section spectrum shape [see solid
line in Fig. 5(a)]. After switching to the diffractional regime
k0 � K/2 the incident photon scatters off states with kz =
k0 − K (umklapp process) as shown in Fig. 5(c). Due to the
high radiative losses connected to free-space diffraction the
cross-section spectrum is wide [see dashed line in Fig. 5(a)].

IV. RESULTS: ATOMIC CHAIN IN THE VICINITY OF AN
OPTICAL NANOFIBER

The presence of an optical nanofiber changes the character
of atomic interaction and allows long-range dipole-dipole
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FIG. 5. Illustration of the diffraction channel opening in the
photon scattering on a two-level atomic array in vacuum. (a)
Scattering cross sections for two chain periods: K � 2k0 (�z =
0.49λ0) (solid red line) and K � 2k0 (�z = 0.51λ0) (dashed blue
line). (b, c) Dispersion curves (green) and inverse lifetimes (red
curves) of these states in the region close to the situations shown
in (a). The number of atoms is N = 100.

coupling between atoms not only via the vacuum, but also
through the guided mode. To study this effect and its influence
on the scattering of the guided mode over an atomic chain, we
have applied the T -matrix method. In contrast to the commonly
used transfer matrix method, where the interaction of the
guiding mode with each atom is treated individually [26,38],
here we consider the scattering on collective polaritonic states
taking account of the full atomic dipole-dipole interaction and
splitting their energy levels. For this we start by building
the eigenstate picture of the atomic system with an optical
nanofiber.

A. Dispersion of polaritonic states

The polaritonic dispersion relation in the presence of
an optical nanofiber can be found from the eigenstates of
the system, (18), but with the corrected level-shift operator,
which includes interaction with the nanofiber by means of
the scattering Green’s function in Eq. (14). The real and
imaginary parts of eigenfrequencies versus the corresponding
kz values are plotted in Fig. 6 for transverse d ‖ eρ modes. The
parameters of the nanofiber are chosen in such a way that it
supports only one fundamental mode HE11 at the frequency
of the atomic transition ω0. The fiber mode dispersion curve
is shown by the dash-dotted line in Fig. 6, in addition to
the vacuum photon line, shown by the dashed line. In the
subdiffractional regime K > 2k0 the nanofiber interaction
channel gives an anticrossing-like feature in the polaritonic
dispersion in the vicinity of kz = k

f

0 , where k
f

0 denotes the
wave vector of the wave guiding photon having frequency
ω0. The nanofiber modifies the nonradiative atomic states
and forms nanofiber coupled polaritonic states [see Fig. 6(a)].
These states are situated close to radiative states as the wave
vector of the fundamental guided mode is close to the wave
vector of the vacuum photon |k0 − k

f

0 |  k0 (see Fig. 1). The
peak in the spectrum of the imaginary frequency at kz = k

f

0
is related to the leakage of the state through the fiber mode.
For the diffractional regime K < 2k0 [see Fig. 6(b)], all states

FIG. 6. Real (green curve) and imaginary (red curve) parts of
the eigenfrequencies of the transversal polaritonic states with d ‖ eρ

versus the corresponding kz values for (a) the subdiffractional
case K > 2k0 (�z = 0.3λ0) and (b) the diffractional case K < 2k0

(�z = 0.75λ0). The dispersion of vacuum photon modes (light line)
are shown by dashed black lines. The dispersion of the nanofiber
fundamental mode HE11 is shown by the dash-dotted purple line.
Regions of radiative, nonradiative, and strong coupling to the
nanofiber mode states are shown. The number of atoms is N = 100,
the nanofiber radius is ρc = λ0/4, and the distance from the fiber
surface is �ρ = 0.3λ0.

become radiative and there is resonant anticrossing coupling
to the guided mode of the fiber at ±k

f

0 ∓ K along with the
vacuum mode coupling at ±k0 ∓ K .

