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Pedepar

Kpatkoe cojiep:kanue jiuccepTalinm

AKTyaJIbHOCTD

Huccepranust pazsuBaer (yHIaMeHTAIbHBIE 3HAHUS B 00JIaCTH UCCIIeI0BAHNT
OITO- M aKyCTOMEXaHUKN. Bomnbmioit  Texumvecknit  mporpecc B ONTHYECKOM
U aKyCTHYeCKOH MaHUIyIdinun oObeKTaMu Ha CyOBOJIHOBOM YPOBHE CJleJiajl
ee JIOCTYIHON B MHOIOYMCJIEHHBIX HpujiokeHusax: 3D obbemubie jucrien |1
2|, ynaBimBaHWE OJMHOYHBIX aTOMOB [3; 4|, WHBa3WBHOE MAHWITYJIMPOBAHIE
onouacturiamu [5] w muorme gpyrme [6].  Bwictpoe passurme sroit obsactu
TpebyeT KaK HOBBIX II0JIXOJI0B K MAHUIIYJUPOBAHUIO CYOBOJHOBBIMUI OOBEKTAMI,
TaKk u Oojiee TIyOOKOro MOHMMAaHUS (QyHIAMEHTATbHBIX ACIEKTOB. Cpenn
MOCJIEIHUX BbIJIEIgeTcs BOPOC “Kak umenno npoucrodum nepedava AUHETH020 U
Y2.008020 MOMEHMOE OM NOAET K BEULLCNBY 80AU3U HAHOPOMOHHBT cmpykmyp?”
BBIJICJISIETCS U CTAHOBUTCS OJIHON M3 IEHTPAJIbHBIX IPOOJIEM, pPacCMaTPUBAEMbIX

B JaHHOW JauccepTaliu.

ILleas u 3amaun

Ilenbro nmannoit guccepTanyuym gBJAAETCS yIUIyOJeHne TOHUMAHUS ITepeaadn
JIMHETHOTO U yIVIOBOI'O MOMEHTa B OINTO- M aKyCTOMEXaHWKe, B YaCTHOCTH,
B HaHOMOTOHHBIX M AKYCTHYCCKUX TIeOMETPHUSX.  DbLIM peleHbl CJeIyIonume
KOHKDETHbIE 3a/Ia49u:

— cJIeJIaH [TOAPOOHBII 0030p OCHOB ONTHUYECKUX CUJI U MOMEHTOB, a TaK:Ke

KaHOHUYECKUX CBOMCTB CBeTa ObLT CJIC/IaH;
— OBLJIO TIPEJIJIOYKEHO ONTHYECKOEe CBSI3BbIBAHWE C JIAJbHOJIECTBUEM dYepes

BOJIHOBOZHbIEC MOJIbI HAHOBOJIOKHa& C UCIIOJIB30BaHUEM Honepequﬁ HaKa4KH;



11

— ommcaHa Iepejada CIIMHOBOTO M OPOUTAIBHOIO MOMEHTa CBETa K BEIeCTBY
BOJIN3M OECKOHEYHOI'0 HUIJIMHJIpa U UjleabHOIl cdephl;
— ObLj1a YCTAaHOBJIEHA CBSI3b MEXK/Iy OITOMEXaHIIECKIMUI 1 aKYCTOMEXaHITIeCKIMU

s dexTamMu Ipu paccessHu BOJH Ha CYyOBOJIHOBBIX 00bEKTaX.

Hay4unble mojio>keHust

1. MaccuB cyOBOJTHOBBIX HYACTHI] HaJ BOJHOBOJIOM MOYXKeT 00pa30BLIBATD
CTAOMIBLHYIO KOHMUTYpAIUIO B T0JIe JTMHEHHO MOJSpPU30BaHHON IIJIOCKOI
BOJIHBI, TAJAI0NIEeN MepreHInKyaIsapHO OCH BOJHOBOJA. ZKecTKocTh cB3n
MEKJIy YaCTUIAMU JIMHEITHO PACTET ¢ POCTOM YMCJIa YACTHUII.

2. Insg  opOuUTabHOrO BpAIllEHUs] YacTUIBI  BOKPYT  JIUIJIEKTPUIECKOTO
BOJIHOBOJIa& B BSBKON KUJKOCTH, BBI3BAHHOI'O PAaCIPOCTPAHAIONICC
IMUPKYJISIPHO IOJSIPU30BAHHON (yHaMeHTaJbHOI MO0  BOJIHOBOJA,
CYIIECTBYET ONTUMAJILHBII pajinyc YacTHIIbI, JIJIsi KOTOPOro opouTabHas
JacToTa MakcuMaJjbHa. llojoxkenne 3TOro MakcuMyMa He COBIQJIAET C
MaKCUMYMOM KaHOHUYECKO IIJIOTHOCTH IIOJIHOI'O YIVIOBOI'O MOMEHTA.

3. Jlnga memnorsomalomnieil 4acTHUIb, TeOMEeTpHUs KOTOPOH ocecuMMeTpUuIHa
OTHOCUTEJIbHO HaIllpaBJIeHUdA IAJIAIOINIC BOJIHBI, MOXKET BO3HUKHYTH
MEXaHUYeCKUIl Bpalllaroluii MOMEHT, CBA3aHHBII C TreHepalueil BTOPOI
rapMOHUK. Bo3nukHnoBenne BpaIlaioniero MOMEHTa OKa3bIBAeTCs
CBA3AHHBIM C HEHYJIEBBIM YIJIOBBIM MOMEHTOM I'€HEPUPYEMOT'O IOJISI BTOPOA
rapMOHUKM, KOTOPLINI CTPOro CBdA3aH C CUMMETpUENl KPUCTAJJINICCKON
pereTKn HaHOYACTUILHI.

4. Akyctmueckas cmiia, AeiiCTBYIOIIasi Ha CyOBOJIHOBBIE YACTHIIBI, IPSIMO
[IPOHOPIMOHAJIbHA CYMMe IIJIOTHOCTHU JIMHEHHOI'O KAHOHUYECKOI'O MOMEHTA
U TpajiieHTa IJIOTHOCTH SHEPTruH.  AKYCTUYECKUN KPYTSIIUi MOMEHT
Ha CYOBOJTHOBBIE YACTHUIIHI IMPOMOPIMOHAJEH IIJIOTHOCTH KAHOHUYECKOTO

CIIMHOBOI'O MOMCECHTa..
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Hayunasi HoBu3HaA

Hecmorpss Ha TO, 9TO TepeHOC JIMHEIHOTO M YTJIOBOTO MOMEHTOB SBJISIETCS
IEHTPAJIBHON TPOOJEMOIl  ONTOMEXaHUKN C TIEPBLIX JIET ee CYIICCTBOBAHUSA,
C Ppa3BUTHEM METOJIOB U TeOMeTpUru CyOBOJIHOBBIX MAaHUIYIAUN BO3SHUKAIOT
HOBBIE BOIIPOCHI, TPeOyIOIue JIeTATLHOIO0 TEOPETHIYECKOr0 aHaM3a. Pe3y/ibTaThl,
MOJIYYeHHBbIE B paMKax 3aJlad HacTodIIell jmccepTaliii, BHOCAT OCOOYIO HOBU3HY
B JIAHHYIO 00JIaCTh, & UMEHHO:

— BIIEPBbIE TEOPETHIECKN OBLIO MOKAa3aHO, YTO MACCUB CYOBOJTHOBBIX UACTHI]
OKOJIO BOJTHOBO/Ia MOKET 00Pa30BbIBATH YCTONUNBYIO KOH(MUTYPAITIIO B ITOJIE
JIMHENHO ITOJIAPU30BAHHON IIJIOCKOIl BOJIHBI, I Ialolleil IIeplIeH IUKYISIPHO
OCH  BOJIHOBO/IA. 2KecTKoCTh  CBA3M  MEXKy YacTUIAMU  JINHEIHO
YBEJIMYUBACTCS C POCTOM YHUCJIa YACTUII;

— BIIEpBbIE aBTOPOM ITPOJIEMOHCTPUPOBAHO, ITO JI/IsT OPOUTATHLHOTO JIBUZKEHUS
YACTUILI BOKPYD JAUJIEKTPUICCKOI'O BOJIHOBOJA B BIA3KON KUJIKOCTH,
NHYIUPOBAHHOIO  [UPKYJIAPHO  IIOJAPU30BAHHON  OCHOBHOI  MOJIOI,
CYIIECTBYET ONTUMAJILHBIN pajnyc YacTHUIIbI, JIJId KOTOPOTO OpOuTaIbHas
JacToTa MakcuMaJsbHa. [lojioyKeHne 9Toro MakcuMyMa TOYHO He COBIAJIaeT
C MaKCUMYMOM KaHOHWYECKOI MJIOTHOCTH IIOJITHOI'O YIJIOBOI'O MOMEHTA;

— BIICPBbIE TEOPETUYECKU JOKa3aHO, YTO I HEIOIJIOMIAIONel YaCTUIbI,
reoMeTpusd KOTOPOII OCeCUMMeTpUYHa II0JI HallpaB/ICHUEeM I1a/laloleil
BOJIHBI, MOZKET BOZHUKATH MEXaHNYeCKUIl MOMEHT, CBA3aHHbII ¢ reHepaliueil
n3JIydeHns Ha yJIBoeHHoil yacrore. Bo3zHuKHOBeHNE BpaIaioniero MOMEHTa
OKa3bIBACTCS CBA3AHHLIM C HEHYJIEBBIM YIVIOBLIM MOMEHTOM IeHEepUpyeMoro
1I0JIsI Ha BTOPOI TapMOHMKE, KOTOPbI BO3HUKAET M3-3a CIEIUMUIECKOil
CTPYKTYPbI KPUCTAJJINYCCKON pelIeTKN HAHOYACTUIIHL;

— BIIEpBbIe OBLIO TOKA3aHO, YTO aKyCTHYecKasd CHjaa, JIelcTByIolas Ha
cyOBOJIHOBbIE YACTHUIIBI, TPAMO MPOMOPIUOHAIbHA CyMMe JINHEWHOM
KQHOHUYCCKOI IIJIOTHOCTH HMIIYJIbCA U TI'PaleHTa IIJIOTHOCTU SHEpPruu,
a AaKyCTUYCCKUIl HUMIIYJILC [POIOPIMOHAJCH KAHOHUYECKON IIJIOTHOCTHU

CIIMHOBOI'O MMIIYJIbCa.
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ITpakTnyeckass 3HAYUMOCTD

Obs1acTh  ONTOMEXAaHMKH  IIOCTOSIHHO — TpeOyeT  HOBBIX  HHCTPYMEHTOB
JUIsT  JIOCTUZKEHUsT 00Jiee  BBICOKON CTEIeHM KOHTPOJIsS W MaHUIYJIAIU  Hal
HaHooObekTamu.  OnTudecKkre HAHOBOJIOKHA SIBJISIOTCS INPEKPACHBIM ITPUMEPOM
HaJIE’KHOH  11aTOPMBI I M3YyUYEHUsT B3aUMOJEHCTBUSI CBeTa W MaTEPHH.
B jamccepranum mpejcTaBieH psii BaXKHBIX PE3YJIbTATOB, KOTOPbBIE IIOMOIaioT
MOHATH OCHOBBI 3aXBaTa HAHOYACTHI] U MaHUIYJISIUN BOJU3U JIN3IEKTPUIECKOTO
HAHOBOJIOKHA, TIpejjarasg HOBbIEe TOJXO/JbI JJI BpallleHus W YACP KaHUA
HAHOOOHEKTOB. OTU PE3yJbTaThl TaKyKe MOI'YT OBbITh PaCIpOCTpPaHEHbl Ha
MAHUIYJISIAE ¢ KBAHTOBBIMU CHUCTEMaMU, TAKUMHU KaK YJIbTPaXOJIOJHbIE aTOMbI.
BoJiee Toro, noJiyueHHbie pe3y/abTaThbl MOIYT IIOMOYb B pa3pabOTKe HOBBIX METO/IOB
MAHUITYJIANNE Ha OCHOBE PE30HAHCHBIX JINIJIEKTPUUECKUX paccenBareseir M,
JIOKAJTbHbIE TIOJIT KOTOPBIX, OIUChIBaEMble B TEPMUHAX MYJIBTHUIIOJEH, MOTryT
MO3BOJINTEL cebe YHUBEPCAJbLHBI MHCTPYMEHT [IJIsi HAHOPAa3MEpPHOTo IMUHIIETA.
Haxkowner, MbI yKperuisieM CBsI3b pa3pabOTaHHBIX IIOJXOJI0B B OINTOMEXaHUKE C
aKyCTOMEXaHUKOM, T03BOJIsIsE 9P DEKTUBHO IIEPEHECTH XOPOIIO 3aPEKOMEHI0BABIIINE
ce0sT TOJIXO/bI ONTUYCCKNX MAHUIYJIANNNR B aKyCTUKY.

Takum oOpazoM, pe3y/ibTaThl PAOOTHI MOI'YT HallTH IpPUMEHEHHEe B 00JIaCTsX,
rjle B HACTOLAIIee BpeMs AKTHBHO WCIOJb3YIOTCS ONTHYECKHEe W aKyCTHIECKHe
MUHIETH, TAaKUX KakK OWOJIOrWsI, HAHOTEXHOJIOI'MH, KBAHTOBbIE MAHWITYJISITAN I
BBIUNCICHUS, U MHOTI'UX JPYTUX.

[IpakTnyeckast 3HAYUMOCTH PaOOThl  3aKJIIOYACTCs B MOTEHIUAJIHLHOM
yBEJINYEHUN 9ucjia  cTeneHeii  c¢BoOOJbI  IPU  MaHUIYJUPOBAHUKM  HAHO- U
MHUKPOOObEKTAMHU. Hanpumep, B JlomoJIHEHEE K PaclpOCTpaHEHHO celivac
TPEXTO3UIINOHHON MAaHUIYIAIIN J00aBIAeTCS eIle OJiHa CTEeleHb CBOOOJIbI —
BpalaTesbiast (opbuTajibHas U crinHOBasi). llocsesHee CTAHOBUTCS BO3MOZKHBIM
Os1arogapst 6oJsiee TJIyOOKOMY TOHUMAaHIIO MeXaHU3Ma IIepeladil CBETOBOIO YIJIOBOI'O

MOMEHTa.
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and torque in connection with canonical momentum and spin: an optical

approach. Sep 1-6, 2019. Ascona, Switzerland.


https://metanano.itmo.ru/2021/
https://metanano.itmo.ru/2021/
https://meetings.aps.org/Meeting/MAR21/Content/3990
http://benasque.org/2021quantumnanophotonics/
https://metanano.itmo.ru/2020/
https://metanano.itmo.ru/2020/
https://groups.oist.jp/onna
https://frontiers.ethz.ch/
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— Okinawa School in Physics: Coherent Quantum Dynamics. Self-trapping
of submicron particles near a nanofiber. Okinawa, Japan. Sep 25 - Oct 4,
2018.

— JSAP photonics annual meeting.  Dipole nanoparticles with induced
anisotropy as point detectors of the angular momentum of light. Okinawa,
Japan. Nov 30 - Dec 1, 2018.

JIm4yHbIl BKJIaJ aBTOpAa

Bxkiaj aBropa B JaHHYIO pabOTy 3aK/II0YaeTCs B IMOCTPOEHUHN TEOPETHIECKIX
MoJIe1eil, oIy YeHIN AaHAJINTUIeCKUX Pe3Y/IbTaTOB, TAKNX KaK POPMYJIbI U I'PapUKM,
aHa/IM3€ aHaJIM3€ IOJIYUEHHBIX Pe3YyJbTaToB, OObSCHEHUN COOTBETCTBYIOIIEH
usnKN, a TakXKe B IPOBEJICHUH YNICJIEHHBIX pacdeToB. ABTOpD BHEC 3HAUNTE/IbHBII
BKJIaJI HE TOJIbKO B PeIlleHre pacCMaTpuBaeMbIX 3ajad, HO U B X (DOPMYJIHIPOBKY,
MIOCKOJIBKY 3TO O0JIbINasi 9acTh pabOThl UCCJIeI0BaATE/Is.

Bxkitaji aBTOpa 10 BCEM IJiaBaM CJIe Ty IOl

— B I'naBe 1 aBrop npejicraBm/i cBOIO COOCTBEHHYIO YHUKAJILHYIO TOUKY 3PEHUSI
Ha ONTUYECKNE CUJIbI U KPYTSIIIEe MOMEHTHI.

— B I'staBe 2 aBTop mnpoBen aHam3 COOCTBEHHBIX MOJI CQEPUIECKOro u
IUJIAHIPIIECKOI'O0 PE30HATOPOB.

— B I'taBe 3 aBrop Hales crabuibHYI0 KOH(MUIYPALND KOHETHOIO MacCHBa
HAHOYACTHUIL, YJCPXKUBAIOIINUXCST € ITOMOIIBIO TONEPEeYHO HaKadKh, WU
CBA3aHHBIX ﬂaﬂbHOﬂeﬁCTBYIOLL[I/IM BS&I/IMO,[[GIXCTBI/IGM aepe3 BOJTHOBOJ/JIHBIE
MOJIbI HAHOBOJIOKHA. ABTOp BBIIOJHIJI BCE OCHOBHYE TEOPETHUYECKHE I
YHUCJIEHHbIE PACYETHI.

— B I'maBe 4 aBTOp BBIIOJIHUI TOJBKO TEOPETHYECKYIO YacTh PadOThI, a
SKCIepIMenT ObLT mposesen Leopruem Tkatenko B rpymme mpodeccopa Sile
Nic Chormaic B OIST.

— B I'raBe 5 aBrop B corpymumyectBe ¢ KoncranTtnaoM Bimmoxom Harmes
c110c00 CBA3ATh aKYCTHYCCKUE CUJIY U MOMEHT ¢ KAHOHMIECKIMU MOMEHTAMU
AKyCTUIECKNX I0JIefl.  ABTOD TakrKe BBIIMOJHIJI BCE TEOPETHIECKHe I

YMCJIEHHbIE PaCYEThI.


https://groups.oist.jp/cqd/cqd-2018
https://annex.jsap.or.jp/photonics/en/event-schedule/181130-1201
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O6beM 1 CTPpyKTypa padoThl

Juccepranpsg cOoCTOUT M3 BBEJCHUs, D IJIaB, 3aK/IIOUCHUS W 13 NPUJIOXKEH.
[TonHbIit 00BEM JaUCCEPTAIIIN COCTABJSAET 282 CTpaHUIbI, BKIOYas 60 pUCYHKOB U
6 Tabsui. CrHucok JuTepaTypbl COACPXKUT 364 HauMeHOBaHUS.

B I'naBe 1 mpejcraBieHbl OCHOBBI ONTHYECKHX CHJI M MOMEHTOB, a TaKxKe
IOCJIeIHIE JIOCTUXKeHUs B 3Toit obsactu.  [J1aBa 2 IOCBSIIEHA CIHMHOBBIM U
OpOUTAJIBHBIM  yIVIOBBIM MOMEHTaM COOCTBEHHBIX MOJI cdepbl 1 OeCKOHEYHOI'O
mmmHapa. B [uiaBe 3 mpejncrapiieHa Teopusi ONTUYECKOTO CBSI3bIBAHUSI PsiJIOM
C BOJIHOBOJIOM. [71aBa 4 TOCBsINEeHa Iepejade JIMTHEIHONO M YIJIOBOT'O MOMEHTOB
CBeTa, BEIECTBY, a TaKyKe TEOPEeTHYCCKOMY OIMCAHUID OPOUTAJIBLHOTO JIBUZKEHUST
HAHOYACTHUIII BOKPYI' CBEPXTOHKOT'O  OJHOMOJIOBOI'O  ONTHYECKOI'0  BOJIOKHA.
Hakonen, B I'1aBe 5 1mOJApoOHO OIMCHIBAETCS TECHAs CBA3b MEXKJy OINTHKON u
JimHeiiHoi akycTukoii. Mbl nmokasbiBaeM, Kak cyOBOJIHOBbBIE aKyCTUUYECKUE YACTUIIHI

MOT'yT OBITD Mepoﬁ KaHOHNYCCKUX MOMECHTOB ITaJlaloIIero IIOJILA.
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OcHoBHOe coaepkaHne padoThl

Pacrymuit  wHTEpeC K ONTUYECKUM MAHUIYJIANNASAM — Pa3JIMIHOIO  POJIA
CTUMYJIIPYETCSI ~ OFPOMHBIM ~ YCIIEXOM B JIOCTYIHBIX  9KCIIEPUMEHTAIbHbBIX
peanuzanuax. HenmnpazmBHoe MaHUITYJINPOBAHIE YACTUIAME SABJISETCSA BayKHON 1
HEOTBHEMJIEMOIT TEXHUKOI B MCCJIE/IOBAHNN HAHO- 1 MUKPOOOHEKTOB. MexaHn4aeckue
MAHWUIYJIAIIH  9acTO HEIMpPUEeMJIEMbI, TOCKOJbKY OHM MOTYT IOTE€HINAIHLHO
pPa3pylIUTh HCCIEyeMblil OO0HEKT.