The field of the fundamental fiber mode HE11 has all three
components of the electric field, thus, in general all of them
contribute to the dipole-dipole interaction. For completeness
of consideration we have plotted the other two polarizations
of the dipole moments of the atomic transition: the azimuthal
transversal (d ‖ eϕ) and longitudinal (d ‖ ez) polarizations are
shown in Fig. 7. The dispersion of azimuthal modes is similar
to that of radial modes but has a weaker interaction with the
fiber mode due to the weaker amplitude of the azimuthal
component of the electrical field in the fiber mode. The
longitudinal modes fully resemble the longitudinal modes in
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FIG. 7. Real (green curve) and imaginary (red curve) parts of the
eigenfrequencies of transversal polaritonic states with d ‖ eϕ (a, b)
and longitudinal states with d ‖ ez (c, d) versus the corresponding
kz values. (a, c) Subdiffractional case K > 2k0 (�z = 0.3λ0); (b, d)
diffractional case K < 2k0 (�z = 0.75λ0). Parameters and notation
are the same as in Fig. 6.

FIG. 8. Normalized scattering loss spectra of a two-level atomic
chain consisting of N = 200 atoms in the vicinity of the nanofiber
for different periods �z: (a) 0.3λ0, (b) 0.5λf , (c) 0.6λ0, (d) 0.75λ0,
(e) λf , and (f) 1.05λ0. The nanofiber radius is ρc = λ0/4, and the
distance from the fiber surface is �ρ = 0.3λ0.

vacuum, with the fiber mode interaction being weaker than for
the transversal modes. However, there is no coupling of atoms
with the vacuum field due to polarization mismatch, but atoms
are interacting with the fiber mode [see Figs. 7(c) and 7(d)],
as the HE11 mode is not fully transversal and has a nonzero z

component of the electric field, which makes its contribution
to the interaction constant.

B. Fiber-mode scattering

We have analyzed the scattering of the fundamental fiber
mode HE11 by the atomic chain in subdiffractional and
diffractional regimes as shown in Fig. 8. We consider all
atoms having only the dρ component of dipole transition
matrix elements, which corresponds to Fig. 6. The presence
of the nanofiber makes the system effectively 1D, which
leads to significant changes in the normalized scattering
loss spectra compared to the vacuum case. We plot the
normalized scattering loss, (7), spectrum, which corresponds
to the probability of a single photon’s escaping from the guided
mode after interaction with the atomic chain.

One can see in Fig. 8 that for the subdiffractional regime
the spectrum is modulated by sharp resonances in the vicinity
of the atomic resonant frequency ω0. These resonances
correspond to scattering on states with kz ≈ kf having low

245416-7

243



D. F. KORNOVAN, A. S. SHEREMET, AND M. I. PETROV PHYSICAL REVIEW B 94, 245416 (2016)

FIG. 9. (a) Real and (b) imaginary parts of eigenfrequencies for
the transverse collective modes (d||eρ) versus kz for a chain with
period �z = 0.75λ0 and a varying number of atoms N . The nanofiber
radius is ρc = λ0/4, and the distance from the fiber surface is
�ρ = 0.3λ0.

losses, though these states are below the light line so they
have a finite radiational lifetime due to the finite length of the
chain [see Fig. 6(a)]. When the Bragg condition �z = 0.5λf

is satisfied the spectrum becomes purely Lorentzian, which
is defined by the existing highly radiative state of the atomic
system, and the main channel is backscattering into the guided
mode, propagating in the direction opposite the incident.

The scattering process for K < 2k0 goes through the
umklapp process, as shown in Fig. 6(b) by the dashed purple
arrow, and corresponds to a vacuum diffraction with a specific
kz. The scattering spectrum acquires a constant region in its
central part, with the oscillatory features at the edges as shown
in Fig. 8. A further increase in the chain period results in
an almost-periodic change in the normalized scattering loss
spectra, and, in particular, when �z = λf (K = kf ) we have
a Bragg condition of the second order and backscattering into
the guided mode with kz = −kf .