YroObl 1OJUEPKHYTH BayKHOCTb 9TOIl OTpac/y HayKH, YIOMSHEM, dYTO
HECKOJIbKO y4eHBbIX ObLin  yjocToeHbl HobesreBckoil IeHbl 3a JIOCTHKEHHUS B
obstactu ontuueckoit manuiysanun. Cpejqun Hux Aptyp Dmikua B 2018 rojay “3a
ONITUYECKUI MUHIET U ero npumeHenue B Ouosorndyeckux cucremax ; Ctusen Yy,
Knon Kosu-Tannymku n Yunbam /snnen @uwumunc B 1997 roay “3a pazpaboTky
METOJIOB OXJIayKJIeHUsI ¥ JIOBYIIKM ATOMOB C ITIOMOINBIO JIA3ePHOI'O W3JIyUeHUs .
Ha sTom doHe TOIbKO HeJaBHO aKyCTHYeCKHEe CHUCTEMbl 3aXBaTa YaCTHIl HAYaJIM
pUOJINKATHCS K TAKOMY »Ke yPOBHIO KOHTpoJisd. Hampumep, nepsas peajnsariis
AKYCTUYIECKOTO MUHIETa C MOMOIIBI0 00H020 TYYKa, aHAJOIHIHOIO CTaHIAPTHOMY
ONTUYIECKOMY THHIETY, ObLIa IpOojJeMOHCTpupoBaHa Tosbko B 2016 romy [7]. B
Tabuie 1 npuBejieHa Kparkas CBOJIKA JIOCTYITHBIX Pa3MepOB YacTHUIl U TPeOyeMbIX

MOIIHOCTE IIyYKa Ha CErOJHANIHUN JICHb.

Table 1 — CpaBHenne THINYHBIX pa3MepPOB W MOIIHOCTH ONTUYECKOTO W

AKYCTUIECKOro IuHIeToB. Jlamnbie B3gaThI U3 (D).

Meros Pasmep wactuir Mornocts (Br/cm?)
AxycTuuecknii UHIET 100 am — 10 Mm 102 - 10!
Onruyeckuii MUHIIET 10 am — 1 MM 109 — 107

Hannasg juccepranus yriyossercs B (yHIaMEHTAJIbLHOE SABJIEHUs B ITOI
obnactu. I[leHTpaJbHBIM BOIIPOCOM $BJISETCS TO, KaK UMEHHO Iepejada MMITYIbCa,
U yIJIOBOI'O MOMEHTa CBsd3aHa C ONTO- W aKycTOMeXaHnkoil. Ha mpoTsekenun Bceit
pPabOTBI OJTHON M3 OCHOBHBIX WJEH ABJISICTCA TO, YTO MaJsible YaCTHUIIbl CyOBOJIHOBOI
JUTMHBI AeHCTBYIOT KaK N3MEpPUTETbHbIe MHCTPYMEHTHI /IS 9JIEKTPOMArHUTHOTO WJTN
AKyCTUIECKOTO T0JIsA, 9YTO KPATKO IpeJIcTaB/ieno Ha pucynke 1. Jlajgee mpuBouTCs

KpaTKoe cojiep:KaHue KaxKJIoil TyiaBbl 06e3 U3JIMIITHIX TeXHIYECKUX IOAPOOHOCTEI .
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o B == @

Light Pressure Grad. force Orbital torque Spinning Torque

~ ~ ~

Linear Momentum Energy Density Orbital AM Density Spin AM Density

Figure 1 — Konuenmus cBsI3um  MeXJIy  KaHOHUYECKHMMU  CBOiicTBaMU
9JIEKTPOMATIHUTHOTO II0JIs U OITOMEXaHUKON JIJIg YaCcTUll CyOBOJIHOBOI JIJIMHBI.

CyLLLeCTByeT TaKz>Ke I10JIHad aHaJIoTUAd JIJId aKYyCTUYICCKUX HoJieit u aKyCTOMEXaHNKHN

B I'maBe 1 Mbl ogpobHO 00Cy:KaeM Bech (pOpMaJin3M, JEyKaIliil B OCHOBE
BBIUIC/IEHISI OITUYECKNX U aKycTudeckux cuji. CaMblit 0Ol criocod HaXOXKIeHUsT
CIJIBI U MOMEHTa 3a IIepuoJ KojebaHUil 3aK/II09aeTcsd B HAXOXKJIEHUN W3MEHEHUs
MOTOKa JINHEHHOTO WMITysibca (WM TeH30pa HalpsKennit MakcBesia) u 1OTOKa

YIJIOBOI'O MMIIYJIbCa IIOJIHOI'O IIOJIA. CDOpM&HbHO 9TO MO2KHO cleJjlaTb CJICAYIOIINM

F:7i<%> nds, T:jé</\%>ndz (1)

rJie TeH30PbI [IOTOKOB JIJIsi OJJHOPOJIHOM M30TPOIHON CPEeJIbl C € U L JaHbl B Bujie |8

obpazoMm:

A

. 1 I
<T> =3 Re |e¢oE'E + upoH'H — 3 (550|E|2 + uu0|H\2) : (2)
<sz> = &ikiTk <7fj> (3)

OOBIYHO UMEHHO 9TH BBIPAsKeHUsT UCIOJIb3YIOTCS B IOJIHBIX YUCIEHHBIX pacuerax.

st TOro, 9TOOBI MOJACTYIUTHCSI AHAJTUTUYECKN K IIPAKTUYIeCKHN JII00OM 3a1ade
C ONTUYECKUMHI CHJIAMU, OY€HDb YIOOHBIM MOXKET OKa3bIBAETCSI PACCMOTPETH IIPeIe
cybBoJiHOBBIX dacTuil.  Hambosiee BakHbIM Oe3pa3sMepHbIM IIapaMeTpPoOM 3JeCh
siBJisieTcst ka, rje k = nw /¢ — JUTMHA BOJHBI B CPeJie ¢ MOKa3aTeeM MPeIOM/IeHs]
n, a @ — XapaKTepHbI pajguyCc JacTUIIbL.

B npenene ka < 1 Mbl MOKeM 3aMEHUTH YACTHUILY TOYETHBIM SJIEKTPUIECKIM
JIAIIOJIEM P U TOYEYHBIM MArHUTHBIM JunojeM m. [locie 3Toro MoXKHO B3SIThH

narerpas B (1) (cm. Ilpmnoxkenne H) u motyanTh BeIpazKeHust JiJIst CHJIbI 1 MOMEHTA

Froc: = F© + FO 4 glem)

1 KLt kY [apo
= -Re(p* - (V)E)+ —Re(m*- (V)H) — —,/— Re(p* X 4
S0 (V)B) + 2 Re(m’ - (V)H) — o [P Re(p > m) - (1
~(ka)3 ~(ka)® for p,=p ~(ka)? ‘fgr Wp=p
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rie obosnatenue, Brepsble BBegennoe beppu [9], “-(V)” ciemyer nmonnmMarh Kak
A-(V)B=3 2., A€V aBi rjie o HHJIEKC IPOUBBOJILHOI OPTOroHAILHOIM
CUCTE€MBbl KOOpPJIMHAT (;:LeKapTOBoi/’I, IUJINHIPUYECKON, cdepudeckoil u T.IL.).
[ToguepkieM, 9TO CyMMHpOBAHHE BEJETCA 10 JEKAPTOBBIM KOODAHHATAM (PO
JPYTHU CHCTEMBI KOOpAMHAT cM. B lIpmmorkennm A).

OnTudecknit MOMEHT OyeT

Tioe1 = T© 4T (5a)
1 3

T — T{ + T = ZRe[p* x E] — ———Im [p* 5b

0 + s 2 e[p X ] 127[880 m[p XP]’ ( )

mm) T(() ) 4+ T = 5 Re [upom* x H] — 1;;:0 Im[m* x m], (5¢)

rjle SJIKTpUUecKass W MarHuTHas KOMIIOHEHTBHI CBsA3aHBI C B3aUMOJICHCTBUEM C
9J1EKTPUUECKIM P = X.E 11 MarnuTabiM m = (pupg) Lo, H sinnodist cooTsercTBenHo.
[IpucyTcTBUEe YJIEHOB pacCeTHUA Tge’m) NMeeT pelnalorniee 3HadeHue s
HETIOIIOMAIONNX JacTull. Hampumep, JJIsi MaJIeHbKOI Heroriomaiomeil cheps
KPYTSIU MOMEHT JI0JKeH ObiTh papen Hysto [10; 11|, mockosbky B cmiy
coobparkeHuil a3suMyTaJbHOM CUMMETPUU HE WPOUCXOIUT W3MEHEHUs YTJIOBOTO
MOMEHTa, IIPU paccesiHni. FEIMHCTBEHHDBIN BO3MOYKHBII CIIOCOD MOJIYUUTH 9TOT HOJIb
— ydecTb nonpaBKy Ha paccestaue B (5) (mogpobuee cm. B [puioxkennn 4.3.7).
Hakonen, mociie BBeJeHHsI SJeKTPUYIECKON &, MW  MaArHUTHON 04y
MOJIAPU3YEMOCTH MBI MOYKEM SIBHO CB#A3aTh CHUJIy W MOMEHT C KAHOHMYECKUMMU
CBOIICTBAMI IOJISI: IJIOTHOCTDH 9JIEKTpOMArHHTHOH smeprum W = W) 4 Jwm),
JIOTHOCTD JnHefinoro nmiyisca P = P© + PM™  mjorHOCTD CHIHHOBOrO yIiIOBOrO

momenTa S = S + S kommekcHblil 10TOK SHEprun (MM KOMILIEKCHBIH BEKTOD

Moiinrmara) THw = 1% (B* x H) [12-14],[15, § 6. 9],]16, § 2.20],[17, § 12.5] xax

F =F© 4 p) 4 plem), (60)
Fliu) = (&) Re[oe [V (1) 425 ngt n)p (i) (6D)
) COHS(;r;ative g non—cor?srervatlve
2]{24 1 1 1
F(e_m) - T L eX P+ - I o X Hlm
67T N [RG(OL )nQ ( + 2V X S) + Hl<0( ) (6(3)

Tnst conyaag S = S(m) (HampuMep, JUTsd SJUTHITHIECKH HOJISTPU30BAHHOMN TLJIOCKOT
BOJIHBI) BPAIIAONINI MOMEHT OyJleT paBeH

8© 4 oISt = Loy, (7)
n

abs

T—25(
n
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em) _ glem) (o)

37eCh  Opyy Osc abs

— 9TO »3JIEKTpUYecKas U MarHuTHas 4YacTu
ceveHuil SKCTUHKIMU, TOIJIOMIEHUsT U paccesdHus dactuilbl.  OHEM CBsS3aHBI C
nosisipusyemoctsamu (e, Ilpuioxkenue B.4).

Manunysinpyemble 4aCTUIIBI MOTYT UMETh CJIOKHYIO 6HYMPEHHION CTPYKTYDPY
C TOYKH 3peHHs JIeKTPOMArHUTHOrO oTKanKa [18; 19]. OdveHb sipKuM mpuMepoM
TAKNX YaCTUIl SBJAIOTCS KUJIKHE KPUCTAJJIbI, KOTOPBIE IMMPOKO OOCYZKIAIOTCS
B |20]. Hambosee obruit ciydaii GUAHN30TPONHBIX CPEJl MOXKET OBITH MOJHOCTHIO

ONUCAH KOHCTUTYTHBHBIMI COOTHOMICHHsIMU [21-24]

D eeg  ik/c\ [E
=1 . (8)

B —ikl /e uyuy ) \H
rje €, W, K — KOMILIEKCHO OIleHEeHHbIe TeH30pbl 3 X 3. 37eCh Mbl TaKyKe IIPUHSLIN
BO BHUMAHWE, UYTO CPEJa SIBJISETCs B3aMMHO OOpaTHMOIl, II09TOMY JIMaroHAJIbHbBIE
9j1eMeHThI B Yp. (8) cBst3ambl. Jljist HEB3aMMHBIX CPeJl Mbl DEKOMEH/IYEM MTPOUNTATE
cewlikm. |21 22]. Korma pedb ner o MaIblX 9acTHIAX, MOYKHO [OJTY9UTh JUMOIbHBIE

MOJITPU3abeTbHOCTH (X, Gy, K¢ ) U3 OOBEMHBIX TAPAMETPOB (€, [, K). DTO IPUBOIUT
K [25; 20]

P XKe 10 E

upom )\ —ia? «, ) \H )

e Xe, Xm, X. — B 0DIIEM ciydae KOMILJIEKCHO 3Ha4dHble 3 X 3 TeH30pbl. MbI

IOJ{YEPKNBAEM, UTO Koy, SABJISIOTCS (DYHKIMUIMI €, (L U K (SIBHBIC BBIPArKEHUS

cm. B Ilpmioxkennn B). TlonmpaBku Ha HepecTpoiiky M ONTHYECKasl Teopema [
OMaHM30TPONHBIX dacTurl obeyxpaores B [27, § 11.C.

Cwia Ha XupajbHO#l m3oTpomHoil udacrure Oymer [18; 23; 24; 26; 28-31]

(ojtaKo, He B KasKJ0fi CChLIKE yunThiBaeTcs ciaraemoe F (™)

k4
F — prowchinl | & — Re(ot) V& + Wy, S — Im(oe) V x I - ﬁmﬁnm. (10)

F non-chiral

31ech cuta 3 (6b), a o u oy, — dysxkmun (g, 1, k) (cM.

[Ipuiozkenne B). Mbl TakzKe HCIOJIL30BAIN CJleJlyIoliee TOKIECTBO: WS — %V X
" = —1Re (H* - (V)E — E* - (V)H) [23; 24]. Ioacrasassa (9) B (5), nomyuaem

KDY TSN MOMEHT, JIeiCTBYIOMINIT Ha XUPATLHYIO H30TPOIHYIO JacTuily [32; 33|

c 1 1
T = ﬁGabs,cS + _Yabs cHRe + yabs cHIm <11)
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O06o01IeHHBIe XUpaJIbHbIE CEYeHUs] IOTJIOMEHNST NMEIOT BHJL

Oabs,c = G;GE))S,C + G;rkl)ls),c’ (12&)
k
o) = co. (Im(e) = gelocl® = gulowf?) (12b)
k
G;Il:s),c - ; (Im(ocm) - gm|(xm‘2 - ge‘(xc|2) ) (12C)
0
Vi e = 2w Im(ot) — 2wg, Re(aeax}) — 2wg,, Re(o, ), (12d)
yggls’c = 2wg, Im(og o) — 2wge Im (o), (12e)
TJIe OIIPEJICJICHBI KOHCTAHTBI §, = %;) U Gm = g nkiuo' OrMeTnM, 9To JIJId XUPaTbHOT
qacTuibl 6e3 norepp ¢ Im(e) = Im(p) = Im(k) = 0 mMomeHT paBeH HyJIIO,

[O3TOMY HMKAKOM yIJIOBOIi MOMEHT He MOXKeT ObITh IepesiaH OT JII0OOr0 11a1ai0nero
OIITUYECKOrO I0JisI K Takoil 4yacture. CTOUT OTMETUTH, YTO BBIIIENPUBEICHHDII
BBIBO/ CIIPABE/JINB 1 JIJIsT JTF00O0# XUpaJibHOIT chepbl 6e3 morepb 106010 pasmepa [32,
Yp. (9)]. Dro anbrepHATHBHO CJIeyeT U3 ONTHYECKONH TEOPEMbI I XUPATbHBIX
gactur [34], mompobuee cm. ymp. (B.30) B Ilpunoxkenun B. Asbrepharusroe
pasyioxkenne MokHO Hafitn B [31, ¥Vp. (7)].

YIUBATEILHO, HO B CyOBOJIHOBOM IIPUOJIMMKEHUN JIJIsI YACTHUIL C IIOTEPSIMU,
6J1arojaps CUMMETPUHN yPaBHEHUI, CYIIECTBYET HPOCTOE 3aMKHYTOE COOTHOIIECHUE
MEK/Iy JICCUIIATUBHON YacThiO CHJIBI U CKPYUYHMBAHHEM XUPAJTbHON U HEXUpaJIbLHOI
qacTeil MOMEHTa, YTO OTKPbLIBaeT IPAMOIl IIYTh M3MEpPeHUd XHNPAJIbHON YaCTu

I0JIIPU3YEMOCTH, TI0TOKA SHEPIUH ¥ [JIOTHOCTH CIIHOBOTO YIJIOBOIO MOMeHTa |24,
eqs. (15, 16)]

e, m 1
F(Eliés) + §V X T(e,m) = 2Gabsl_IRe (13&)
c
© 1 ©) — 902
Fi.+ 2V X T = 2w Im(a.)S (13b)
rje JJIs MaJIbIX IOIVIOIIAIONIMX YACTHUIL C Oext A Oaps MBI UMeeM Fgig
Fgﬁsrsn) + Féclis = “0asP + 2Im(a) (w2S — %V X HRG) - JuccunaTuBHAs (WIH

HEKOHCEePBATHBHAS ) YaCTh CHJIbI I MOMeHTa, paBHasa T = Tem) 4 () = CO0apsS +
2 Im(oc. )ITRC. 3nech mbt ncnosbzopasn TTRC = fl—z (P + %V X S) 1 IIPEJII0JIOAK I,
aro P = P y S = S Bamernm, 90 9T0 COOTHOMICHNE HAINCAHO ISt
JIATIOJIBHBIX YIaCTHIL C IOTEPSIME, JJIsI KOTOPBIX MOYKHO IIpeHeOpedhb HOIPABOTHBIMU
QJIeHAMHI OTJa4dn (paccesiusi) B CHJI€ U MOMEHTE.

Takzke ecTb MHOTO CXOJICTB C TeOpueit TUHETHON cyOBOJTHOBOI aKyCTOTEXHUK,

KoTopasi obcy»Kaaercs B pazjese 1.7 u B riape 5. Hakoner, B pasese 1.6 MbI TaKk:Ke



22

caeaeM KpaTKuil 0030p CTOXACTUIECKOI'0 MOJIE/INPOBAHNSI, KOTOPOe KpaiiHe BayKHO
YUYUTBIBATH, KOTJIa PeYb UJET O peabHbIX CUCTEeMaX.

Hakonen, B pazzgese 1.6 MbI Tak»Ke cieiaeM KpPaTKUil 0030p CTOXaCTUUECKOIO
MOJICJINPOBaHNA, KOTOPOE KpaliHe BaKHO YYUThIBATL, KOIJIa Pedb UJIEeT O peaibHbIX
cucreMax.

[IpoBejienne SKCIEPUMEHTOB IO U3YYEHWIO ONTUYECKUMX CHJI U MOMEHTOB
B peaJlbHOM MHpPe BCerja COIPOBOXKIAETCs OPOYHOBCKUMHU  CHJIAMU — WJIN
cmozxacmuyveckumu cusamu Fy. Ilpupoma sToift cuiabl 3a/okeHa B OIPOMHOM
KOJINYeCTBE  CTOJIKHOBEHMII ¢  OoJjiee  MeJKHUMHU  YaCTUIIAMU  BMeIaoIei
skujgroet. OJHUM U3 BO3MOXKHBIX 0O€3pa3MepHBIX IIapaMeTpoB JIjIsI OIpeIeIeHUsT
[IOTCHIIUAJIBHOIO BJIMAHUS CTOXACTUYCCKUX CHUJI SBJISIETCA COOTHOIICHUE MEerKLy
sneprueit vacrur, U (KHHeTquCKoﬁ, HaIpuMep, OOYCJIOBJIEHHON! ONTUYECKUM
JlaBJIGHEM WJIN JIOKAJIbHON TJIyOMHON IIOTEHIIMAJIBHOTO KOJIOAIA ONTHYECKOIT

JIOBYIIIKI) U 9Heprueil TerioBoro Jjsikenus [6; 35; 30]:

U Yy <1 — Fg has to be considered
ksT v>1 — Fg is negligible

rie kg — nocrogunas Bosabinmana, a T — abcosoTHasT TeMIiepaTypa BMeEIAoieit
cpenpl.  Ornenka jtst sHeprun U 3aBUCHT OT JIOMHHHUDPYIOIIErO THIA ONTHIECKOLT
CIJIBI: KOHCEPBATHUBHOMN (IpaJIMeHTHAsT CUJIa) MM HEKOHCEPBATHBHON (ONTHUIECKOE
nasyierne) [6; 37-40][41, § 3]. B mumosbHOM Mpub/IIyKEHNN JBa PA3INTHBIX BKJIAA
MOKHO yBUJETH n3 ypasuenus (6b).

Ecim  xoncepsartnmBHast cuia JOMHHEDYET, TO TOTCHIMAbHAS TIyOuHa
ONTHYECKON JIOBYIIKH JIJIS 9JIEKTPUIECKON IUIOIBbHOM YaCTUIBI MOXKET ObITh
ouenena xak U = Uy = (p-&) = 1Re(a)|E[>. [ockosbky BO6IM3H TOUKH
paBHOBeCHsI CHJIa JIMHEHHa [0 OTHOIIEHHIO K [EePeMeINeHni0, MOYKHO BBECTH
3 PeKTUBHYI0 KEeCTKOCTh B Buje F ~ —kAr, takum o0pa3soM IOTEeHINAIbHAS
seprust Oyaer pasHa U, = %KEQ 6; 36], tme Ar — cpeanss mmpuHa
MMOTEHITNATBHOIO KOJIOAIA B peajqbHOM mnpocrpancTBe.  Crieyer MOIIepKHYTD,
9TO TaKOW AaHAJN3 CIPAaBEJINB TOJBKO B TOM CJydae, €/l KOHCEpBATHBHAS
9aCTh ONTHYECKUX CHJI JOMUHUDYET. B HIPOTHBHOM cilydae, ec/i JIOMHHHPYIOT

HEKOHCEPBATUBHLIE CHJIbI, TO KHHETHYCCKasd SHEPIUA JTOJIZKHA OBITD IIOM€EIlIeHa B
m(v)*
2

rae cpeatdsd CKOPOCTb YaCTHUIbl MOZKET OBLITD II0JIy4Y€Ha U3 paBEHCTBA OIITUYECKOI

Yp. (1.41). Hanpumep, jyjist JaB/eHust I0CKO# BOJHBI 910 Oyier U = Uy, =
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CHJIBI JaByieHnst 1 cusibl Tpenust (3axon Crokca [42]) (v) = Géi)t-%550|E|2 / (67tva),
rjie V — JUHAMIYEeCKast BAI3KOCTh BMEIAIOIIE XKIJIKOCTH, & ¢ — PaJInyC YaCTHUIIBI.

Kak ToJbKO crOXacTHYeCcKast CHjla JIOJ’KHA OBITh ydYTeHA, YpPasHenue
Jlanorcesena  JTOKHO OBITH DENIEHO YHCJACHHO, YTOOBI JOCTHYL MPABHJILHOTO
MOJICTIUPOBAHIS  TUHAMUKH. Komnewuno, st mpoBefeHus — JaJbHEHIIEro
CTATUCTHYECKOTO aHAIN3a IOTPEOYeTCs MHOZKECTBO DEATH3AIHil OJHOr0 ¥ TOro

»Ke YMCJICHHOI'O dKCIIEPUMEHTa. Y paBHEHUE JBUKEHU OyJIeT UMEeTh BU/I

mi=—0 +Fy + F or (15)
v=—Ltv+L(F +F)
rjae m — Mmacca Jactut, ( — Kodbduiment Tsaru (st cpepbl IPUMEHNM 3aKOH
Crokca, moaromy ( = 67Tva, rjie a 1 V — CTOPOHBI YaCTUIL 1 JJUHAMUIECKAs BI3KOCTh
BMernatonieit kujkocrn), F — onrnueckast cuna, a Fy — nesbra-koppeupoBaHHast
CTOXACTHYeCKast CIJIa C HyJIEBbIM CPEJHHM, Tak 4To oHa yuosiersopser (Fy(t)), =
0 m (Fy, «(t)Fsp(t +1)), = 2D04pd(T). DBaxmo nommmarh, 4WTo TpeHue u
CTOXaCTUIECKUE CUJIbI CBSA3AHBI JIPYT € JPYroM Ha (hyHaMEHTATbHOM YPOBHE. DTO
O3Ha4JaeT, 9To0 KO3 duimeHT TpeHus ( cBsi3aH ¢ KoM MUINEHTOM aBTOKOPPEISIINN
D croxacruuecknx cuit Kak D = kgT'C [43] (noxkazaresnserso cm. B [pumoxkennn L).
Ypasuenue (15) MozkeT ObITH IEPENUCAHO KaK CHCTeMa JIBYX JnuddepeHnaabHbIX

ypaBHEHU{l TIepBOro MOPsiJIKa OTHOCUTEBLHO ' U V, U PeIleHo JiIoOoi cTaHIapTHOI
JUCJIEHHON IPOIe/lypoii, TakKoil Kak ceMeificTBO MeTON0B Jiljepa, MeTO/Ib
Pyure-Kyrrel nmn jo6oit japyroii [44], ¢ HEKOTOPBIM CIEMUATBHBIM  OJIX0I0OM
K croxactuiaeckomy wieny Fy [43]. Bce st MeTopl OCHOBaHbBI Ha, IECKPUTH3AIINIT
Bpemennoifi smnnu ¢t — {t;} ¢ marom At. Uurerpuposanue (15), T.e. ftii“ (1.42)dt,

OyJleT UMETb IPEIATCTBUSI, IOCKOJILKY ftt_”l Fy(t)dt # Fg(t;)At. Xwurpocrb

tit1

3aKJIOYAETCsl B TOM, 4T0ObI BBecTH HOBYIO nepemennyio [ dtFy(t) = W;. co
t;

CBOMCTBaMU, KOTOpBIE Cjedytor u3 cpoiicts Oenomymuoctn Fy: (W;) = 0 u

(Wi - W;) = b;; - 6kgT'CAt = o;; - SG%V“ C 0 = T,U,2z, 3aMETUM, 4TO II0CJIE/IHEe
siBJIsteTcsd  (DaKTUUeCKN JIMCIIepchell  HOPMAaJIbHO — PacIpejleJIeHHON — CJIydaiiHOi
BesimanHbl Wy, Taxkum obpasoM, jjist TPOCTOro MeToja Jiijiepa KOHEUHasl CUCTEeMa

OyJeT uMeThb B/

r(tiv1) = r(t;) + Atv(t;), ow, = v/2ksTCAL (16)

V(tin) = v(t;) — Atov(t) + W, X = 2y,2
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Dielectric particle

ma Energy den5|ty

(TM,1,1,1) mode, kgpa=1.36 —0.1610i
- ¢
m m E .
N
-2 0 2
X/a x/a X/a

Metallic particle

E densit
nergy density .

max

(TM,1,1,1) mode, koa =0.84 —0.1953/
jz= 1 jkin

-2 0 2 -2 0 2
Xx/a Xx/a x/a x/a Xx/a

Figure 2 — Pacnpenenenne mIoTHOCTH yIJIOBOIO MOMEHTa JIJISA JIUTTOJIBHBIX MO JIJTs

JANMJIEKTPUYIECKUX 1N METaJIJINYECKNX YaCTHUIL

Mpr moguepkuBaeM, 9To jgucrepcns (WM KBAJIPATHIHOE OTKJIOHEHHE) 3aBUCUT OT
BPEMEHHOI'O Irara jecKkpurusaiun At.

B TI'maBe 2 mupoBoauTcd aHaJ 3 COOCTBEHHBIX MOJ JIBYX AaHAJIUTUIECKN
peraeMbIX TreoMerpuil: cdepbl 1 OeCKOHEYHOro MWJINHApa. B ciaydae cdephr,
cOOCTBEHHBIE MO/TBI OITUCHIBAIOTCST BEKTOPHBIMIE ceprudeckumu rapmornkamu (VSH)
1 UX COOCTBEHHBIE YACTOTHI BCErIa KOMILJIEKCHBIE, TaK KaK 3TO OTKPBLITas CUCTEMA,
[IO3TOMY

w=w —1id (17)

rjie 8/2 nokasbiBaeT 0OpaTHOE CpejlHee BPeMs »KU3HU pexkiMa. B KOHeYHOM uTore,
CTPYKTYpa COOCTBEHHBIX MOJ, JUIJTEKTPUIECKOI chpepbl HAITOMUHAET 3JEKTPUIECKOe
1 MaruuTHOE TI0JIe OJWHOYHOTO (DOTOHA C OMPE/IeIEHHBIM YTJIOBBIM MOMEHTOM.

Mpr anaymsupyem coOCTBEHHBIE MOJBI, UCIHOJIb3Yys KaHOHUYECKNE CBOWCTBA
110J1s1, BBEJIEHHBIE HEJIABHO B pabote [45] 11s1, BOOOIIE TOBOPS, AUCTIEPCUOHHBIX CPEJI,
4TO HMMeEEeT pelraioliee 3HaUeHue JIJisi cjiydass MeTaJIMIeCKUX YacTUIl. DHEPrusd
bpunmosna W, smseitnsrit nmnyase P, cnma S, opburtanbubiii L w mosrHbId

yIJIOBOIT MOMEHT J MoryT ObITh cOpPMYINPOBAHLI B MaHepe KBaHTOBON MeEXaHUKN
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caemytonM obpazom  [15; 45; 46]

W= (bl ) = 7 (EeolBP + unHP) (18)
1

P = (0]phb) = oo I (EeoB (V)B4 iH” (VH),  (19)

(20)

S = (WIS 1b) = o T (Eco B x B+ fupgH' x H), 1)

L =rxP, J=L+8, (22)

1 KBaJpaTudHas popMa KBaJjpaTa IIOJHOI'O YIJIOBOI'O MOMEHTa, 0003HATaEeMOI'0 KakK

[Jz], JlaeTCs Kak

(72 = (| (L+S)* ) = Re ¢ [73 > E/AqE; +2(E*- V)(r-E)

1=T,Y,2

4w’

+ (marnuTnag wacts: & 7 A ). (23)

KOTOpasl, HACKOJbKO HaM HU3BECTHO, Oblla HalllcaHa B $IBHOM BHJIE BIIEPBLIC.
Kakjiad 13 KOMIIOHEHT MOKeT OBITh eCTeCTBEHHLIM 00pa3oM pas3JloyKeHa Ha
JIEKTPUIECKYI0 U MATHUTHYIO dYacTh.  31ueck (€,11) = (&,1) + wiy(e, 1),

9JICKTPOMArHNTHasl G-KOMIIOHEeHTHast “BojiHOBast yHKums —jpaerca [y =

v g/2 (\/EEOE,\/ﬁLuOH)T [45; 47-51|, rme KoHCTaHTa ¢ 3aBUCHT OT CHCTEMbI

Gaussian 2 -1
€ JIMHYIL; g(SI ) = (ES:L)U)l

Bujie [Ipeaunreponoodnoit popmynupokn ypasuennit Makcsesia. B jmrepatype

). OTa BoJIHOBasA (GYHKIMs (POTOHA 3aIUCHIBACTCS B

CYLIECTBYeT U Jpyroii crmocob 3ammcu BOJHOBOH (yHKIuU (GOTOHA, KOTOPDIIi
ocHoBan Ha Jlupakoromnobuoit dopmysuposke ypasaenuii Makcsesia [52-57).
Kak yreepxkgaior Bialynicki-Birula [53; 57| u Sipe [54], mus doronos mydrie
BCEro MPUHATH BOJHOBYIO (DYHKIIMIO, MOIY/Ih KBaJpara KOTOPOIl SBJISIETCsI CpeIHeil
[JIOTHOCTBIO dHEprun hOoTOHA, a He IJIOTHOCTHIO BEPOATHOCTHU IOJIOYKEHUS, KaK B
ciydae ¢ 9jieKTpoHaMu [58], 9To BepHO it 06enx hOpMYTHPOBOK.

Mpbl nocrpowsin rpaduK IJIOTHOCTH KAHOHUYECKUX YIVIOBLIX MOMEHTOB U
II0Ka3aJ/ii, 4YTO OHa ABJIFETCS I[EeJOYNCJICHHON BEJINYNHON, ecau HaWlTH IIOJIHBIN
yIJIoBOi MOMeHT Ha ojuH (oron (puc. 2). Takum o6pas3oM, 5T0 OTKPBIBAET IIyTh
K HCCJIEJOBAHUIO CTPYKTYPhI SJIEKTPUUYECKOIO M0JIsI OJUHOYHBLIX (DOTOHOB IIyTEM
U3ydeHusl CTPYKTYPbl COOCTBEHHBIX MOJ cdepbl. [ajee Mbl TakKe MOIPOOHO
AHAJIM3UPYEM HallpaBJiseMble MOJbI JU3JIEKTPUIECKOr0 BOJHOBOJA. B udacrHOCTH,

MbI IIOKa3bIBacM, 4YTO, KaK N B CJIy4ae CCbepr, KaHoHn4YeCKad II0JIHad IIJIOTHOCTD
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Figure 3 — OcHoBHas ujest IVIaBbl 3: MAaCCHB CYOBOJHOBBIX YACTHUIl BOJIM3H

HAHOBOJIOKHA C TIoIepedHoil Hakadukoil. Illorennmas 3axBaTa BIOJb OCH BOJIOKHA
pacTeT JUHEHHO ¢ YncaoM dacTull B menu. JlajmbHee B3anMogeificTBHE JTOCTUTAETCS

3a CcYeT B3aUMOJENHCTBUS Yepe3 BOJTHOBOJIHYIO MOJLY

YIJIOBBIX MOMEHTOB Ha OJIWH (bOTOH COOCTBEHHDIX MOl KBaHTY€ETCA

B w'J, B w(rPy + S.)
W W

E(r) ~ ™ — J» =m. (24)

B I'maBe 3 Mbl paccMarpuBaeM O4YeHb CBOEOOpasHyio u OOraTyro (pu3mKoii
cucremy. OKas3bIBaeTCs, YTO KOHEUHOE MHOYKECTBO MEJKUX YaCTHI] MOYKET OBbITb
3aXBAYEHO BO BCEX TPEX HAIPABJICHUSIX 00UHOYHbLM TTyIKOM (CM. PHCYHOK 3).

BojbmimHeTBO  METOJOB  ONTUYECKOrO — 3aXxBaTa U MaHUIYJIHPOBAHMS
OCHOBaHbl Ha (POPMUPOBAHUN WHTEHCHBHOCTH CBETOBOI'O IOJS C  IOMOIIBIO
ONTUYECKNX CUCTEM, TaKUX KaK MMPOCTPAHCTBEHHBIN MOJIY/ISTOP CBETa, KOTOPBIil
obecrieunBaeT (GopMUpOBaHUE JIUIIOJBHOIO TOTEHIHa a 3axXBaTa. IJTOT MOJIXO]
ObL1 9 DEKTUBHO UCIOJIB30BAH JIJIsT MAHUIIYJIUPOBaHUsT OObEKTaAMU B Pa3/JMIHbBIX
cpejlax, TaKMX KakK BO3JyX, Boja 1n BakyyM. OJIHAKO aJibTepHATUBHBII MeTO]
MAHUITYJIMPOBAHUS W YIOPAIOYeHN OOJIbINX ancambjieil OCHOBAH Ha TOJXOJIEe
camocOopku[59]. [ToneBast KapTWHA WHTEHCUBHOCTH (POPMUPYETCS 3a CUeT
paccesiHis  ONTUYECKUX IoJieil oObekTamMu, dYTO HPUBOAUT K IDEPEKTUBHBIM
JIATIOTb-TUTIOJIbHBIM ~ B3AUMOJCHCTBUSAM 1 TOCJCAYIOMEMY CTPYKTYPUPOBAHUIO
bobImx ancaMosieit. TUMUYIHBIM TPIMEPOM TAKOTO 3P DeEKTa ABJIIETCS TOITEPETHOE
onruveckoe cpssbiBanne [60; 61|, korjga HaHOuacTHIla MOXKeT 0Opa30BLIBATDH
CBSI3aHHbIe COCTOAHWS TPU  OJHOPOJHOM  OCBEICHUH. XOTs  OonTUIecKne
JIATIONTb-TUTIOIbHBIE B3ANMOJEHCTBIS JOBOJBHO CJ1a0bl, OHU MOTYT OBITH YCHUJIEHBI U
MOIUUIUPOBAHBI ¢ TIOMOIIBIO BCIIOMOTATEIbHBIX (DOTOHHBIX CTPYKTYD [62], Takux
Kak Meramarepuasbi|63; 64| u meranosepxHocTu|65], miasmMonuble cTPYKTYpbI|606;

67|, dororHbIe KpUCTA/IMYECKHE TOJIbIE BOJOKHA|08], a TakkKe jAudjIeKTpUIecKue
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Figure 4 — (a) Ilpogosbrast cuna F, B OJHOMOJOBOM DPeKUME, JEHCTBYIONIAS Ha
OJIHYy W3 JIBYX YacCTUIl B 3aBUCUMOCTH OT PACCTOSHHUS BJOJb OCH HAHOBOJOKHA,
Az. Kpacrnag cromnasg JUHUS —[TOKa3bIBAET TOJHYIO ONTHYECKYIO CHJIY,
KOTOpasl YYHUTHIBACT B3aUMOJICHCTBHE KaK 4epe3 CBOOOJHOE IMPOCTPAHCTBO, TaK
1 4epe3 BOJIOKHO (G’S + G’o), 3ejieHast MYHKTUPHAs JIMHUS TTOKa3bIBAET TOJIHKO
B3aMMO/IeiicTBIIE Yepe3 BOJIOKHO (és) U CHUHsIS ITYHKTHDPHAsl JIMHUST [OKA3bIBAeT
TOJIBKO B3amMojeficrBue B coboanoM npocrpanctse (Gg).  (b) Pasrosecubie
perenus. [lepBble Tpu BeTBH peNIeHUus JJId  PACCTOAHUSA MEXKIY JIBYMs
OmKaifimuMy JacTuraM ¢ = Az B OTHOIIEHNH OOIIEero 9ic/jia 9acTUll B IerovuKe
N. (c) Iapamerp JsioBymiKu Yy, KOTOpbIii paBeH 3)(hEKTUBHO MOTEHIINATbHOI
rIyOMHe JIOBYIIIKH, JeJeHHON Ha TEeIIOBYIO SHEpPruio BMemaomeil cpeabl k1, u

HOPMHUPOBaHHadA KECTKOCTL JIOBYHIKHN II0 OTHOHICHNIO K YHNCJIa Y9aCTHUIl B IEIIOYKE

N

nanosoJiokHa|09]. Tlocsienee npejicrassier coboit yHuBepcaibyio mardopmy|70]
JUIST U3YUIeHnsT B3anMOJeiicTBIS cBeTa ¢ HanodacTuiaMu|71; 72| u aromamu|73-75],
PACIIONIOKEHHBIMI  OJIM3K0 K €ro MoBepxXHocTH.  Vcmosib30BaHme OJHOMOJIOBBIX
JAJTBHOJIEHCTBYIONINX  JINIIOJIb-/IUIOJIBHBIX  B3auMO/IeficTBuil,  obecrednBaeMbix
BOJIHOBOJTHBIMHU CUCTEMAMI, Y2Ke OBLIO MPEJTIOZKEHO JIJTsi CAMOOPTaHM3AINH ATOMOB

1 HAHOYACTHI[ B BOJHOBOIHBIX cucTeMax|[68; 76; 77|.
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Mpr mpejitaraeM reoMeTpUIo MacCHBa HAHOYACTHI], PACIIOJIOXKEHHBIX BOJII3N
VJIBTPATOHKOI'O BOJIOKHA M OCBEIACMBbIX IIJIOCKOII BOJIHOI, PACIPOCTPAHAIONICHCA B
M30TPOITHOM cpeJie MePIeHTNKY/IPHO OCU BOJIOKHA, KaK MMoKa3aHo Ha puc. 3.2. Takas
KOH(UTYpaIs MO3BOJISIET HCIOJIb30BAThL MTPEUMYyIecTBa 3PdeKTa Monepednoro
ONTHYIECKOTO CBst3biBanust |G1; 78|. Cesi3piBaHme PONCKOUT M3-38 HHTEPMEPEHIIN
1oJielt, paccenBaeMblX HAHOYACTUIIAME, U OBLIO MPUMEHEHO JJIs CAMOOPTaHN3AINN
arcaMOJiell HAHOYACTHI[ IIPU BHEITHEM MOHOXPOMATUIECKOM OCBelleHnn |79-
81], BK/IIOYas YACTHYHOE CBS3BIBAHUE Y METAJUIMYECKON MOBEPXHOCTH BOJIM3M
OBEPXHOCTHOIO IJIa3MOH-110/1sipuToHHOr0 pesonanca (ITIIIT) [82]. B smreparype
MoTIepevIHoe CBA3bIBAHNE HAOJII0IAJI0Ch B OOJBIIOM aHcambJie JIN3JIEKTPUIECKUX
cyOMUKpOHHBIX cep [83] m HaHOMPOBOZOB [84; 85| ¢ CHIBHBIME KOJIJIEKTHBHBIMU
B3aMMO/IEHICTBUAME 9Yepe3 BaKyyM.

HampaByiennble MOJBI  HAHOBOJIOKHA ITO3BOJIAIOT HAKAILIMBATL JTaJIbHIE
B3aMMOJICHCTBUSA MEXKJIy yJaJCHHBIMU HAaHOYACTUIAME OJIarojiaps dpe3BbIYaiiHo
HU3KUM TIOTEPsIM, YTO IPUBOJUT K YBEJUYEHUIO YKECTKOCTH YACTHI] C POCTOM
JUIMHBI TIETIOYKM HAHOYACTHUIl.  Dbojiee Toro, B Hallleil KOHKPETHOI TeoMeTpun
CBs3bIBaHUs BOJIM3M HAHOBOJIOKHA, MBI TaKyKe IIpeJIojaraeM 3axBaT HaHOYACTHI]
B paJIuaJILHOM HAIPaBACHUN BOJU3U IMOBEPXHOCTU BOJIOKHA € IOMOIIBIO JIBYX
BCTPEYHO PACIPOCTPAHAIONINXCS IIJIOCKUX BOJIH W HCIOJb30BAHUSA TPEUMYIIECTB
doronHoit crpyn HaHoBoJIOKHA wWin 3ddexra JuH3upoBanus [86]. B srTom
3 dekTe Tpu MonepevuHoM BO30YKIEHNN JUIIEKTPIUIECKOe HAHOBOJIOKHO HAUNHAET
JleficTBOBaThL Kak ((poKycupylolas JuH3a. lakuMm o0pa3oM, Mbl IIpejijiaracMm
reOMETPUIO CHUCTEMBI, KOTOpas I03BOJIAET HEeMeJJIEHHO ITPOBEPUTDH 3asBJICHHDIIM
3pPeKT B KOHKDPETHON SKCIEPUMEHTAJIbHON YCTAHOBKE C  WCIOJb30BAHUEM
ONTUYECKNX HAHOBOJIOKOH.