C. Collective coupling of eigenmodes

As pointed out before, the presence of a nanofiber leads
to long-range coupling through the guided mode, and with
increasing period �z the features of dispersions and radiation
losses near the fiber-mode line are preserved (Figs. 6 and 7).
The long-range coupling makes the observed effects purely
collective, which results in an increased coupling strength
between the collective mode and the guided mode with an
increasing number of two-level systems. In particular, the
amplitudes of radiation losses peak, related to the imaginary
part of the eigenfrequencies, and the splitting of the collective
state energy, related to the real part of eigenfrequencies, are
shown in Fig. 9 for different numbers of atoms in the chain. One
can see that the resonant features becomes more pronounced
for larger total numbers of emitters N .

V. DISCUSSION

The normalized scattering loss spectra plotted in Fig. 8
have two qualitatively distinct profiles: (i) a Lorentzian shape
profile if the condition of the fiber Bragg diffraction is satisfied
[see Figs. 8(b) and 8(e)] and (ii) a profile with a notch in the
middle of the spectrum [see Figs. 8(a), 8(c), 8(d), and 8(f)].
The Bragg diffraction is associated with the scattering on the
highly radiative state which appears at the edge of the band,

similarly to the case shown in Fig. 5. The incident photon is
scattered by the radially oriented dipole moment back into the
guided mode of the nanofiber. However, for the other periods
the photon is diffracted in the cone with a fixed angle, defined
by the condition kz = kf − K as shown schematically in the
right column in Fig. 8.

We associate the change in the spectrum shape with the
switching of the diffraction from symmetric (in the case of
diffraction into the fiber mode) to asymmetric (diffraction
into the vacuum modes) scattering. Asymmetry in photon
emission by an excited atom in the vicinity of a nanofiber
has been actively discussed recently [38–40]. In particular, it
was shown [38] that an atom with transversal and longitudinal
components of the dipole moment has asymmetry in forward
and backward spontaneous emission rate into the nanofiber
mode. This results in asymmetry of the single-atom reflectance
of the wave-guding mode propagating in the forward or
backward direction, also known as the spin-locking effect [10].
On account of this, in the case of an asymmetric emission rate
the Bragg reflection is suppressed and a notched reflectance
spectrum [38] is observed. The asymmetry in the case shown
in Figs. 8(a), 8(c), 8(d), and 8(f) can be explained by the

FIG. 10. Normalized scattering loss spectra of the atomic chain
consisting of N = 200 atoms with radially polarized (dashed line)
and σ+ polarized dipole moments (solid red line) in the regime of
(a) the first (�z = 0.5λf ) and (b) the second (�z = λf ) fiber Bragg
diffraction. Parameters are the same as in Fig. 8.
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asymmetry in the emission rate of the collective polaritonic
states into the vacuum and fiber mode. When the scattering
goes back into the fiber mode exactly at the Bragg resonance
the symmetry is conserved, but at the vacuum diffraction this
symmetry breaks. To support this statement we compared
scattering of the incident photon on atoms with (i) a radial
component of the dipole moment d0 and (ii) a σ+ polarized
dipole having both a radial dρ and a z component dz. In
the latter case the two components have π/2 phase shift
but the absolute dipole moment equals |dρ − idz|/

√
2 = d0.

Contrary to the radially polarized atom the σ+ atom has thea
strong asymmetry in coupling with the forward- and backward-
propagating fiber mode [41]. We have made the calculation for
the fiber backscattering regime, where the symmetry should
be conserved for the linearly polarized atom but not for the
circularly polarized atom. In Fig. 10 the normalized scattering
loss spectra are shown for the case of the first and second
fiber Bragg resonance in the case of radially polarized atoms
(dashed line) and in the case of σ+ atoms. We see pronounced
switching from the Lorentzian spectral shape to a notched
shape. For the first fiber Bragg condition �z = 0.5λf [see
Fig. 10(a)], one can see sharp peaks in the center of the band
due to scattering by the long-lived collective atomic states. In
the case of the second Bragg resonance [see Fig. 10(b)] the
sharp peaks are smeared out as all the polaritonic states are
above the light cone and, thus, have high losses.