[Ipr BO3OYKIEHNH TLJIOCKON BOJIHOM HAHOYACTUIILI (POPMUPYIOT YCTONIMBBIi
CaMOOPTIaHN30BAHHBIN MEePUOUIECKUNl MacCUB BJIOJb OCH BOJHOBOJIA 3a CYUET
apdexTa IOIEePeuHOr0 CBSI3bIBAHUA. Mpbl 1mokazajm, dYTO u3-3a JAJbHEro
B3aMMOJICHICTBAA  MEKJy HAHOYACTUIIAMU TOTEHIWAT 3axXBaTa I KayKJoil
HAHOYACTHUIILI B TEMHW JIMHEIHO BO3pacTaeT ¢ YBEJIUYEHHEM pa3Mepa CHCTEMBI,
4TO JieslaeT obpas3oBaHUe JJIMHHBIX Tiereill 6ojee OyiaronpusaTHbIM. Mbl okaszasm,
YTO JIJI  ONTHUYECKONH HAHOBOJOKOHHOW TIJIAT(OPMBI SHEPTHUS CBA3U  JIBYX
HAHOYACTUIl HaxoauTcsd B juanazone 9 +— 13 kg1, nocruras snadenus 110 kT’
npu  yBeqmdeHun pasmepa rmenu o 20 Hanowdactur, (puc. 4).  Mbl Takke

npejiiaracM T'eOMeTPHUI0  BO3OYIKJIGHHS JIByX BCTPEYHO PaCHPOCTPAHSIIONUXCS
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OAM transfer SAM transfer Non-linear SAM transfer
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Figure 5 — B I'maBe 4 paccMoTpeHbl Tpu OCHOBHBIE CHUCTEMBI, B KOTOPBIX

IPOUCXOJIUT Tepejiada CIIMHOBONO M OpPOUTAJBHOIO yIJIoBbIX MOMeHTOB (SAM wu
OAM). Cnesa nampaso: mnepegada OAM or Kpyropoii moJisipu30BaHHON OCHOBHOI
Harnpasssifonieit Bostael HEj(; mepegata SAM or momepedHOro crmHa, KOTOPBIi
NCXOIUT OT JIMHeiHo mojgpusoBannoil Moabl HEq; K aHm30TpomHbIM dacTuiiam;
HenmHefHast mepegada SAM or I10CKo#t KpyroBoil MOJISIPI30BAHHON BOJIHBI Uepes
IIPOTIeCC MeHepaIun BTOPO TapMOHUKH, HAJMIHE MOMEHTa 00bICHIETCS U3 3aKOHA

coxpanenust AM

IJIOCKUX BOJTH, KOTOPas MO3BOJUT YAEP:KNBATh HAHOYACTUIHI BOJU3H OIMTHIECKOTO
HAHOBOJIOKHA, obecriednBasi 3 (HeKTUBHOE B3aMMOIEHCTBIE MKy HAHOYACTUIIAMIM
1 HAHOBOJIOKHOM.

B T'maBe 4 paccMaTpuBaroTCsd TPH Pa3JIMIHbIE CHCTEMbI, B KOTOPBIX
POUCXOJIUT  Tlepejiada  YIJIOBOIO MOMEHTa OT SJEKTPOMArHUTHOTO IOJId K
CyOBOJTHOBBIM 1acTUIlaM (PUCYHOK 5):

1. ITepemaya opOUTAJIBHOIO YIJIOBOro MoMeHTa. s miutocTpannn
IepeHoca OpoUTAJILHOTO YIJIOBOIO MOMEHTa MbI PACCMOTPHUM OPOUTAIBHYTO
MHUKPOYACTUILy BOKPYI HAHOBOJOKHA, B KOTOPOM PACIpPOCTPAHSIETCSI
KpyroBasi IOJISIpU30BaHHAs ILJIOCKas BoJiHA. MBI IOKa3bIBAe€M, UTO
cyliecTByeT Heny/eBas 1mioTHOCTH OAM, KoTopasi B KOHEYHOM HUTOTe
POSIBJISIETCST B OPOUTAJIBHOM JIBUYKEHUN YacTUIlbl.  PesysbraTbl 9TOro
paz/iesia MoATBEPKIAI0TCS IKCIIEPUMEHTAIbHBIMI JJAHHBIMU. B o ibHOM
PUOJINZKEHUN Mbl MOYKEM 3allicaTh OpOUTAJBbHBIN (BHENTHUIT) MOMEHT B
BIIE

To, = 7Fp o< L, o< {|E|? (25)

rjie r—paccTosgHue JI0 OCU BOJIOKHA, [, — asuMmyTajbHasd OlTHYECKas
cujia Ha dactuie, a  — azuMyTajibHOe “KBaHTOBOE dYHCIO0 MOJbL. st

dynmamentanbaoit Moabl HEg, Mbl mmeem ¢ = m = 1. Taxkxe



30

ObLIM IIPOAHAJIU3UPOBAHBI OIITHYECKHE ITapaMeTPhl BOJIOKHA M PaJyChl
HAPTUKYI.
Ilepenada cimHOBOTO YIVIOBOTO MOMEHTA. B 9Toil gacTu o0cyKaeTcs
KOHIIEIIHUST TOTIePETHBIX CIIMHOBBIX YIVIOBBIX MOMEHTOB. AHAJIN3 IIJIOTHOCTH
SAM JmneitnHo nosspusoBanHOi Moabl HEj; mokaswiBaer, uro 1pn
OIIPEJIC/ICHHBIX a3MMYTaJbHBIX YIVIAX CYIIECTBYET MAKCUMYM paJidajbHOI
mwiorHoctn SAM. 371ech MBI mpejiaraeM TIeOMeTPHiO, B KOTOPOil 3TOT
norepednblii SAM Moxker mposBuTh cebs. st 9TOro Mbl aHAJIN3HPYeM
BpaIlaTeIbHYI0 JIMHAMUKY (CHUHHUHD-[HHAMIKY) aHH30TOIHON YaCTUIIbI,
KOTOpasl OIMMICHIBAETCSI TEH30POM ITPOHUIIAEMOCTH €. BBIOOp aHM30TPOIHOI
JaCTHUIBI  OOYCJIOBJIEH 2KeJJaHHMeM YMEHBIIUTH BO3MOYKHBIE TEILIOBbIE
[IOTEPU, KOTOPbIE YCHJIUBAIOT OpPOYHOBCKOE JIBUXKEHUE, HO IIPH STOM
UMeTh 3HAYUTEJbHBIH KPYTANMi MOMEHT. MbI HpUILIK K BBIBOJIY, YTO
BpAIAIONINI MOMEHT B JIUIIOJBHOM HIPHUOJIMKEHIH MOXKET OBbIThb 3allliCaH
KakK

T = Tanis + Talignment + Tlosses (26)

rie Tans O S — Bpalarmommii MOMEHT, KOTODBII BCerja CTPEeMHUTCSI
MOBEPHYTH YaCTUILy BOKPYT COOCTBEHHOI OCH B TOM »Ke HalpaBJIeHUM,
910 U II0THOCTE SAM; Tylignment — BBIPABHHBAIOIINIT MOMEHT, KOTOPBIII
CTPEMUTCS COBMECTUTDH IVIABHYIO OCh TEH30Pa IIPOHUIAEMOCTH C IIOJIYOCIMU
[JIABHOI'O 3JLINIICA ITOJIAPU3AIIN.

Henuneiinas nepejijada CIMHOBOTO yTJIOBOro MoMeHTa. Hadunewm c
MO/ICJIBHOII 3a/1a49il O pacCedHnil IUPKYIAPHO IMOJIIPU30BAHHON IIJIOCKO
BOJIHBI C YaCTOTON W Ha JU3JIEKTPUYECKOM paccenBaTese ¢ CUMMeTpHeil
mumaapa (em.  Puc. 6). Iliockast BosiHa Tajiaer BIOJIb OCH IIHJIHHJIPA
n HeceT cBeToBoil mmmnyiabc h dorona.  Torma, B cuiay CUMMETPHUU
3a/la49M, OITUYECKUII MOMEHT B JIMHEIHOM perKume T(w), JefICTBYIONINI
Ha JaCTHILY, TOYHO TPOMOPIHOHAEH cedennto noriomenns [10; 11| u, B
TepMHUHAX KAHOHNYECKO IMJIOTHOCTHU CINHOBBIX YIJIOBLIX MOMEHTOB, MOXKHO
narmmcar, T@®) = c/ng - OabsS @), e SW) = Mine/ (2W) - 550[E(()w>]2ez
- 9TO KAHOHMYECKAasl IJIOTHOCTH CIHHOBBIX YIVIOBBIX MOMEHTOB [45] c
A3UMYyTaJbHBIM YUCJIOM My, = +1 Jyisi npasoit (J1eBoit) Kpyrosoii
NOJIAPU3AMU M Ny = /€[ — IIOKa3aTesb HPeJOMJICHUs BMeIlaromeil
cpejibl.  Temepb, Korja JIMHA BOJIHBI BO30YXKJEHUS BbIOpaHa U3 IOJIOCHI

IIOTJIOIIEHNST MaTepuaJia, MOXKHO IpeHeOpedYb IMOTepPSIMU, YTO JIOTHIECKN
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SH field

mechanical
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Figure 6 — Mexanusm HeInHEHHOTO KPYTAIIETO MOMEHTA. HupkyasapHo
[OJISTPU30BaHHAsI IIJIOCKAsl BOJIHA C YaCTOTON W IIajaeT Ha IUJINHADP 0e3 IoTeph,
IOCJIC/IHsAS TeHEePUpyeT BTOPYIO TapMOHUKY C HEHYJIEBBIM YIJIOBBIM MOMEHTOM,
KOTOPBIl ollpejiessieTcst nmpaBujiaMu oToopa. BeieacTrBue coxpaHeHUsl yIJIOBOI'O

MOMEHTa CYHIECTBYeT HEHYJIeBOII MeXaHUIEeCKUII MOMEHT

obecriednBaeT YCJIOBUE HYJIEBOTO KpyTdiero momenta. OjHako jiajee
MbI TIOKAyKeM, YTO IPHU y4YeTe ONTUYECKUX IPOIECCOB BBICIIErO IOPsJIKA
MOXKET BO3HUKHYTb HEHYJIEBOII HEJMHENHDLIN OITUYECKUIl MOMEHT JlazKe
B TeOMeTpHUH, paccMoTpennoii mwa puc. 6.  [lamee Mbl orpanmdammcs
paccMoTpeHreM Tporiecca rereparin Bropoit rapmornku (SHG), koropsiit
SIBJII€TCS JJOMUHUPYIONTUM HEJTUHEHHBIM ITPOIECCOM BO MHOI'UX ONTUYECKUX
marepuasiax [87]. OH mposiBisieTcs B MpeodpasoBaHUU JIBYX (DOTOHOB C
gacroroit w Ha ocHoBHoil rapmonuke (FH) B omun doron ma BTOpOI
rapmonnke (SH) ¢ wacroroit 2w, orciosa JiBe KOMIIOHEHTBI OHTHYIECKOTrO

HEJIMHETHOTO MOMEHTA

T = TW 4 T (27)

e T@ y TE® — onrpdeckme MOMEHTHI HA OCHOBHOII U BTOpOIi
rapMOHHMKAaX, KOTOpbIe, KaK OKa3aJI0Ch, IIPEKPACHO CBA3aHbLI Uepe3 Te Ke

KO DUIMEHTHI paccesHnsl, KaK Mbl TTOKayKeM HUKE.
Hakonen, B I'maBe 5 MblI ucciejlyeM CHUJIy aKyCTUYECKOTO WU3JIyYeHUs] U
KPYTANNII MOMEHT Ha MaJIeHbKOI (cy6B0ﬂH0Boﬁ) MOTJIOMIAIOIIEl M30TPOITHOMN

JaCTHUIe, MOrPY’KEHHON B MOHOXPOMATHYECKOE (HO B IEJIOM HEOJHOPOJHOE) MOJie
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3BYKOBBIX BOJIH. OcHoOBHBIMHI YpPaBHEHUAMU ABJIAIOTCA JIMHEAPU30BaHHOC YpaBHEHUE

Hasbe-Crokca u YpaBHECHHUE HEPA3SPBIBHOCTU:

p

Pp0v = —Vp 1-it mopstiox H.-C.
S BoOip = —V - v 1-il HOPASOK yp-11 HEpa3PLIBHOCTH (28)

p=cp yP-€ COCTOSHUS
\

[ne ¢s = 1/4/pofo - ckopoctb 3ByKa. I3 CKA3aHHOIO BBINIE TaK¥kKe CJIEYer, 9To

BEKTOPHOE IIOJIE YJOBOJIETBOPLACT

V xv=0. (29)
Cpe/ia OIMUCBIBAETCST JIBYMSI OCHOBHBIME BeJIMUUHAMU: (1 )IVIOTHOCTBIO Pg, [Po] =
[kg - m™®] u (ii)cxumaemocts By = —%%—‘;, [Bo] = [m?- N~']. Csssb co ckopocTbio

3ByKa JlaHa 4depe3 ¢ = 1//poPo.
OO0beKT BHYTPH 9TOI Ccpejibl MOYKEeT ObITH OIHUCAH COOCTBEHHON ILJIOTHOCTHIO

P1 U CXKUMAEMOCThIO [31. VI00HO HCIIOJIB30BAaTh HOPMUPOBAHHBLIC Oe3pa3MepHbIe
mapamerpbl [88-90]: (i) HOpMasM30BaHHYIO IUIOTHOCTH Py = P1/Po u (i)
HOpMAJIN30BaHHYIO CKUMaeMocTb (1 = [1/Po. [Tocne BBemenms >THX

HOPMHUPOBaHHbIX KBaAHTOB, 1 MOI'Y 3alliCaTb BOJIHOBOI1 BEKTOP BHYTpPU 00beKTa Kak

k1 = koy/P1B1- (30)

OObIYHO TIOTEPU B JIMHEHHOW aKyCTHKE OIPeJe/A0TCd KaK MHUMBINH YJIeH, ecJiu
BOJTHOBOIT BekTOp k1 = K} + 181.  Ilopucmoie Marepuasbl SBISIOTCS OTJIHYHBIM
IPUMEPOM MaTepuu ¢ MOTepsMH B JIMHEHHO#l akycruke [89-92|. O Hako
HCIIOJIb30BAHIE OTHOCHTEJIBHOI IIJIOTHOCTH U CXKHMAEMOCTH II03BOJISIET BBECTH
MoTepH, Kak 3TO JeaeTcs B ONTHKe, Tak uto aag Im(py) > 0, Im(By) > 0
noydaeTcs dacTHma ¢ morepamu, a g Im(py) < 0, Im(B;) < 0 nomyuaercs
yacTula ¢ ycuuenneM (s BbiGopa e '@t),

Vi106HO paccMOTpPETb KOMILICKCHBIC AMILIUTYIBI I MOHOXPOMATHUCCKUX
noneit A(r,t) = Re (A(r)e "), rne A = p,p,v.
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[I1orHOCTD QHEPI'NM 1 KaHOHMYECKNE MOMEHTDI aKyCTI/I‘{eCKOﬁ MOHOXpOMaTI/I‘IeCKOﬁ

BOJIHBI MOXKHO 3arucarh Kak [93]

1
W= 1 (Bolpl* + polv[*) = W + W), (31a)
1

P=_——Im Bop*Vp+ pov* - (V)v] = PP 4+ PV, (31b)
L=rxP, (31c)
S:&Imv*XV, J=L+S, (31d)

2w
rie W — mnornocts sueprun, P — Kadonmdeckas TIIJIOTHOCTH JIMHEHHOTO
mMomenTa, L, S um J — 1ulorHOoCTH OpPOMUTAJLHOIO, CIIMHOBOIO U  IIOJIHOI'O

YIVIOBOIO MOMEHTOB, COOTBETCTBEHHO. 3jlech § HCIOJIb30BaJ HOTalio Beppu
v (V)V = Zi:m,y,z U;V”Ui [9]

Mur IIOKa3bIBacM, qTo €CJIn BBECTU MOHOIIOJIBHY IO n JAUITOJIBHY IO
HOJIAPU3YEMOCTH YACTHILI, TO IPOOJIEMa MOMKET OBITh PACCMOTPEHA AHAJOTMYIHO
XOpolIIo M3y4YE€HHBbIM OIITHYECKHMM CHJIaM M MOMEHTaM Ha OUIIOJIbHBIX YaCTHUllax
Pajes. Mpbl 1osydaeM IpPOCTBIC AHAJIUTUYICCKHE BBIPAZKEHUS IS AKyCTHIEeCKOIl

cuibl (BKJIIOYAs IPJIUEHTHYIO CHJIY M CUJTy DACCEsTHUS) U KPYTSIIEro MOMEHTA!

acoustic _ _% Re iM*Vp — pD* - (V)v —%i m [M*Dl (32)
h Fu+Fp ’ P
' macoustic _ P p (D* X v) — p_k;?’ Im (D* X D) (33)
2 247

rie M - akycTmdeckmit MOHOTOJNBL, a D - akycTudeckmit aumoJsib. B TepMmHax
cevdeHns TOIJIONMEnnsd U KAHOHUYIECKOW IIJIOTHOCTH CIHUHOBOT'O YTJIOBOIO MOMEHTa

MOMEHT OyJIeT paBeH

acoustic __ D gacoustic
T = C50,1S (34)

I'JIe Cs - CKOPOCTh 3BYKa B IpUHUMAalomeil cpeje. HackoabKo M3BecTHO, ypaBHEHUA
(33) u (34) HanucaHbI BIIepBbIe U HMEIOT MHOI'O OOIIEro ¢ ypaBHeHUusIMHU B orrtuke [94].

Wcnonb3yst moJsipu3yeMocTH, onpejgessieMble Kak M = —iwPoyp u D =
XpV, Mbl CBA3BIBaEM JIeiCTBHUE T0JIA Ha MaJEHbKYIO0 YacTUIYy € KAHOHUIECKUMMU

CBOIICTBAMU aKYyCTUYECKOI ITaJIaI0IIeil BOJIHBL:

Facoustic _ Fgrad + Fscat + Frecoil' (35)
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311ech 9acTy rpaJueHTa I PacCesHIs CBI3aHbl C IeiCTBUTEIbHON 1 MHUMOM JaCTsaMU

HOHHpI/IBaLLI/Iﬁ HJaCTHIL:

Fead — Re(oy) VIV + Re(ap) VIV, (36)

Feot = 9 [Im(ocM)P@)Hm(ocD)P(V)} (37)
. k4

Freeol = (Re(ouroc) I + Tm oty o) TT™) (38)
Cs

BaxkHo oTMeTUTb, YTO STH BbIpakKeHusi OOHAPYKUBAIOT TECHYIO CBSI3b C
dyHIaAMEHTATBHBIMEI  [TOJIEBBIMI  CBOWCTBAMM,  HEJaBHO  BBEJICHHBIMU I
aKyCTUYeCKNX II0JIeil:  KaHOHUYECKUM KMIIYJIbCOM U IIJIOTHOCTBIO CIIMHOBOTO
YIJIOBOI'O MOMEHTA. Mpbr cpaBHUBaeM HaM aHAJTUTUYECKHE PE3YJILTATHI C
HPEJILIIYIIIMI pacdeTaMi U TOYHBIM UYNCJIEHHBIM MojeaupoBanueM. Mpbl Tak:ke
paccMaTpuBaeM BayKHDBIN IIPUMED YacTUIbI B HCHAPSIONIEHCI aKyCTUIeCKOI BOJIHE,
KOTOpasi TIPOSIBJISIET B3aMMHO OPTOTOHAJIBHbBIE CHJIBI pacCesiusi (paIunarnoHHOTO
JABJICHNS ), TPAJUEHTHYIO CUJIY 1 MOMEHT OT TIONEPEYHOTO CITIHA TTOJIS.

BakHo oTMETHTD, 9TO MBI TaK:Ke TMPUBOJUM pellleHne psjaa MoJe3HbIX 3a/1ad,
TaKX Kak 3ajiada paccesduus Mu u npub/mkenne KOMILJIEKCHOTO yIJia B aKyCTHKE.