VI. CONCLUSIONS

In this work we have considered a single photon scattering
on an ordered finite chain of two-level atoms embedded in a
vacuum or trapped in the vicinity of a single-mode dielectric
nanofiber. We have developed the scattering matrix technique
and analyzed the normalized scattering loss spectrum of a
single photon in the presence of a nanofiber. This approach
allows us to incorporate the atomic dipole-dipole interactions
both via vacuum near fields and via long-range coupling
through the guided mode. To support the results of our
simulations we have constructed the polaritonic states of the
interacting atomic array both in vacuum and close to the
nanofiber, which has not been done before for the type of
quantum system considered. The obtained dispersion curves
for the polaritonic states allowed us to interpret the results of
the normalized scattering loss calculations and demonstrated
the effects of atomic array coupling with a single guided
mode of the nanofiber. Finally, we have shown that the photon
scattering over an atomic chain in the presence of a nanofiber
is influenced by the effects of spin-locking coupling of atoms
with nanofiber and vacuum modes. The proposed approach,
which combines construction of the polaritonic eigenstates of
the atomic system with the quantum scattering theory, can
be effectively applied to modeling experiments on the light
interaction with quantum systems at the nanoscale level.
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APPENDIX: GREEN’S TENSOR

In order to obtain the �mn matrix elements we need to
construct the Green’s tensor of the system, which can be found
from[

−ω2

c2
ε(r,ω) + ∇ × ∇×

]
G(r,r′,ω) = Iδ(r − r′), (A1)

where ε(r,ω) is the complex dielectric function and I is the
unit dyad. In our case we consider a dielectric cylindrical wave
guide of radius ρc and dielectric permittivity ε being constant
inside the cylinder. To find the solution we apply the scattering
superposition method [35,42], which allows us to expand the
Green’s tensor into homogeneous and inhomogeneous terms:

G(r,r′,ω) = G0(r,r′,ω) + Gs(r,r′,ω). (A2)

As soon as we consider atomic dipoles in the vicinity of
the wave guide, so that r and r′ are outside the cylinder, the
homogeneous term is always present and describes the field
generated directly by the source placed at point r′ at field point
r. This term can be obtained analytically from the Green tensor
written in Cartesian coordinates using the transformation from
Cartesian to cylindrical coordinates S(φ)GCart

0 (r,r′,ω)ST (φ),
where GCart

0 has an analytic expression [43] and is given by

GCart
0 (r,r′,ω) =

(
I + 1

k2
∇ ⊗ ∇

)
G0(r,r′,ω), (A3)

where G0(r,r′,ω) is the Green’s function of the scalar
Helmholtz equation.

The scattering term can be calculated via the integral
representation of the homogeneous part. To obtain this rep-
resentation we apply the method of VWF explained in detail
in Refs. [44] and [45]; here we cover only the basic ideas and
provide the final expressions. To find the solution of the vector
Helmholtz equation, (A1), we introduce the scalar Helmholtz
equation and the solution of this equation in the cylindrical
coordinates,

∇2φ(k,r) + k2φ(k,r) = 0,

φn(kz,r) = Jn(kρρ)einθ+ikzz, (A4)

where Jn(x) is the Bessel function of the first kind, r =
(ρ,θ,z) are the cylindrical coordinates, and kρ and kz are the
projections of the wave vector k. The solution of the vector
Helmholtz equation may be written in terms of the vector wave
functions

Mn(kz,r) = ∇ × [φn(kz,r)ez],

Nn(kz,r) = 1

k
∇ × Mn(kz,r), (A5)

where ez is the so-called pilot vector, the unit vector pointing
in the z direction. These WVFs M and N correspond to TE/TM
modes of the field.

One can show [44] that the homogeneous part of the
Green’s function can be expanded in terms of these vector
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wave functions as

Gh(r,r′,ω) = −eρeρ

k2
0

δ(r − r′)

+ i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
0ρ

Fn(kz,r,r′), (A6)

and the Fn(kz,r,s) function is given by

M(1)
n (kz,r)Mn(kz,r′) + N(1)

n (kz,r)Nn(kz,r′),

Mn(kz,r)M
(1)
n (kz,r′) + Nn(kz,r)N

(1)
n (kz,r′).