Paccestnue miockoit BoJHBI Ha cdepe MOXKET ObITh PEIIeHO TOTHO (3a1ada
paccestaust Mu). DTo perrieHre CTajg0 Ipe3BblUaiiHO MOMYJISIPHBIM B OITHKE, HO €Il
He B aKyCTUKe. 3JIeCh MBI BHOBb 0OpaTmMcs K 3ToMmy perennio. [lagaroree moJe

MOYKET OBITH pasyioKeHo Kak [95]

pi = poe zkrcose an]n ]43’/“ (COS e) (39)

rie p, = poi"(2n + 1).
Jlioboe m3mytdenne or Tesa, PACHOJOKEHHOIO B Hadasge KOODIMHAT, MOYKET

OBITh OXapaKTEePU30BAHO CyMMaMU MYJIbLTHITOJEH:

Z Z A (W) 2, (kr)Y,™(6, @) (40)
n=0 m=-n
_ o
Cne z, = jn, ha paJaIbHO 3aBUCHMbIC (DYHKIUMKM, KOTOPasl OOBIYHO ABJISICTCS
oanoit n3 cepuuecknx GpyHkimit Beccess B 3aBUCHMOCTH OT 'PAHUYHBLIX YCJIOBHI,
AW (r) = 2,(kr)Y (0, @) — modu chepui. Tanee, cucrema obagaet cuMmmerpueit

HaJl @, TO3ITOMY

(0.9]

plr,w) =Y " Ap(w)zy(kr)Py(cos ). (41)

n=0
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YacTuma ¢ pajmycoM @ OIMKICHhIBACTCA P1 U [31 U HAXOJAUTCS B XKUJKOCTH C Pg U Pg.

['panudnble yCa0BUS CJeLyIONINe

pi _|_ps — pin

| | (42)
v, + v = v

rje v = Vp , mosromy BTOpOe ypaBHeHHe Tpanchopmupyercs B O,p' + O,p° =

zwp

%&pm. PazjioxkeHns jiisd paccessHHOTO T0JIsd W T10J1s1 BHYTPU YaCTUIIBI UMEIOT BU/T

P, w) =Y paan(w)h (kr)P,(cos0), (43)
n= O
ancn ]n k?17”> (COS 9) (44)
rie p, = poi”(2n + 1). T'panuunble yCIOBHSI JAIOT SIBHBIE BbIDarKeHUsl JIJIst

KO3(PUINEHTOB @, U Cp:
- 2
a(kia)ht!) (ka) Yin(kia)hn’ (ka)
__Yin(kia)jn(ka) — jn(kra)j,(ka)
n(kia)h (ka) = vy (kia)hiy (ka)
rie k1 = kyv/pipruy = ]21—;’10 = \/Bl/()l. Ot K03 UINEHTH HAXOIITCs B

coryacun ¢ Kosbdunuenramu A, u B, u3 [96]: a, = A, u ¢, = —p1B,, (noxoxe,

(46)

B [96] ecTb omeuarka, ¢, B JaHHOI PYKOIMCH YIOBJIETBOPSIET TIPEJIEILHOMY CJIYUAk0
n/f= _ Q _ _ i
prpr = B =1) = p').
MO}KHO TaK>Ke HaﬁTI/I ceyeHue KOpCOB paCCGHHHH, SKCTI/IHKHI/H/I 41 HOFHOLHGHI/IH.

OkoHYaATEIbHBII OTBET OYJET CJIEIyIONINM
Ocext = Oabs T Osc, (47)

rge I1IocJjie MHHTErpupoBaHHdsdA Mbl I1IOJYyYHYaeM BbIpazKeHHUE, O4Y€Hb II0XO2Kee Ha

AHAJIOTMIHOE B 3aJlade JIeKTPOMArHUTHOrO paccesaust Mn [97]:

47T
O = o3 (2n + 1)|a,|%, (48)
n:O
AT
Oext = —73 (2n + 1) Re(ay,), (49)
n=0
47T &
G = —7g D20+ )<\an|2+Re(an)> (50)

n=0
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MbI TakzKe IPUBOAUM TaOJINILY CeYCHUI JIJIsi Pa3/JIMIHBIX KOMOMHAINI TOITYJISIPHBIX
aKyCTUYeCKNX MaTepuajioB, KoTopas /JIOJIZKHa IIOMOYb HalTH  IOIXOIAIIIIT
PE30HAHCHBIIT MaTepuaJi: BO3JlyX, BOJa, IMIOPUCTHI KPEeMHUIT, SMOKCUHA CMOJIa 1
asporesib (puc. 5.4 B ocHoBHOM Tekcre). Obiiee MpaBuIo 3aK/II0YAETCS B TOM, 9TO

aKyCTUIeCKN KO3 PUITMEHT TPEJTOMICHUS JTOJIZKEH OBITb Nacoustic = CSOSt / cgamde =

VP 2 1
PaccmoTpum cirydail Masbix 9acTull. B TepMuHax MOHOMOJIBHON W TUIOJILHOMN

MOJIIpU3yeMocTell, KOTOpble OllpesieieHbl B pasjesie 5.3, Mbl MOXKEM IIe€pernucaTb

9TO0 KaK:
Oext = Kk (Im(otps) + Im(ap)), (51)
o= - (Joarl? + o) (52
A 3 ’
Gabszk‘ImOLM—k—4|O(M‘2+kImOCD——4‘OCD|2 (53)
N 41t N 127t

3
[TocKO/IbKY TOJISIPU3YEMOCTH MACIITaAOUPYIOTCS KakK 00beM YacTUIlbl Xy, Xp ~ a°,

Mbl MOXKEM 3aKJ/IOYUTb, 4YTO JIJId YACTUI] C IOTEPAMU (Im(ﬁ),lm(B) ~ 1) na
CyOBOJTHOBBIX pasMepax Oups ~ a° > 0y ~ ab. JlpyrnMu cioBamu, MajeHbKHC
JACTHIILI JIyUIle IOIJIOMAT, YeM paccenBatoT. OgHAKO, st OOJIBININX YACTHI]
paccesiHiie CTaHOBUTCS OoJjiee JIOMUHUPYFOIIIM.

Hakonern, ans m3ydenuns: pesonanca Mu B aKycTHKe I0JI€3HO HCIOJIb30BAThH
[IOJIXO/I KOMILJIEKCHOI'O yIJla, KOTOpBIil mOMOraeT HaillTM Ccujay U MOMEHT B
PACHIUPLIONIEMCS T10JIE € TOMOIIBIO TIOJIyaHAJUTHIECKOro Tojixoa. llajarorias

z

mtockas sosHa pP v (r) = ppe’™ momer ObITh HpeoOpaszoBaHa B IBAHECIEHTHYIO

BOJIHY IIyTE€M IIOBOPOTa €€ apryMeHTa Ha KOMILJIEKCHBIA yroJ

pevan(r) _ pp.w. (PL(Z(X)I') _ poeik cosh(oc)ze—k sinh(oc)x’ (54)

R cosh(a) 0 —isinh(w)
rie R(io) = < ot 0 )
isinh(a) 0 cosh(«)
Omneparop Mu Tak:ke sIBJIsSIeTCS JIMHEHHDBIM, ITO3TOMY Mbl 3HAEM PaCCesIHHOE

1oJie B cjiydae mcue3arolneil majiatonieil BoJIHbL st J11000ii cepbl
pPr) — pi(R(ie)r) (55)

nmosromy © — x' = wcosh(a) — izsinh(x), y — ¢ =y, 2 — 2/ = ixsinh(x) +
il

/
zcosh(o)) mm s cepuyeckux koopaunar r — ' = r, 0 — 0 = cos! =

Y
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I -1y _ 1
@ — @ =tg . A ckopocTh Bcerja OnpejesisieTcss Kak v = mVp. [TockobKy

MBI 3HAEM BCE TOJIsl, Mbl MOXKEM YHCIeHHO TpounHTerpupoBath (1.47¢). Pesymbrar

pacdeTa IpejicTaBjieH Ha puc. 5.6 B OCHOBHOM TeKCTe. 3aMeTHM, YTO BO3MOYKHBI

CJIbI OTTaJIKUBaHMA W IIPUTAKCECHHNA K IIOBEPXHOCTH.

OcHoBHBIE Hy6JII/IKaI_{I/II/I II0 TeMe Auccepranmu

OcHoBHbIE pe3yJIbTaThl 110 TEME AUcCCepTalrul N3JI02KCHBI B 9 Hy6JII/IK&LH/IHX, ns3

HUX 8 IyOJIMKaIil HaXodATCsI B n31aHusx, pernersupyeMmbix Web of Science u Scopus.

B MexiyHapoJHbIX M3IaHUsIX, MHIEKCUPYEeMbIX B 0Oa3ax gaHHbIX Web of Sci-

ence m Scopus:
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Synopsis

General thesis summary

Relevance

The Thesis advances the fundamental knowledge in the research area of opto-
and acoustomechanics. The great technical progress in optical and acoustical ma-
nipulation of objects at the subwavelength scale made it accessible in the numerous
applications: 3D volumetric displays [1; 2|, single atom trapping [3; 4], invasive
manipulation of bio-particles |5], and many more |6]. The rapid development of
this area requires both novel approaches to subwavelength object manipulation and
deeper understanding of fundamental aspects. Among the latter ones, the question
“How exactly is linear and angular momenta is transferred from fields to matter
close to nanophotonic structures?” stands out and becomes one of the central prob-

lems under consideration in this dissertation.

The goal and tasks

The goal of this Thesis is to deepen the understanding of linear and angular
momenta transfer in opto- and acoustomechanics in particular nanophotonic and
acoustic geometries. The following particular tasks were accomplished:

— a deep overview of fundamentals of optical forces and torques, as well as

canonical properties of light was provided;

— a long-range optical binding via waveguieded mode of a nanofiber using

transverse pump was proposed;

— the transfer of spin and angular momenta from light to matter near infinity

cylinder and ideal sphere described;

— the connection between the optomechanical and acoustomechanical effects

during waves scattering at subwavelength objects was established.
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Scientific statements

. An array of subwavelength particles above the waveguide can form a stable
in-line configuration in the field of a linearly polarized plane wave incident
perpendicular to the waveguide axis. The binding stiffness between particles
increases linearly with the number of particles.

. For an orbiting motion of particle around a dielectric waveguide in a viscous
fluid induced by circular polarized fundamental mode there is an optimal
particle radius for which orbiting frequency is maximal. The position of
this maxima does not coincide with the maximum of the canonical total
angular momentum density.

. For a non-absorbing particle geometry of which is axially symmetric with
respect to the direction of incident wave, the mechanical spinning torque
associated with the generation of second harmonic radiation can arise. The
appearance of the spinning torque turns out to be associated with a nonzero
angular momentum of the generated second harmonic field, which appears
due to the specific structure of the crystal lattice of the nanoparticle.

. The acoustic force acting on subwavelength particles are directly propor-
tional to the sum of the density of the linear canonical momenta and the
gradient of the energy density. The acoustic torque on subwavelength par-

ticles is proportional to the canonical spin momentum density.

Scientific novelty

Despite that the linear and angular momenta transfer has been the central

problem of optomechanics since its yearly years, with the development of subwave-

length manipulations methods and geometries new questions arise which require

detailed theoretical analysis. The results obtained within the tasks of this thesis

bring carry particular novelty to the field, namely:

— it was shown theoretically for the first time that an array of subwavelength

particles over a waveguide can form a stable configuration in the field of a

linearly polarized plane wave incident perpendicular to the waveguide axis.
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The stiffness of the coupling between particles increases linearly with the
number of particles;

— for the first time the author has demonstrated that for orbital motion of a
particle around a dielectric waveguide in a viscous fluid induced by circularly
polarized main mode, there is an optimal radius of the particle for which
the orbital frequency is maximum. The position of this maximum does
not coincide with the maximum of the canonical total angular momentum
density;

— for the first time it has been theoretically proved that for a non-absorbing
particle, geometry of which is axisymmetrical under the direction of incident
wave, there can appear a mechanical torque related with generation of sec-
ond harmonic radiation. The appearance of the rotating moment turns out
to be related to the nonzero angular momentum of the generated second
harmonic field, which appears due to the specific structure of the crystal
lattice of the nanoparticle;

— it was shown for the first time that the acoustic force acting on subwave-
length particles is directly proportional to the sum of linear canonical
momentum density and energy density gradient, and the acoustic momen-

tum is proportional to the canonical spin momentum density.

The practical significance

The field of optomechanics constantly requires novel tools for achieving higher
degree of control and manipulations over the nanoobjects. Optical nanofibers is an
excellent example of a reliable platform for studying the light matter interactions.
The Thesis provides a number of significant results which help understanding the
basics of nanoparticle trapping and manipulations close to a dielectric nanofiber
suggesting novel approaches for rotating and arranging nanoobjects. These result
can be also extended to manipulation of quantum systems such as ultracold atoms.
Moreover, the obtained results can help developing novel methods of manipulation
basing on resonant dielectric Mie scatterers, which local fields described in terms of

multipoles, can afford a versatile tool for nanoscale tweezing. Finally, we advance the
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link the developed filed of optomechanics with the acoustomechanics allowing imme-
diate transfer of well-established approaches of optical manipulations to acoustics.

Thus, the results of the work can find their application in the areas where op-
tical and acoustical tweezers are actively used now such as biology, nanotechnology,
quantum manipulations and computing, and many others.

The practical significance of the work lies in the potential increase in degrees
of freedom when manipulating nano- and micro-objects. For example, in addition to
the now common three-position manipulation, another degree of freedom is added
— rotational (orbiting and spinning). The latter becomes possible due to a deeper

understanding of the mechanism of light angular momentum transfer.

Reliability and the validity

The validity of the results obtained is ensured primarily by the confirming the
theoretical findings with the numerical experiments, as well as with the real experi-
ment, where it was possible to do it. In addition, all key results have been published

in highly cited journals and successfully presented at the international conferences.

Approbation of research results

Key research results were presented and discussed at the following conferences:

— METANANO 2021 VI International Conference on Metamaterials and
Nanophotonics. Total angular momenta quantization of dielectric sphere
modes. Saint-Petersburg, Russia / Online. September 13-17, 2021.

— APS March Meeting 2021. Directional scattering reinforced by acoustic
bianisotropy and related acousto-mechanical effects. Online. March 15-19,
2021.

— Quantum Nanophotonics (Benasque). Stable Self-trapping Of Nanoparti-
cles Via Waveguide Modes Of A Nanofibe. Online. Feb 28 — Mar 05, 2021.


https://metanano.itmo.ru/2021/
https://metanano.itmo.ru/2021/
https://meetings.aps.org/Meeting/MAR21/Content/3990
http://benasque.org/2021quantumnanophotonics/
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METANANO 2020. V International Conference on Metamaterials and
Nanophotonics. Saint-Petersburg, Russia / Online. Sep 14-18; 2020. 2
talks:

— Optical binding of nanoparticles near a nanofiber waveguide:;

— Acoustic forces and torques: directional scattering and acoustic

spin.

ONNA: Optical Nanofibre Applications. Self-induced anisotropy of spher-
ical nanoparticle near a nanofiber and related optomechanical effects.
Okinawa, Japan. Jul 3-6, 2019.
Conference on Nanophotonics: Foundations & Applications. Acoustic force
and torque in connection with canonical momentum and spin: an optical
approach. Sep 1-6, 2019. Ascona, Switzerland.
Okinawa School in Physics: Coherent Quantum Dynamics. Self-trapping
of submicron particles near a nanofiber. Okinawa, Japan. Sep 25 - Oct 4,
2018.
JSAP photonics annual meeting.  Dipole nanoparticles with induced
anisotropy as point detectors of the angular momentum of light. Okinawa,
Japan. Nov 30 - Dec 1, 2018.

Author contribution

The author’s contribution to this work consists in constructing theoretical

models, obtaining analytical results such as formulas and plots, analyzing the ob-

tained results, explaining the corresponding physics behind, and also in performing

the numerical calculations. The author not only contributed significantly to the

solution of the problems under consideration, but also to their formulation as it is

a big part of the researcher’s work.

Author contribution among all the chapters is the following:

— In Chapter 1 author presented his own unique point of view on optical forces

and torques.

— In Chapter 2 author performed all the analyses of the eigen modes of a

spherical and cylindrical resonators.


https://metanano.itmo.ru/2020/
https://metanano.itmo.ru/2020/
https://groups.oist.jp/onna
https://frontiers.ethz.ch/
https://groups.oist.jp/cqd/cqd-2018
https://annex.jsap.or.jp/photonics/en/event-schedule/181130-1201
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— In Chapter 3 author with his collegues Mihail Petrov and Daniil Kornovan
found a stable configuration of the finite array of nanoparticles trapped
by a transferse pump and bound by a long-range interaction through the
waveguided mode. Author did the main theoretical and numerical work.

— In Chapter 4 author performed only the theoretical part of the work, while
the experiment was performed in the group of prof. Sile Nic Chormaic at
OIST by Georgiy Tkachenko.

— In Chapter 5 author in collaboration with Konstantin Bliokh has found a
way how to connect acoustic force and torque with canonical momenta of
acoustic fields. Author also did all the theoretical and numerical calcula-

tions.

Thesis structure and number of pages

Thesis consists of the introduction, 5 chapter, conclusion and 13 appendix.
Thesis is 282 pages long, including 60 figure and 6 table. Bibliography consists
of 364 items.

The thesis consists of introduction, four chapters, conclusion, list of references,
and several appendices. In Chapter 1 we present the fundamentals of the optical
forces and torques, as well as the most recent achievements in the field. Chapter 2
is devoted to the spin and orbital angular momenta of eigen modes of a sphere and
an infinite cylinder. In Chapter 3 theory of optical binding next to a waveguide is
presented. Chapter 4 is devoted to the linear and angular momenta transfer of light
to matter, as well as theoretical description of the orbiting motion of a nanoparticle
around the ultra-thing single mode optical fiber. Finally, in Chapter 5 the close
connection between optics and linear acoustics is described in details. We show
how subwavelength acoustic particles could be a measure of canonical momenta
of the incident field.
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Main contents of the work

Increasing interest in optical manipulation of various kind has been stimulated
by a huge success in accessible experimental realizations. Non-invasive particle
manipulation is an important and integral technique in the study of nano- and
micro-objects. Mechanical manipulation is often unacceptable because it can poten-
tially destroy the object under study.

To highlight the importance of this branch of science, we mention that sev-
eral scientists were awarded the Nobel prizes for their achievements in the optical
tweezing and optical manipulation. Among them are Arthur Ashkin in 2018 “for the
optical tweezers and their application to biological systems”; Steven Chu, Claude Co-
hen-Tannoudji, and William Daniel Phillips in 1997 for “for development of methods
to cool and trap atoms with laser light”. Against this background, only recently have
acoustic particle-capture systems begun to approach the same level of control. For
example, the first implementation of acoustic tweezers in a single beam, similar to the
standard optical tweezers, was demonstrated only in 2016 |7]. In the Table 2 a short

summary of accessible particle sizes and required beam powers are shown as of today.

Table 2 — Comparison of typical sized and powers of optical and acoustical tweezers.
Data is from [5].

Method Particle size Power (Wt/cm?)
Acoustic tweezer 100 nm — 10 mm 1072 - 10!
Optical tweezer 10 nm — 1 mm 105 - 107

This dissertation goes deeper in the fundamental direction in this field. The
central question is how exactly the transfer of linear and angular momenta is con-
nected to the opto- and acoustomechanics. Through out this work once of the main
ideas to convey is that small subwavelength particles act as a measurment tools of
the electromagnetic or acoustic field, which is summarized in Figure A. Below we
provide a short summary of each chapter without way too much technical details.

In Chapter 1 we discuss in great details all the formalism and math behind
optical and acoustical force and torque calculation. The most general way of finding
the average over oscillation period force and torque is to find the change of the linear

momentum flux (or Maxwell stress tensor) and angular momentum flux of the total
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Figure A — Concept of the connection between electromagnetic field properties and
optomechanics for subwavelength particles. There is also a full analogy for the

acoustic fields and acoustomechanics

field. The way to do this formally is the following:

F:jé<7'> nds, T:7£<M>nd2 (56)

where the flux tensors for the homogeneous isotropic medium with ¢ and p are

given by [§]
A 1 . . I 2 2
<T> — SRe |eeB'E + uiyHH - 3 (550|E| + ppto|H] ) LT
(Mij) = eimri (Tij) - (58)

Usually, exactly this expressions are used in the full numerical calculations.

To approach any problem analytically, the subwavelength limit can be very
handy. The most important dimentionless parameter here is going to be so-called
size parameter ka where k = nw/c is the wavelength in media with refractive index
n and a is the typical radius of the particle.

In the limit ka < 1 we safely replace the particle by point electric dipole p
and point magnetic dipole m. Once it is done, the integral in Eq. (56) can be taken

(see Appendix H) and the expression for the force and torque are going to be

Fka<<1 = F(e) + F(m) + F(e—m)

1 LLitg k' i
= —Re(p*- (V)E)+ — Re(m* - (V)H) — —,/— Re(p”* X 59
3Tl (V)E)+ B R - (V)H) — 1o M Re(p” scm) (50
N(7c,a)3 ~(ka)d ‘fgr Hp=H N(ka)s}gr Hp=p

where the notation, first introduced by Berry [9], “-(V)” should be read as
A-(V)B =3 > .,.A@V«B; with o being any coordinate system index
(Cartesian, cylindrical, spherical, etc). We stress that the summation is taken over

Cartesian coordinates (see Appendix A for other coordinate systems).
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The optical torque is going to be [9§]

Trocr = T 4 TM), (60a)
1 i3
T — 7 476 = ZRelp* x E] — Im [p* 60b
k2 g

n 1
T = T 4+ T = 5 Re [ppom” > H] -

S

o Im [m* x m], (60c)

where electric and magnetic components are associated with the interaction with
electric p = o E and magnetic m = (upg) Lo, H dipole respectively. The presence

of the scattering terms Tge’m)

is crucial for the non absorbing partilces. For example,
for a small non-absorbing sphere torque has to be zero [10; 11| since no change
of the angular momenta occurs due to the axial symmetry considerations. Exact
cancellation of two terms in Eq. (60) happens once the scattering correction to the
polarizabilites are properly taken into account (see Appendix 4.3.7 for more details).
Finally, after introducing electric o, and magnetic &y, polarizabilities we can
explicitly connect force and torque with the canonical field properties: electromag-
netic energy density W = W + W™ linear momentum density P = P(©) + P
spin angular momentum density S = S(®) + St complex energy flow (or complex
Poynting vector) T = L' (E* x H) [12-14],[15, § 6.9],[16, § 2.20],[17, § 12.5] as

F =F© { i 4 plem) (61a)
() p () (61h)

ext

Flin) — (s0)! Re[ocI%]VW(f%) +2 o

~~ /

. VvV
conservative non-conservative
2 ]{?4

1 1
(eém) _ = v & - Im
F =~ %xn [Re(oce )n2 <P + 2V X S) + Im (oo ) —II (61c)

Torque for the case of S©) = S(m) (i.g. for an elliptically polarized plane wave)
the torque is going to be

T =25 ( oS + oSt ) — %cyabss (62)
Here G((s(’tm ) = olo™ 4 O'S;’;n) are the electric and magnetic parts of extinction, ab-

sorption, and scattering cross sections of the particle. Those are connected with
the polarizabilities (see Appendix B.4).
Manipulated particles can have a complex internal structure in terms of elec-

tromagnetic response [18; 19]. A very distinguished example of such particles are



48

liquid crystals which are greatly discussed in [20]. The most general case is the

bi-anisotropic media can be fully described by constitutive relations [21-24]

D) eeg  ik/c\ (E
(o) (5 ) ) @

where €, U, K are generally complex valued 3x 3 tensors. Here we also took in account
that the medium is reciprocical, so diagonal elements in Eq. (63) are connected. For
non-reciprocal media we encourage to read Refs. [21; 22]. When it comes for the
small particles, it is possible to get dipolar polarizablities (&, 0tm, &) from the bulk

parameters (€, 1, k). That brings to [25; 26]

P B Ke 10 E
(i) = (e ) ()

where &, o4y, & are generally complex valued 3 x 3 tensors. We stress that ot m.c,
are all functions of €, u, and k (see Appendix B for the explicit expressions). The
rediation corrections and optical theorem for bi-anisotropic particles is discussed
in 27, § IL.C].

Force on chiral isotropic partilce is going to be [18; 23; 24; 26; 28-31| (however,
not in every reference the F¢™ is taken into account)

k‘4
F — puon-chiral , © — Re(0) V& + wypf, S — Im(x) ¥ x I - 67[—;|occ\2HRe. (65)

Here Frov-chiral js the force from (61b) but with o, and o, are being functions of
(e, 1, k) (see Appendix B). We also have used the following identity: w?S — 1V X
" = —1Re(H* - (V)E — E*- (V)H) [23; 24]. Substituting (64) in (60) we get
the torque on a chiral isotropic particle [32; 33]

1 1
T = O-abS CS + Yabs cHRe _ydbs cHIm (66)

The generalized chiral absorption cross sections are

(m)

Oabs,c = Gz(xly)s ¢ T Oabs.co (67a)

o) = 2 (m(o) — geloel? — glew?) (6
€€

ol = < () = gl — gl ). (670

y?ﬁs c=2wIm(a) — 2wg. Re(oe ) — 2wy, Re(o, &), (67d)

Yime = 2085, Im (06,5 ) — 2Wg, Im (e} (67e)
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with g = 3 7550 and ¢, = 675”0. We note that for lossless chiral particle with
Im(e) = Im(p) = Im(k) = 0 torque is equal to zero, so no momentum can

be transferred from any incident optical fields to the particle. It is worth noting
that the above conclusion is also valid to any lossless chiral sphere of any size [32,
see Eq. (9)]. This alternatively follows from the optical theorem for chiral parti-
cles [34], for details see Eq. (B.30) in Appendix B. Alternative decomposition can
be found in [31, Eq. (7)].

Surprisingly, in the lower approximation for the lossy particles, due to the
symmetry of the equations, there are simple closed relation between dissipative part
of the force and curl of the chiral and non-chiral parts of the torque which reveals
the direct way of measuring the chiral part of the polarizability, energy flow, and

spin angular momentum density [24, eqs. (15, 16)]

diss

e, m 1
Flom 4 SV X T e ITRE (68a)
C

F(C)

diss

1
+5V X T© = 2w? Im(x,)S (68b)

where for the small absorbing particles with Ouy &~ Oaps We have Fyis = F((E’Srsn) +
Fggs = C0ansP + 2Im( o) (wZS — %V X HRe) is the dissipative (or non-conserva-
tive) part of the force and torque being T = T(®™) 4 T(©) = ©OabsS + 2 Im (o) TIRC.
Here we have used ITTR¢ = ;—22 (P + %V X S) and assumed that P© = P™) and
S = 8™ We note that this relation is written for lossy dipole particles for which
it is possible to neglect the correction recoil (scattering) terms in force and torque.

Also there are many simularities with the theory of linear subwavelength acous-
tomechnics which is discussed in Section 1.7 and in Chapter 5.

Finally, we also make a short overview of the stochastic simulations in Sec-
tion 1.6 which is crucial to consider when real systems are involved.

Performing experiments on optical forces and torques in the real world is al-
ways accompanied with a Brownian forces or stochastic forces Fg. The nature of
this force is laying in huge amount of collisions with smaller particles of a host fluid.
One of the possible dimensionless parameters to identify the potential impact of
the stochastic forces is the relation between particle energy U (kinetic, e.g. due to
the optical pressure or local depth of the potential well of an optical trap) and the
energy of thermal motion [6; 35; 306]:

U Y <1 — Fg has to be considered

Y=17

: (69)
kT vY>1 — Fg is negligible
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where kg is the Boltzmann constant and T is the absolute temperature of the host
media. The estimation for the energy U depends on the dominant type of optical
force: conservative (gradient force) or non-conservative (optical pressure) [6; 37—
40][41, § 3]. In the dipole approximation two different contributions can be seen
from Eq. (61b).

Once conservative force is dominant then the potential depth of the optical trap
for electric dipole particle can be estimated as U = Uy, = (p- &) = 5 Re(oe)|E|%.
Since near the equilibrium point force is linear with respect to the displacement it
is possible to introduce effective stiffness as F' ~ —kAr thus the potential energy
is going to be U, = %KA_T2 |6; 36|, where Ar is the average potential well width
in real space. We have to stress that such analyses is valid only if the conservative
part of optical forces is dominant. Otherwise, if non-conservative forces is dominant
then kinetic energy should be placed in Eq. (1.41). For example, for the plane wave
pressure it is going to be U = Uy, = %‘62, where average velocity of the particle
can be obtained from the equality of optical pressure force and friction force (Stokes’
law [42]) (v) = O'ext§£€ o|E|?/ (67rva), where v is the dynamic viscosity of the host
fluid and a is the particle radius.

Once stochastic force has to be considered, Langevin equation has to to solved
numerically to achieve a proper dynamics simulation. For sure, many realization
of the same numeric experiment are needed to perform further statistical analyses.

The equation of motion is going to be

mir =—(r +Fy +F or L X (70)
v=—>v+ - (Fy+F)
where m is the mass of the particles, ¢ is the firction coeffcient (for a sphere
the Stokes’ law is applicable, so { = 6mva with a and v being particles parties
and dynamic viscosity of the host fluid), F is the optical force, and Fy is delta
correlated stochastic force with zero average, so it suttisfies (Fg(t)), = 0 and
(Fa,a(t) Fap(t + 1)), = 2Ddpd(T). It is important to understand that friction
and stochastic forces are connected with each other on the fundamental level. It
means that the friction coefficient ¢ is connected to the auto-correlation coefficient
D of the stochastic forces as D = kgT'C [43] (see Appendix L for the proof).
Equation (70) can be rewritten as a system of two first order differential
equations with respect to r and v, and solved by any standart numberical pro-

cedure such as family of Euler methods, Runge-Kutta methods or any other [44],
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with some special treatment to the stochastic term Fg [43]. All these methods
rely on descritization of the time line ¢ — {¢;} with a step At. Integration of
(70), i.e. ftt_i“ (1.42)dt, is going to have obstacles since j:i“ Fy (t)dt # Fy(t;)At.

tiv1

The trick is to introduce a new variable [ dtF«(t) = W, with properties which
t;

follows from the properties of the white-noise nature of the Fg: (W;) = 0 and

(Wi - W;) = d;; - 6kgT CAt = b;; - 30124,“ with o« = x,y,z, we note that the later
one is actually a dispersion of normally distributed random value W,. So for the

simple Euler method the final system is going to be

(ti1) = v(t) + Atvit), ow. = V2RTCAL o)y

v(ti1) = v(t;) — AtEv(t) + LW, X = ,Y,2

We stress that dispersion (or quadratic deviation) depends on the descritization
time step At.

In Chapter 2 there is an analyses of the eigen modes of two analytically solved
geometries: sphere and infinite cylinder. In the case of a sphere, the eigen modes
are described by the vector spherical harmonics (VSH) and their eigen frequency

are always complex since it is an open system, so
w=w —id (72)

where 8 /2 shows the inverse average life time of the mode. Eventually, the structure
of the eigen modes of a dielectric sphere resembles the electric and magnetic field
of a single photon with a particular angular momenta.

We analyze the eigen modes using canonical properties of the field introduced
recently in Ref. [45] for the, generally, dispersive media, which is crucial for the case
of metallic particles. The Brillouin energy W, linear momentum P, spin S, orbital
L, and total J angular momentum can be formulated in the manner of quantum

mechanics as follows [15; 45; 46]

W= (bl ) = ; (EeolBP + fHP) (73)
1

P = (0]pIb) = o Im (FeB - (VB + iwgH' - (VH), (74

S = (VI8 hb) = o T (EeoB' x B+ fupgH' x H), (75)

L =rxP, J=L+8, (76)
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and the quadratic form of a square of total angular momenta denoted as [J 2] is

given by

[3%] = (W[ (L + 8)* [w)

[7’2 > EiAoEi+2(E"- V)(r - E)

1=x,Y,2
+ (magnetic part: £ 7). (77)

which was explicitly written for the first time for the best of our knowledge. Each of
the components can be naturally decomposed into the electric and magnetic parts.

Here (€, 1) = (e,1) + wOy (€, 1), the electromagnetic 6-component “wave function”

is given by [b) = 1/g/2 (’V eeoE, v QHOH)T [45; 47-51], where the constant g de-
(2w)~! This vh ¢ ] _
(8mw)—1 ) - 1S photon wave function 1s

written in the manner of Shrodinger-like formulation of the Maxwell equations. In

Gaussian

pends on the unit system: g(SI ) = (

literature there is another way of how the photon wave function may written which
is based on Dirac-like formulation of Maxwell equations [52-57]. As well argued by
Bialynicki-Birula [53; 57| and by Sipe [54], for photons it is best to adopt a wave
function whose modulus squared is the photon’s mean energy density, rather than
being a position probability density, as is the case for electrons [58] which is true
for the both formulations.

We plot the canonical angular momenta density and show that it is an integer
value if ones find the total angular momentum per one photon (Fig. B). Thus, it

opens a door to the investigation of the electric field structure of a single photons
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Figure C — The main concept of Chapter 3: an inline array of subwavelength parti-

cles near a nanofiber with transverse illumination. The trapping potential along the
fiber axis growth linearly with the number of partiels in the chain. The long-range

interaction is achieved via the interaction through the guided mode

by examening the structure of the eigen modes of a sphere. Next, we also analyze
in deep details the guided modes of the dielectric waveguide. In particular, we show
that, as it was with the sphere, the canonical total angular momenta density per

one photon of eigen modes is quantized

B w'J, B w(rPy, + S.)
W w

E(r) ~ ™ — 7 = m. (78)

In Chapter 3 we consider a very peculiar and physics-rich system. It appears
that the finite array of small particles can be trapped in all three directions by a
single beam (see Figure C).

The majority of the optical trapping and manipulation methods are based on
shaping the light field intensity with optical systems such as spatial light modula-
tor which provides formation of the dipole trapping potential. This approach has
been effectively used for manipulation of objects in different environment such as
air, water, and vacuum. However, an alternative method of large ensembles ma-
nipulation and ordering bases on self-assembly approach[59]. The field intensity
pattern forms due to rescattering of the optical fields by the objects resulting in
effective dipole-dipole interactions and consequent structuring of large ensembles.
A typical example of such effect is transverse optical binding [60; 61| where the
nanoparticle can form bounded states under homogeneous illumination. Though
the optical dipole-dipole interactions are quite weak, they can be enhanced and
modified with auxiliary photonic structures [62] such as metamaterials[63; 64] and
metasurfaces|65], plasmonic structures|66; 67|, photonic crystall hollow fibers [68] as

well as dielectric nanofibers|[69]. The latter one represents a versatile platform|70] for
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Figure D — (a) Longitudinal force F) in a single mode regime acting on one of two
particles as a function of distance along the nanofiber axis Az. Red solid line shows
total optical force which takes into account interaction through both free space and
fiber (G’S + éo), green dashed line shows only interaction through the fiber (és)
and blue dash-and-dot line shows only free space interaction (Gy). (b) Equilibrium
solutions. First three branches of the solution for the distance between the two
closest particles ¢ = Az with respect to the total number of particles in a chain
N. (c) Trapping parameter vy, which equals to the effective potential depth of the
trap devided by a thermal energy of the host media k7', and normalized stiffness of

the trap with respect to the number of particles in a chain N

studying light interaction with nanoparticles|71; 72| and atoms[73-75] placed close
to its surface. Utilization of a single mode long-range dipole-dipole interactions pro-
vided by waveguiding systems has already been suggested for self-organization of
atoms and nanoparticles in waveguiding systems|68; 76; 77|.

We propose a geometry of an array of nanoparticles placed close to the ul-
tra—thin fiber and illuminated by a plane wave propagating in the isotropic host
media perpendicularly to the fiber axis as it is shown in Fig. 3.2. Such configuration
allows to take the advantage of the transverse optical binding effect [61; 78|. The
binding happens due to the interference of the fields scattered by the nanoparti-
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cles, and it has been applied for self-organization of nanoparticle ensembles under
the external monochromatic illumination [79-81], including partcle binding near a
metallic surface near surface plasmon polariton resonance (SPP) [82]. In the lit-
erature, a transverse binding has been observed in a large ensemble of dielectric
sub-micron spheres [83] and nanowires |84; 85| with the strong collective interac-
tions through the vacuum.

The nanofiber guided modes allow for accumulation of long-range interactions
between distant nanoparticles due to their extremely low losses, which results in
the increasing particles stiffness with the growth of the nanoparticle chain length.
Moreover, in our particular geometry of binding near a nanofiber, we also suggest
a trapping of the nanoparticles in the radial direction close to the fiber surface by
using two counter propagating plane waves and taking the advantage of nanofiber
photonic jet or lensing effect [86]. In this effect during the transverse excitation
dielectric nanofiber start to act as focusing lens. Thus, we propose a geometry
of the system that allows us to immediately test the claimed effect in a specific
experimental setup using optical nanofibers.

Under the plane wave excitation the nanoparticles form a stable self-organized
periodic array along waveguide axis through the transverse binding effect. We show
that owing to the long-range interaction between the nanoparticles the trapping
potential for each nanoparticle in the chain increases linearly with the system size,
making the formation of long chains more favourable. We show that for an op-
tical nanofiber platform the binding energy for two nanoparticles is in the range
of 9 = 13 kgT reaching the value of 110 kg7 when the chain size is increased to
20 nanoparticles (Fig. D). We also suggest the geometry of the two counter-prop-
agating plane waves excitation, which will allow trapping the nanoparticles close
to the optical nanofiber providing efficient interaction between the nanoparticles
and the nanofiber.

In Chapter 4 three different systems are considered where the transfer of an-
gular momenta from electromagnetic field to subwavelength particles is occurring
(Figure F):

1. OAM transfer. To illustrate the orbital angular momentum transfer we
consider an orbiting microparticle around a nanofiber in which the circular
polarized plane wave propagates. We show that there is a non-zero OAM
density which eventually shows itself in the orbiting motion of the particle.

The result of this section are supported by the experimental data. In the
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Figure F — Three main systems considered in Chapter 4 where the spin and orbital
angular momenta (SAM and OAM) is transferred. From left to right: OAM trans-
fer from the circular polarized fundamental waveguided mode HE;1; SAM transfer
from the transverse spin which comes from the linearly polarized HE;; mode to the
anisotropic particles; non-linear SAM trasnfer from a plane circular polarized wave
via second harmonic generation process, the presence of torque is explained from

the AM conservation law

dipole approximation we can write the orbiting (extrinsic) torque as
To, = 1Fy < L, o< {|EJ? (79)

where 7 is the distance to the fiber axis, F|, is the azimuthal optical force
on the particle, and ¢ is the azimuthal “quantum” number of the mode. For
the fundamental mode HEy,, we have £ = m = 1. The optical parameters
of the fiber and partile radii have been analyzed as well.

2. SAM transfer. The concept of the transverse spin angular momenta is
discussed in this part. The analyses of the SAM density of the linearly
polarized HEq; mode shows that at a particular azimuthal angles there is
a maxima of the radial SAM densities. Here we propose a geometry where
this transverse SAM can show yourself. For this we analyze the rotational
dynamics (spinning dynamics) of an anisotopic particle which is described
by a permittivity tensor €. The choice of anisotropic partcle is motivated by
the desire to reduce any possible heat losses which enhances the Brownian
motion but still have a significant torque. We come to the conclusion that

the torque in the dipole approximation can be written as

T = Tanis + Talignment + Tlosses (80)
=0
where T, o< S is the spinning torque which always tend to rotate the

particle around it’s own axis in the same direction as the SAM density;
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T atignment 15 the alignment torque which tends to align the principle axis of
the permittivity tensor with the main polarization ellipse semi-axes.

3. Non-linear SAM transfer. We start with a model problem of scatter-
ing of a circularly polarized plane wave with frequency w on a dielectric
scatterer with cylinder symmetry (see Fig. G). The plane wave is incident
along the axis of the cylinder and carries the momentum of light of A
photon. Then, due to the symmetry of the problem the optical torque
in the linear regime T(®) acting on the particle is exactly proportional
to the absorption cross section [10; 11] and, in terms of canonical spin
angular momenta density one can write T — c/ng - b S @) where
S@ = mi/(2w) - sso[Eéw)]QeZ is the canonical spin angular momenta
density [45] with azimuthal number my,, = £1 for right(left) circular po-
larization and ng = /e is the refractive index of the host media. Now,
once the excitation wavelength is tuned out of the absorption band of the
material, one can neglect losses, which logically provides the condition of
zero torque. However, in the following we will show that once the higher
order optical processes are accounted there can appear non-zero nonlinear
optical torque even in the geometry considered in Fig. G. In the follow-
ing, we first restrict the consideration to the process of second-harmonic
generation (SHG) which is a dominant nonlinear process in many optical
materials [87]. It manifests in conversion of two photons with frequency
w at the fundamental harmonic (FH) to one photon at the second har-
monic (SH) with frequency 2w, hence there two components of the optical

nonlinear torque
T =T 4 T (81)

where T(@) and T(2®) are the optical torques at the fundamental and second

harmonics, which are appeared to be beautifully connected via the same
scattering coefficients as we show below.

Finally, in Chapter 5 we examine acoustic radiation force and torque on a

small (subwavelength) absorbing isotropic particle immersed in a monochromatic

(but generally inhomogeneous) sound-wave field. Master equations are linearised
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Figure G — The mechanism of the non-linear torque. Circularly polarized plane with
frequency w wave is incident on a lossless cylinder, the later one generates second
harmonic with non-zero angular momentum which is defined by selection rules. Due

to the conservation of the angular momenta there is a non-zero mechanical torque

Navie-Stokes equation and continuity equation:

p

PpOyv = —Vp 1st order N.-S.

§ Bodip = —V -v st order c.e. (82)
p=cip state eq.

\

Where ¢, = 1/4/pofo is the speed of sound. From above it is also follows that

vector field is curl-free
V xXv=0. (83)

Media is described by two main quantities: (3) density pg, [po] = [kg-m™] and
(11) compressibility 3o = —%%—‘;, [Bo] = [mz : N_l]. Connection with the speed of
sound is given by ¢, = 1/v/poBo.

Object inside this media can be described by its own density p; and compress-
ibility 1. It is convenient to use normalized dimentionless parameters [88-90]: (i)
normalized density p; = pi/po and (i) normalized compressibility B; = B1/Bo.
After introducing these normalized quantaties, I can write the wavevector inside

the object as

k1 = koy/P1B1- (84)
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Usually, losses in linear acoustics are defined as an imaginary term if the wave
vector ky = k] + id1. Porous materials are the great example of lossy matter in
linear acoustics [89-92|. However, using relative density and compressibility allows
to introduce losses as it is done in optics, so for Im(p;) > 0, Im(1) > 0 one gets
a lossy particle, and for Im(p;) < 0, Im(f;) < 0 one gets a particle with gain
(for the e~ choice).

It is convinient to consider complex amplitudes for the monochromatics fields
A(r,t) = Re (A(r)e ") where A = p,p,v.