Here the first line holds for ρr > ρr ′ and the second one for
ρr < ρr ′ ; k0 = ω/c, k0ρ =

√
k2

0 − k2
z , and the superscript (1)

in vector wave functions denotes that the Bessel function of the
first kind, Jn(kρρ), should be replaced with the Hankel function
of the first kind, H (1)

n (kρρ). Here we provide the explicit form
of the WVF:

Mn(kz,r) =

⎛
⎜⎝

in
ρ
Jn(k0ρρ)

−k0ρ(Jn(k0ρρ))′

0

⎞
⎟⎠einθ+ikzz,

Nn(kz,r) =

⎛
⎜⎜⎝

ikzk0ρ

k
(Jn(k0ρρ))′

− nkz

ρk
Jn(k0ρρ)

k2
0ρ

k
Jn(k0ρρ)

⎞
⎟⎟⎠einθ+ikzz,

Mn(kz,r′) =

⎛
⎜⎝

− in
ρ ′ Jn(k0ρρ

′)

−k0ρ(Jn(k0ρρ
′))′

0

⎞
⎟⎠

T

e−inθ ′−ikzz
′
,

Nn(kz,r′) =

⎛
⎜⎜⎝

− ikzk0ρ

k
(Jn(k0ρρ

′))′

− nkz

ρ ′k Jn(k0ρρ
′)

k2
0ρ

k
Jn(k0ρρ

′)

⎞
⎟⎟⎠

T

e−inθ ′−ikzz
′
,

where Jn(kρρ)′ indicates the derivative with respect to the
dimensionless argument.

Now having the integral representation of the homogeneous
term of the Green’s function, we can construct the scattering
term in a similar fashion. Let us denote the medium outside the
dielectric cylinder 1 and the medium inside 2. The particular
form of the Green’s tensor depends on the position of the
source point r′: whether it is inside or outside the cylinder.

Since the atoms are placed outside the nanofiber, both source
and receiver should be outside the cylinder, and in the latter we
consider only the second case. Thus, the total Green’s tensor
can be written as

G11(r,r′,ω) = G11
h (r,r′,ω) + G11

s (r,r′,ω),

G21(r,r′,ω) = G21
s (r,r′,ω),

where the two superscripts denote the positions of the receiver
and the source point, respectively, and the two scattering parts
of the Green’s tensor have the following form:

G11
s (r,r′,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F11(1)
M;n,1(kz,r)M

(1)
n,1(kz,r′)

+ F11(1)
N;n,1(kz,r)N

(1)
n,1(kz,r′),

F11(1)
M;n,1(kz,r) = R11

MMM(1)
n,1(kz,r) + R11

NMN(1)
n,1(kz,r),

F11(1)
N;n,1(kz,r) = R11

MNM(1)
n,1(kz,r) + R11

NNN(1)
n,1(kz,r),

G21
s (r,r′,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞

dkz

k2
ρ1

F21
M;n,2(kz,r)M

(1)
n,1(kz,r′)

+ F21
N;n,1(kz,r)N

(1)
n,1(kz,r′),

F21
M;n,2(kz,r) = R21

MMMn,2(kz,r) + R21
NMNn,2(kz,r),

F21
N;n,2(kz,r) = R21

MNMn,2(kz,r) + R21
NNNn,2(kz,r).

Here the scattering Fresnel coefficients R
ij

AB are introduced and
the second subscript in the VWFs denotes that k and kρ should
be replaced with their values inside the corresponding media
ki = εi(r,ω)k0, kρi =

√
k2
i − k2

z . We should note that unlike
the case of the homogeneous term, here we have products of
M and N, which is due to the fact that the normal modes in
our case have a hybrid nature.

The form of the Fresnel coefficients mentioned above can
be found by imposing the boundary conditions on the Green’s
tensor at the surface of the cylinder:

eρ × [G11(r,r′,ω) − G21(r,r′,ω)]|ρr=ρc
= 0,

eρ × ∇r × [G11(r,r′,ω) − G21(r,r′,ω)]|ρr=ρc
= 0.

Solving for this, we can find the Fresnel coefficients R
ij

AB

and, finally, construct the scattering part of the Green’s tensor
Gs(r,r′,ω).
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