Energy density and canonical momenta of an acoustic monochromatic wave

can be written as [93]

W = = (Bolpl + polv[?) = W0 + W), (852)
P = ﬁ Im [Bop*Vp + pov* - (V)v] = PP 4+ PV, (85h)
L=rxP, (85¢)
S—%Imv X Vv, J=L+S, (85d)

where W is the energy density, P is the canonical linear momenta density, L, S, and
J are the orbital, spin, and total angular momentum densities, respectively. Here I
viVu; 9].

z:z:yzz

have used Berry’s notation v*- (V)v = ).

We show that by introducing the monopole and dipole polarizabilities of the
particle, the problem can be treated in a way similar to the well-studied optical forces
and torques on dipole Rayleigh particles. We derive simple analytical expressions

for the acoustic force (including both the gradient and scattering forces) and torque:

y 1 i ok’
Facoubmc — __ * — oD*. ——Im[M*D
5 Re | =M"Vp—pD" - (V)v on [ ] (86)
FM+FD Fself
and
acoustic * p_k;?’ *
T — Re (D* X v) — oy Im (D* X D) (87)

where M is the acoustic monopole, and D is the acoustic dipole. In terms of ab-
sorbtion cross section and canonical spin angular momentum density the torque

is going to be

acoustic __ acoustic
T = Cq4 a]OSS (88)
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where ¢ is the speed of sound in the host media. To the best of knowledge, eqs. (87)
and (88) are written the first time and have lots of similarities with the ones in
optics [94].

Using polarizabilities, defined as M = —iwRoyp and D = apv, we connect
the field action on a small particle with the canonical properties of the acoustic

incident wave:
Facoustic _ Fgrad + Fscat + Frecoil. (89)

Here the gradient and scattering parts are related to the real and imaginary parts

of the particle polarizabilities:

F&ad — Re(o ) VWP 4+ Re(ap) VWY, (90)
Fet — 9 {Im(ocM)P(p)JrIm(ocD)P(v)] (91)
recoi k4 * e * m

Frecoll — — (Re(oearos) ITRC + Im (ocpr o)) TI™) (92)

Importantly, these expressions reveal intimate relations to the fundamental field
properties introduced recently for acoustic fields: the canonical momentum and
spin angular momentum densities. We compare our analytical results with previ-
ous calculations and exact numerical simulations. We also consider an important
example of a particle in an evanescent acoustic wave, which exhibits the mutually
orthogonal scattering (radiation-pressure) force, gradient force, and torque from the
transverse spin of the field.

Importantly, we also provide a solultion to a number of helpful problems such
as Mie scattering problem and complex angle approach in acoustics.

Scattering of a plane wave on a sphere can be solved exactly (Mie scattering
problem). This solution become extremely pupular in optics, but not in acoustics

yet. Here we revisit this solution as well. Incident field can be decomposed as [95]

pi pikr cos© an]n /{Z’I“ COS e) (93)

where p, = poi"(2n + 1).
Any radiation from a body located at the origin can be characterized by sums

of multipoles:

Z Z A () 2, (k) Y,™(0, @) (94)

n=0 m=—n
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Where z, = 7, hg) are the radial dependent functions which is usually one of the
spherical Bessel functions depending on the boundary conditions, and U, (r) =

2, (k)Y (0, @) are the modes of the sphere. Next, system has symmetry over @, so

(0.¢]

p(r, w) =) Ay(w)z,(kr)Py(cos 0). (95)

n=0

Particle with radius a is described by p; and 31 and located in a fluid with py and

9. Boundary conditions are

pi +ps — pin

| | (96)
vy, + U = vt

where v = Vp , so the second equations tranforms to 0,p' + 0,p° = %&pm.

zwp
Decompositions for scattered field and field inside the particle are

- anan(w)h%”(kr)Pn(cos 9), <97)
Z Pun(W)in(k17) Py(cos 0), (98)

where p, = poi"(2n + 1). Boundary conditions give explicit expressions for a,

and ¢, coefficients:

z’/(ka)2
Jn(kra)h (ka) = vjt, (kia)hl (ka)’

(99)

 yih(kia)ju(ka) — ju(kia)j (ka)
julkia)nY (ka) = vl (kra) b (ka)

where k1 = k+/p1pB; andy = ]21;’10 v/ B1/p1. These coefficient are in the agreement
with coefficients A,, and B, from [96]: a, = A,, and ¢, = —p1B,, (it seems there is

(100)

a typo in [96], ¢, in this work satisfies the limiting case p™(p; = B1 = 1) = p').
It is possible also to find scattering, extinction, and absorbtion corss section.

The final answer is the following

Ocext = Oabs T Osc, (101)
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where after integration we get expression very similar to the identical ones in the

electromagnetic Mie scattering problem [97]:

4 (0.¢]
0o = k—ZZ(an)\anF, (102)
n=0
471 &
Oext = —73 (2n 4+ 1) Re(ay,), (103)
n=0
47T — 9
Ous = —73 (2n+1)(\an| +Re(an)> (104)
n=0

We also provide a table of cross sections for various combination of popular acous-
tic materials which is about to help to find a proper resonant material: air, water,
porous silicon, epoxy resin, and aerogel (fig. 5.4 in the main text). The general rule
of thumb is that the acoustic refractive index should be Maeoustic = €1 /cbarticle —
Veib 2 1.

Let us consider the case of small particles. In terms of monopole and dipole

polarizabilities, which are defined in Sec. 5.3, we can rewrite it as:

Oext = k (Im(apr) + Im(eep)), (105)

o — & <|ocM|2 ; 1|ocD\2) (106)
47t 3 ’

GabS:kImocM—k—4|ocM\2+kImocD—k—4\ocD|2 (107)
N Am PN 127t )

Since polarizabilities are scaled as the volume of the particle oy, oep ~ a3, we can

conclude that for lossy (Im(p),Im(B) ~ 1) subwavelength particles oaps ~ a® >
0. ~ ab. In other words, small particles absorb better than scatter. However, for
bigger particles scattering become more dominant.

Finally, for to study Mie resonances in acoustics, it helpful to implement the
complex angle approach which help to find force and torque in the evanscent field
using semi-analytical approach. The incident plane wave pP™(r) = poe’** can
be transformed to the evanescent wave by the rotation its argument on the com-

plex angle

pevan(r) _ pp.w.(ﬁ(ia)r) _ poeik cosh(oc)ze—k sinh(oc)x’ (108)

n cosh(a) 0 —isinh(o)
where R(io) = 0 1 0 :
isinh(x) 0 cosh(o)
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Mie operator is also linear so we know the scattered field in the case of evanes-

cent incident wave for any sphere
pP(r) =  p(R(i)r) (109)

so x — ' = xcosh(a) —izsinh(a), y — ¥ =y, 2 = 2/ = ixsinh(«) + z cosh(x))

127/, and @ — @' =tg™' L.

or for spherical coordinates r — ' =r, 0 — 0’ = cos™
And the velocity is always defined as v = ﬁVp. Since we know the all the fields, we
can numerically integrate (1.47c). The result of calculation is presented in Fig. 5.6 in

the main text. Note that repulsion and attraction forces to the surface are possible.
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Introduction

Background and motivation

The topic of this dissertation is devoted to the field of optical forces and
torques, as well as transfer of linear and orbital momenta to matter.

The optical manipulation provides unique opportunities for controlling micro
and nanoobjects, as well as single atoms, at the remarkable level of precision. This
field has passed through ages starting from the early astronomical studies by I. Kep-
pler, to formulation of electrodynamical grounds in works of J.C. Maxwell [99] and
later experimental verification independintly by Russian physisist P. N. Lebedev
[100] and by American physicists Nichols and Hull [101; 102]. Notably, the final
results from Nichols and Hull agreed with Maxwell’s theory to better than 1%. The
modern age of optical forces and manipulation has started after early works by A.
Ashkin [103], where he proposed the basic concept of optical manipulation of mi-
croobjects, which later led to a revolution in atomic cooling and trapping [104; 105].
Today the standard methods of optomechanical control with spatial modulation of
electromagnetic field intensity [106] allows one to manipulate single biomolecules
[107] and sort biological cells [108; 109]. Besides, it can be precise enough to visual-
ize the spin to orbital light momentum conversion [110]. The optical manipulation
provides a bridge between classical and quantum physics on the way of cooling of
trapped microscale objects down to the temperature of quantized mechanical motion
[111; 112]. On the other hand, the quantum physics has already gained a lot due
to progress in optical manipulation allowing to trap and study single atoms [113]
or two-dimensional|114] and three-dimensional[115; 116] atomic lattices providing a

reliable platform for studying many-body quantum physics.

Scientific statements

The scientific statements presented for the defence are:
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1. An array of subwavelength particles above the waveguide can form a stable
in-line configuration in the field of a linearly polarized plane wave incident
perpendicular to the waveguide axis. The binding stiffness between particles
increases linearly with the number of particles.

2. For an orbiting motion of particle around a dielectric waveguide in a viscous
fluid induced by circular polarized fundamental mode there is an optimal
particle radius for which orbiting frequency is maximal. The position of
this maxima does not coincide with the maximum of the canonical total
angular momentum density.

3. For a non-absorbing particle geometry of which is axially symmetric with
respect to the direction of incident wave, the mechanical spinning torque
associated with the generation of second harmonic radiation can arise. The
appearance of the spinning torque turns out to be associated with a nonzero
angular momentum of the generated second harmonic field, which appears
due to the specific structure of the crystal lattice of the nanoparticle.

4. The acoustic force acting on subwavelength particles are directly propor-
tional to the sum of the density of the linear canonical momenta and the
gradient of the energy density. The acoustic torque on subwavelength par-

ticles is proportional to the canonical spin momentum density.

Structure of this thesis

Thesis consists of the introduction, 5 chapter, conclusion and 13 appendix.
Thesis is 282 pages long, including 60 figure and 6 table. Bibliography consists
of 364 items.

In Chapter 1 we present the fundamentals of the optical forces and torques, as
well as the most recent achievements in the field. Chapter 2 is devoted to the spin
and orbital angular momenta of eigen modes of a sphere and an infinite cylinder. In
Chapter 3 theory of optical binding next to a waveguide is presented. Chapter 4 is
devoted to the linear and angular momenta transfer of light to matter, as well as the-
oretical description of the orbiting motion of a nanoparticle around the ultra-thing

single mode optical fiber. Finally, in Chapter 5 the close connection between optics
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and linear acoustics is described in details. We show how subwavelength acoustic

particles could be a measure of canonical momenta of the incident field.



68

Chapter 1. Optical forces and torques: theory overview

In this chapter, we give a structured overview on how to calculate force and
torque in electromagnetic and acoustics systems, which is tightly related all other

chapters of the thesis.

1.1 Maxwell stress tensor approach

When it comes to describe the optical force from the electromagnetic field,
in the core we have nothing but a Lorentz force acting on a singe charge ¢ which

moves with a velocity wv:

B(r.t) = pE(r.1) +j(rt) x B(rt), F— / £V (11)
particle

where £ and B are the observable electric and magnetic fields. This law can be actu-
ally considered as a definition of electric and magnetic fields [15; 117|. Here p is the
distribution of charges and currents j satisfying continuity equation V -j+ d;p = 0.
However, such a straightforward approach is hardly applicable once we have a com-
plex distribution of the charger and currents, including the displacement current.
To overcome this computation obstacle we can calculate the difference of the linear
and angular momenta of light before and after scattering on some finite-sized object.
Combining Eq. (1.1) rewritten for the density distributions with the Maxwell equa-

tions we come to the following expression for the force and torque [8; 15; 30; 118; 119]

. d - d
F(rt) = f{ 7 -ndY — — / Pldqy, T(r,t) = f{ M -ndY — — / r x Pidqy
5 dt 5 dt
(1.2)
where n is the outer unit normal vector to the surface X, and T and M is the
Mazwell stress tensor (momentum-flux) and AM-flux tensors given, corrispond-
ingly. The last term is the time derivative of the kinetic momenta of the field
pleld = LE(r,t) X H(r,t). [3; 120-122]. An integration should be performed over
an arbitrary closed surface > with the outer normal n, which surrounds the par-

ticle. Generally, this force is a consequence of a change in momentum carried by
photons [35; 103; 121].
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Figure 1.1 — The change in the flux of the momentum energy tensor and the flux
of the angular momentum density during integration through the closed surface X

shows what force and torque acts on the particle with the parameters € and p

In real life application the most common source of the electromagnetic fields
are the monochromatic fields oscilating with frequency w for which the description
via complex amplitudes are the most common and handy. The connection between
real observable fields £(r, t), H(r,t) and their complex amplitudes E(r, w), H(r, w)

are given as
E(r,t) = Re [E(r, w)e "], H(r,t) = Re [H(r, w)e "] (1.3)

and the same for any other time-dependent value. A time average of a product of

any two real valued functions expressed via its complex amplitudes can be written

as follows (A(r,t)B(r,t)) = 3 Re[A*(r,w)B(r, w)].

The time average force for the monochromatic case is going to be

(F) = jé (T)nds, (T)= 7{2 (M) nds (1.4)

where the flux tensors for the homogeneous isotropic medium with € and p are

given by |[§]
- 1 * * i 2 2
<T> = —Re |eggE'E + ppgH'H — = (££0|E| + upo|H ) , (1.5
2 2
(Mij) = eimri (Tij) (1.6)

In the case of full numerical calculations via formulas (1.4) the best results are
usually achieved by creating a closed surface right next to the scatterer (even with the
same shape) to maximize the number of integration point to enhance the accuracy.

We note that force can be rewritten in terms of the far-field calculations as (F) =
ST as [129]
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Once the integration surface is chosen to be a sphere, expressions above could
be simplified as [124-128]
2

1
(F) = % Re/ a0 [esoE;fE + o H7H — o (e€o|E|* + ppo|HJ?) ér] (1.7)
41

3
(T) = —% Re/ d§2 [ (eeoEyEgp + unoH, Hy) &y — (e€oEr Ey + upoH, Hy) é(p]
" (18)
where f 1 A€ = f027: deo fon sinddd. We emphasize that the result does not depend
on the radius of the control sphere r. Later on in the work we will omit the (...)
assuming only time-averaged values.

There is a long-lasting debate on how to calculate momentum of light inside
medium. We are not going to go deep into this topic since it is out of scope this
dissertation. However, we present some main points.

Initially it was started by Abraham [129; 130] and Minkowski [131; 132] in
their classical works. It is considered that Minkowsky tensor is responsible for
the mechanical action.

Fundamentally optical force and torque is caused by the change of linear or
angular momenta of scattered photon. A major part of main pioneer experiments
on optical manipulation were performed with suspended particles in fluids. The well
established theory for the free space [133] met obstacles when question “what is the
momentum of a photon in a bulk medium?” had been raised [46; 134-136]. The
situation gained much in complexity when the effects of dispersive medium came
into the play [45; 46; 137-139] and even dispersive bianisotropic medium [140].

Eventually, in the optical force community, the Minkowsky form is chosen
for the vast majority of applications [121]. For example, in [141] Sukhov used
Minkowsky tensor to calculate force on a floating particle. However, using any
approach the correct answer to the force can be obtained once all the correct con-

tributions are considered.

1.2 Subwavelength limit

Optomechanics deals with scatterers of various sizes. Depending on the size

of a sphere varius approaches can be implemented. In this section, we will focus on
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the subwavelength limit of such scatterers. Equation (1.4) is a convinient way to
calculate force and torque numerically. However, it is usually too complex for the
elegant short analytic answers. The situation is different once we apply a mutipole
decomposition to the incident and scattered fields [142-145].
We start from the simple isotropic small particle with dominant electric p
and magnetic m dipoles. The general small parameter here is the so-called size
W

parameter ka, where k = /eus; is the wavelength in the host media and a is the

radius of the particle. There are very distinguished limits for different cases:

(
ka <1 — dipole approximation

§ ka ~1 — Mie resonant regime (1.9)

ka > 1 — ray approximation
\

Sufficiently small particles with ka < 1 posses only electric and magnetic dipole
responses. For isotropic particles electric p and magnetic m dipole moments depends

are linear functions of incident electric and magnetic fields (see Appendix B)
p=aFE, m= (up) o, H. (1.10)

All the electromagnetic response properties of the particles can be conveniently hid-
den in the polarizabilities &, and «,. Here we have used slightly different definition
for the polarazability to get more symmetric further answers, see comments on the
connection with the literature in Appendix B. For spherical particles in free space
Mie theory gives the exact answer for the n-pole polarizability [30; 146—151] For

ol

the case of small particles the we can write &, = 47meg - is5a; ~ ( ) + i

3k
(0|2

(0) o Admeey €p—¢€
ocm‘ , where o’ ~ 73 sp+2£(ka) and

67155

p o~ ol gk

and o, = 41y -

3k3 67‘[up
ol ~ 4rtupoa’ ;LPJFQH + O((ka)®) ~ 4250 2= (ka)® ‘uzupzl are the electrostatic elec-
tric and magnetic polarizabilities (see Appendix B for more general case and more
details).

Expression (1.6) contains the full field, which can be decomposed into inci-
dent and scattered as E = Eg + Eg. (see Appendix H for a detailed derivation).
The surface integral can be taken in the limit of subwavelength particles such that

only electric and magnetic dipoles are excited. As a result, we get the force [121;
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142-145; 152; 153]

Froct = F© 4+ F) 4 plem)

1 I S
— ZRe(p* - (V)E) + "2 Re(m* - (V)H) — — , |2 Re(p*
Sl (V)E)+ E5 e (V)H) - o M Re(p  m)
~(ka)? ~(ka)® for py=np N(k‘a)S‘fgr Hp=1t

where a very handy notation (V) should be read as A - (V)B
Y o ZZ:MZ A;é,VB; with o being any coordinate system index (Cartesian,
cylindrical, spherical, etc). We stress that the summation is taken over Cartesian
coordinates (see Appendix A for other coordinate systems). It was initially intro-

duced by Berry in Ref. [9]. The optical torque can be decomposed as follows [98]
T =T 4 T®), (1.12)

where electric and magnetic components are accociated with the interaction with

electric p = o« E and magnetic m = (upg) o, H dipole respectively

3
T — 7 4 ple) — * w B — Im [p* 1.1
o + T Re [p* x E] Toreer m [p* X p|, (1.13a)
in 1 K
T = T T = Re [upm® x H] - 1‘2*7‘[*0 Im[m* xm],  (1.13b)

Here k = 2,/en. We define magnetic polarizability &, in a manner of Bekshaev at
al. [120; 121; 154] in contrast to some conventional definitions [143; 150; 155; 156]
to achieve more symmetric final expressions. Second term T is responsible for the
re-radiation or recoil or scattering torque. Once the particle is significantly lossy,
one can omit the recoil term as it is done in many works [8; 15; 120]. Otherwise,
is it vital important to consider the recoil term to obtain the correct answers. In
particular, in the case of homogeneous small sphere torque will be proportional
to the absorption but not the extinction cross section as it should be [157]. It is
impossible to transfer any spin momentum to the lossless homogeneous sphere and
hence the torque is zero T = 0. We note that there are also gradient terms of the

torque 98] which are not discussed here.
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M Altering flow of the
pr— stored energy
Froci = ¢ Re()VW +2c0eqP +(mag. part) /

3

1 1
_6C—~Tk4 Re(aeotr,)(P + §V X S) + Im(oceocfn)& Im(E* X Hﬂ

Figure 1.2 — Artistic view of the optical force decomposition for the small particles

1.3 Small particles as a measure of canonical momenta of light

Small subwavelength particles serve as a universal tool for detecting local field
properties [158-167]. The main canonical properties of the fields for the case of

monochromatic fields are as follows [45; 46; 168]

W= we wh = % (eeoE]* + ppoHJ?) | (1.14)
P = PY4+pPW = i Im[eeoE* - (V)E + uuoH* - (V)H],  (1.15)
S = S s — ﬁlm [eeoBE* x E 4+ ppugH* x H] (1.16)
L = LO+L®™ =rxP, (1.17)

n
& = o —Im(H" E), (1.18)

where W is the energy density [15, § 6.8], [169, § 80| (the so-called Brillouin for-
mula), P is the canonical linear momentum, and S, L are the canonical spin and
orbital momenta; & is the helicity [49]. The case of disspersive media is greatly
discussed in Refs. [45; 170].

It is often convenient to write optical force and torque in terms of the canonical
properties of the fields defined above [45; 46; 154]. This can be achieved by allocating

terms which are proportional to the real and imaginary parts of the polarizabilities.
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The force is going to be

F =F© 4 p) L plem) (1.19a)

e

Fln) = () Re[oce VW (i )+2 o

HHo
\

;pP@) (1.19b)

J
~~ \ -

" ~~
conservative non-conservative
2 k4

1 1 1
Flem) _ o [Re(oce )n2 (P + 5V X S) + Im (o ) ™| (1.19c)

Here we have used a decomposition of the kinetic field momentum Pfeld = 1 LI1fe =

5 (P4 3V x 8) [9; 24; 171], where I = 5 Re (E* x H) is the complex Poyntmg

vector [12-14],[15, § 6.9],[16, § 2.20],|17, § 12.5]. The divergence of IT™ is equal to
2w times the difference of the mean values of magnetic and electric densities which
follows from the complex Poynting theorem, so IT™ describes the alternating flow
of the stored energy [15, § 6.9]. Next, torque for the case of S = S (i.g. for an
elliptically polarized plane wave) the torque is going to be

8 4o

T =25 (ms SE)) = S, (1.20)
n

abs

em) _ lem) | (em)

Here 0. = = Osc abs

are the electric and magnetic parts of extinction, ab-
sorption, and scattering cross sections of the particle. Those are connected with the

polarizabilities as (see Appendix B and B.4)

(e , (m) _ K k
Oext = Opgp + Opyg = — 1 o —1 m 1.21
t t T Oext e m<“)+up{) m ( oty ) ( )
© , g K 2 K 2
Ose = Oy + Oy = ——| e m 1.22
+ 67'[(550)2'0( ’ 67-[(““0)2’06 | ( )
and the electric and magnetic absorption cross sections o, = ng)s + G;bs) are
o k k3 m k k3
= o [l = ol ol = () - o
E€0 07TEE) LLLLo O7TLLLL
(1.23)

We remind that in this work polarizabilities are defined as p = a.E and m =
(npo) " too, H. We note that Eq. (1.20) is the exact answer for the spherical particles
of any size. It is possible to show that ng)s ~ Im(e) and cr;bs) ~ Im(w) [144; 145;
172]. At this step it is crucial to take into account the correction terms in the
expression of the torque (1.13a) and (1.13b). It means that for azimuthaly isotropic

particles in linear regime with Im(e) = Im(p) = 0 spinning torque is going to be
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zero, i.e. T = 0. A similar decomposition to relate canonical properties of the fields
and mechanical action was also made in acoustics [173].

In the literature different decomposition of the optical force (1.19b) can be

found [121; 143; 174; 175 F(8) = (20)1 Refol)]wwtn) 4 olm)nppre

Kio ext

(I%)c c : : : e 1 *
Oxt 7V X S(m), where n = /et is the refractive index, and ITR® = sReE* x H

ext
is the Poynting vector which can be decomposed as C%HRQ = # (P + %V X S) due
to the non-uniform helicity [9; 154] with C%HRQ = Pheld ig being the kinetic field
momentum [168]. This decomposition is greatly analyzed in [175]. Here we want to
stress that the non-conservative part of the dipole force (F(e) and F(m)) is always
colinear with the canonical linear momenta P but not with the kinetic momentum
density Pield = C%HRG. To observe the curl-spin contribution experimentally one
needs to consider higher order corrections which is present in F(¢™). The simplest
configuration to get the non-uniform helicty is to create an evanescent wave via cir-
cularly polarized plane wave by total internal reflection. In such geometry the lateral
curl-spin force arises [176]. However, lowest dipole order is not sufficient since there
is going to be the exact lateral component from Poynting vector contribution but
with different sign. To get first non-zero lateral contribution one needs to consider
F™) term. In 2014, the experimental scheme [120] was proposed, and already in

2016 the experimental result [13] was published.
1.4 (Bi-)anisotropic particles
1.4.1 Chiral particles

Manipulated particles can have a complex internal structure in terms of elec-
tromagnetic response [18; 19]. A very distinguished example of such particles are
liquid crystals which are greatly discussed in [20]. The most general case is the

bi-anisotropic media can be fully described by constitutive relations [21-24]

O-(5.06 -
B —ik' /e Uy H
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Figure 1.3 — Schematic of the “direct” and “crossed” momentum transfer interpreta-

tion of optical forces and torques applied to a chiral dipole. The nonchiral component

X,y Of the dissipative force (the torque) couples the linear (angular) momentum

of the light to the linear (angular) momentum of the particle, while the chiral com-

ponent o of the dissipative force and of the torque cross-couples linear to angular

momenta in both directions. Adopted from [24]. The explicit dependicy is written
in egs. (1.26) and (1.27)

where €, W, k are generally complex valued 3 X 3 tensors. Here we also took in
account that the medium is reciprocical, so diagonal elements in Eq. (1.24) are
connected. For non-reciprocal media we encourage to read Refs. [21; 22]. When it
comes for the small particles, it is possible to get dipolar polarizablities (e, 0, )

from the bulk parameters (e, i, k). That brings to [25; 20]

EARES I
Lupym —10, Oy H

where &, o4y, & are generally complex valued 3 x 3 tensors. We stress that ot m.c,
are all functions of €, i, and k (see Appendix B for the explicit expressions). The
rediation corrections and optical theorem for bi-anisotropic particles is discussed
in 27, § IL.C].

Force on chiral isotropic partilce is going to be [18; 23; 24; 26; 28-31] (however,
not in every reference the Fe™ is taken into account)

. k4
F = provehinaly @ poo )W wyRe S Im(a)V xHRe—67c|occ\2HRe. (1.26)
n n

abs,c

Here Frov-chiral ig the force from (1.19b) but with o, and oy, are being functions of
(e, 1, k) (see Appendix B). We also have used the following identity: w?S — %V X
II" = —1Re(H*- (V)E — E*- (V)H) [23; 24]. Substituting (1.25) in (1.12) we
get the torque on a chiral isotropic particle [32; 33|

1 1
T — EG&bS,CS —l_ _YRe HRe + _yIm ].—.[Im. (1.27)
n w w

abs,c abs,c
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The generalized chiral absorption cross sections are

Oabs,c = G;(i(;))s,c + Gz(;’t?s),m (1283)
e k
O-Z(ib)sp - 8_80 (Im((xe) - ge|(xe‘2 - gm‘(xc|2) ) (128b)
m k
O-z(),bs),c - 8_80 (Im(cxm) - gm’ocm|2 - gel(xc’2) ) (1.28C)
Yie = 2w Im(ot) — 2wg. Re(aea}) — 2wg, Re(ommay), (1.28d)
Y = 2wg, Im(aun o) — 2wg, Im (oot (1.28¢)
with g. = 3 f; and g, = g ﬂkjuo' We note that for lossless chiral particle with

Im(e) = Im(pn) = Im(k) = 0 torque is equal to zero, so no momentum can be
transferred from any incident optical fields to the particle. It is worth noting that the
above conclusion is also valid to any lossless chiral sphere of any size [32, see eq. (9)].
This alternatively follows from the optical theorem for chiral particles [34], for details
see eq. (B.30) in Appendix B. Alternative decomposition can be found in [31, eq. (7)].

Surprisingly, in the lower approximation for the lossy particles, due to the
symmetry of the equations, there are simple closed relation between dissipative part
of the force and curl of the chiral and non-chiral parts of the torque which reveals
the direct way of measuring the chiral part of the polarizability, energy flow, and

spin angular momentum density [24, eqs. (15, 16)]

diss

e, m 1
Flom 4 SV X Tl e ITRE (1.29a)
C

F(C)

diss

1
+5V X T = 2002 Im(,)S (1.29b)

where for the small absorbing particles with Ouy &~ Oaps We have Fyis = Fé?srsn) +
F((ﬁgs = CoansP + 2Im( o) (wQS — %V X HRC) is the dissipative (or non-conserva-
tive) part of the force and torque being T = T(em) L ) = EOabsS +2 Im (o) TIRC.
Here we have used ITR¢ = 5—22 (P + %V X S) and assumed that P© = P™ and
S = S We note that this relation is written for lossy dipole particles for which

it is possible to neglect the correction recoil (scattering) terms in force and torque.
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1.4.2 Geometric anisotropy and particles made of anisotropic crystals

To identify the electric and magnetic dipole polarizabilities of the uniaxial
sphere in a simple way, we need to visualize the electric and magnetic modes in

terms of its electric field.

Figure 1.4 — Simplification of the anisotropic bipolar sphere. We take into account
only electric p and magnetic m dipole moments, and also neglect the bipolar struc-

ture of the anisotropy. For this geometry €., = E| > Eyyze = €L

We suppose that the permittivity of the particle is given by

€xz 0 0
E=| 0 ¢ 0|, €xz > Eyy = €22, u=1
0 0 e,

and, hence, the optical axis (OA) is along x-axes.

Since we want to achieve simple result which can be analyzed analytically
rather than purely numerically [20; 124-126; 177-196|, we assume that the field in
the particle is almost homogeneous, so the electric field "feels" only one or another
component (or its average) of the particle permittivity €. This assumption could lead
to the errors for the bigger particle once higher order dipole moment components
are arose, such as toroidal dipole moment [197; 198|.

We fix the orientation of the principal axes of the particle which are codirec-
tional with xyz-axes. This leads to the electric dipole polarizability components as

of) = o (ew), o) = o)(ey)
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and magnetic dipole polarizability components as

m m m m Exz + €
o) = ol (ey), o‘?(;y) - (x?(JZ/) <Tyy)

which seems to be a very counterintuitive results but still holds true. To the best
of our knowledge such simple and elegant expressions for the magnetic dipole mo-
ments haven’t been published in the literature. The effect of elongation of the mode

profile, as shown on the figure above, is indeed takes place for the bipolar droplets
(e.g. see [190, fig. 3]).

Material anisotropy and geometrical anisotropy

The problem is solved analytically in the Bohren & Huffmann book in the elec-
trostatics approximation. Let us compare an isotropic ellipsoid and an anisotropic
sphere. The polaziability of both particles is a tensor, so in the diagonal form they

are (here we are talking only about electric polarizabilities)

(‘e),ellipsoid _ 4 b &p — € 1.30
% Teeabes 3L;(ep —€) (1.30)
(.e),anis.sph. — 4 3 €pj — € 131
(X] ma €p.j + 2¢ ( . )

where a, b, ¢ are the ellipsoid semi axes, and L; are the geometric factors
abc [ dg
L = — : 1.32
> )y @raf@ 13
abc [ dg
Ly = — / : 1.33
> = 2 ), Wrol@ 13
be [ d
Ly = ¢ q (1.34)

2 Jo (@+aq)f(q)

where f(q) = v/(q+ a?)(q+b%)(q+ c2). Although there are similarities between

the two types of particle, they are not completely equivalent: given an anisotropic

sphere in a particular medium, there does not exist, in general, an equal volume
ellipsoid with the same polarizability. That can be understood from the following
facts. Anisotropic sphere is defined by siz independent parameters (real and imag-

inary parts of €, ;), while there are only four parameters for an isotopic ellipsoid:
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the real and imaginary parts of €, together with two geometrical factors. In the
special case of a nonabsorbing sphere or when two principal values of the permit-
tivity tensor are equal an isotropic ellipsoid can be found — theoretically, at least
— with the same polazability tensor.

Finally, the case of anisotropic ellipsoid the axes of which coincide with the
principal axes of its permittivity tensor can be described as
€pj — €
3e +3L;(ep; — €)

is.ellip.
ocge)’amse P = dmeeqabe

(1.35)

The most general case of anistoprotic ellipsoid is considered in [199].

1.5 Bichromatic force

The concept of the bichromatic force is well developed in the area of atom trap-
ping community [200-209], where light scattering on quantum system is considered.
However, here we focus only on the classical electrodynamics.

Suppose we have two real fields A and B. For each of them we have two

contributions at different frequencies, so

A(t) = Re[Af*Ve 1] + Re[A[“ e 2!] (1.36)
B(t) = Re[By"Ve 1] 4 Re[B{** e~/ (1.37)

Force is a quadratic functions of the fields. We are interested in the time average

force which is going to have beatings at the slow frequency once frequencies are close:

(AB) R % Re [Agwﬂ ngﬂ} n % Re [ Ale2) ngﬂ

fast time

1 B _ .
5 Re | (AFY B + AP B ) eder] (138)

where Awt = (w1 — wo)t is the so-called slow time in the system.
Averaging only by the fast time will leave the last term in the (1.2), so it
is helpful to know

d A , _ _
—AB — __(U Im |:6—2Awt (A(()w2)B(()w1) + A(()wl)B(()wQ)>:| (139)
dt fast time 2
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In the dipole approximation, starting from [8, Eq. 13.30] we have

d
(F)fast time = <p¢V&- + b X H>

fast time

7

1. :
= SRe |p"VEY OV EP)]

1 ; * *
_|_§ Re [e—zAwt (pi (Z)VEZO) + pz('l)VEi (2))}
Aw

- Im [e—iAwt <p*(2) x HU 4+ p 1) x H*(2))} (1.40)

1.6 Dynamics simulation with a stochastic force

Performing experiments on optical forces and torques in the real world is al-
ways accompanied with a Brownian forces or stochastic forces Fg. The nature of
this force is laying in huge amount of collisions with smaller particles of a host fluid.
One of the possible dimensionless parameters to identify the potential impact of
the stochastic forces is the relation between particle energy U (kinetic, e.g. due to
the optical pressure or local depth of the potential well of an optical trap) and the

energy of thermal motion [6; 35; 36]:

U Y <1 — Fg has to be considered
Y =—. (1.41)
kpT v>1 — Fy is negligible

where kg is the Boltzmann constant and T is the absolute temperature of the host
media. The estimation for the energy U depends on the dominant type of optical
force: conservative (gradient force) or non-conservative (optical pressure) [6; 37—
40][41, § 3]. In the dipole approximation two different contributions can be seen
from Eq. (1.19b).

Once conservative force is dominant then the potential depth of the optical trap
for electric dipole particle can be estimated as U = U, = (p- &) = 5 Re(oe)|E[%.
Since near the equilibrium point force is linear with respect to the displacement it
is possible to introduce effective stiffness as F' ~ —kAr thus the potential energy
is going to be U, = %KA_T2 |6; 36|, where Ar is the average potential well width
in real space. We have to stress that such analyses is valid only if the conservative

part of optical forces is dominant. Otherwise, if non-conservative forces is dominant
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then kinetic energy should be placed in Eq. (1.41). For example, for the plane wave
pressure it is going to be U = Uy, = %ﬂ?, where average velocity of the particle
can be obtained from the equality of optical pressure force and friction force (Stokes’
law [42]) (v) = GS&%&&MEP/ (67rva), where v is the dynamic viscosity of the host
fluid and a is the particle radius.

Once stochastic force has to be considered, Langevin equation has to to solved
numerically to achieve a proper dynamics simulation. For sure, many realization
of the same numeric experiment are needed to perform further statistical analyses.
The equation of motion is going to be

mi=—(i+Fy+F  or Y (1.42)
v=—%tv+L(Fy+F)

m m

where m is the mass of the particles, ¢ is the firction coeffcient (for a sphere
the Stokes’ law is applicable, so { = 67tva with a and v being particles parties
and dynamic viscosity of the host fluid), F is the optical force, and Fy is delta
correlated stochastic force with zero average, so it suttisfies (Fg(t)), = 0 and
(Fst,a(t) Fsep(t + 1)), = 2D04pd(T). It is important to understand that friction
and stochastic forces are connected with each other on the fundamental level. It
means that the friction coefficient C is connected to the auto-correlation coefficient
D of the stochastic forces as D = kgT'C [43] (see Appendix L for the proof).
Equation (1.42) can be rewritten as a system of two first order differential

equations with respect to r and v, and solved by any standart numberical procedure
such as family of Euler methods, Runge-Kutta methods or any other [44], with
some special treatment to the stochastic term Fy [43]. All these methods rely on
descritization of the time line ¢ — {¢;} with a step At. Integration of (1.42), i.e.
ftii“ (1.42)dt, is going to have obstacles since ftii“ Fy(t)dt # Fg(t;)At. The trick
is to introduce a new variable

ti+1

/thSt(t) =W, (1.43)

t;

with properties which follows from the properties of the white-noise nature of the
Fsti <Wz> = 0 and <VVZ . W]> = 6@' . GkBTCAt = 61’]’ . 3012/ch with o« = xr,Yy,z, we

note that the later one is actually a dispersion of normally distributed random value
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Wy. So for the simple Euler method the final system is going to be

I‘(Zfzqu) = I'(tz) + AtV(ti), Ow, =V QkBTCAt

| (1.44)
V(tﬂ_l) = V(tz) — At%V(tl) + %Wl X = I,Y,z

We stress that dispersion (or quadratic deviation) depends on the descritization
time step At.
In literature a different but equal approach can be seen [210]. It appears that

it is possible to integrate the equation of motion as

tiv1

t;

where R; is a normally distributed random function with the dispersion 0% =

(R; - R;) which depends differently on the time discretization step (R;-R;) =

Oij - 2k§tTC. We emphasize that this approach gives exactly the same result as men-

tioned above. For the exact derivation the reader is encourage to go through the

reference [211].

1.7 Acoustic force and torque

A big part of this work is dedicated to acoustomechanical effects, and thus,
here we provide a brief overview of forces and torques acting on acoustic scatters

and will provide the full analogy with the optomechanics.

1.7.1 Rigorous approach for the force

The most general approach to the force generated by an acoustic wave is
given by the integration of the momentum flur density tensor of the sound field
I1;; = pd;i + pv,v; though the surface ¥ enclosing the object [212; 213]:

Fj = —%dSHﬁni, (146)
by
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where n is the outer normal unit vector. The cycle average force up to the second
order can be written as [214-217]

(F)) = —fzds( [% (p*) — % <v2>] 5+ Po <vjvi>>ni (1.47a)

_ das{m™\,, - 7{ s (e . 1.47h
a5 (W)  as (G) (L47)
- — ji dS( “50 <pips> — Po <v;’€v,‘§>] dji + Po <vjvf + U;Uf> )nz —

— }%1_{{)10 ) dSpo <vjvf> ng, (1.47¢)
where (p,v) = (p,v)" + (p,v)® are the total fields outside the object. Expression
(1.47¢) is true only for the limit of the infinite radius of the integration sphere X

(see details in Ref. [214]). In other words, one uses the relation

— 7{ dSHﬁelf)ni = — 7{ dS( [@ (p2) — Po v§>] dji + Po <vjvf )nz
5 5 2 2

— lim dsq@ (p2) - 2 Ug>] S50+ po (vt >n
g 2 2 J

R—o

— — lim dS(Po <U§Uf>)m # ]{ ds (po <v§’@f>>nu<1-48>
% b

R—o0

which is more convenient for theoretical studies. However, eq. (1.47a) is still kept in
this work, which is correct for the any surface radius R which contains the scatterer,

since it is more suitable for the numeric computations.

1.7.2 Rigorous approach for the torque

In the similar manner to the force, the acoustical torque is defined by the flow
of flux density of angular momentum M = eierilly; (M =r X f[) through the
surface X enclosing the object [167; 212; 218-221|

T; = _%dSMjinja (1.49)
5

where 7,5 represent Cartesian coordinates and n is the outer unit normal vector to

the ¥. The flux density of angular momentum obeys the conservation low d;(pr X
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v)i + V- M;; = 0 and for the monochromatic fields of the nonviscous fluid it is
divergenceless V - (M) = 0 [221].

Since one is free to choose the integration surface, we choose sphere with
radius R > a centered at the origin where the particle is, which simplifies expres-
sion for the torque to

(T) = — 2R3 Re 7{ dQ(n - v*) X nv, (1.50)
2 i
where dQ) = sin 0d@d0, v = v + v is the total velocity field, and assumption of

monochromatic fields is used.

1.7.3 Acoustic pressure from a plane wave on a sphere

An illustrative example is the derivation of acoustic pressure from a plane

ikr cos©

wave p' = ppe acting on a sphere with p; and 3;. Using solutions (5.11)—(43)

obtained above and good amount of recursion relations of the special functions I get

press QWP%BO . *
FPres = === > | (2n+ 1) Re (an) + 2(n + 1) Re (aan41)
n=0

This expression supports imaginary parameters of the particle, i.e. it can take into
account absorption. It was successfully verified by numerical evaluation of the initial
expression (1.47¢). Moreover, FP™* is always positive for any p; and (3; (without

gain). Decomposition for the small absorbing particle gives us

27TB()(,ZCCL)3 = Im(()l)

FPos = ——— (1 9—-——"s O((ka)® 1.51
ka<1 32 m (B1) + 201 + 1 + O((ka)®) (1.51)
Here only ag and a; terms are considered since they have the order of (ka)® and
discarted the interference term since it is the order of (ka)® for the absorbing particle.
In the case of non-absorbing particle with Im(p;) = Im(f;) = 0 the interference

term is not negligible anymore and the expression becomes

ress 2 k61— 1_—12 1 - 01 — 1
Flfa<<1 = T[B;T(ga) <§ (Bl - 1)2 + g% - 6(61 —1) p_l ) (1.52)

Later on, in Chapter 5 we consider the subwavelength limit of the force for

the general case. We show that it is going to be also proportional to the canonical

momenta of acoustic fields.
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Chapter 2. Spin and orbital angular momenta of sphere and cylindrical
waveguide modes

In this chapter we will consider the eigen modes of an infinite cylinder and of
a finite sphere and introduce the canonical values of linear and angular momen-

tum densities.

2.1 Spherical resonator

Spherical particles both dielectric and metallic are essential building blocks
in nanophotonics. During recent rapid development of Mie-tronic [222-224] which
uses heavily the phenomena of Mie — nanophotonics devices heavily using various
features of the Mie-resonances — the deep fundamental investigation of the eigen
modes of such particles by using novel computational tools is still relevant and cur-
rently important. Moreover, eigen modes of a sphere are closely related to the Vector
Spherical Harmonics (VSH) which are widely used in the multipolar decomposition
to analyze less symmetric structures. In this work we study in details the canonical
spin and angular momenta (AM), helicity and other properties of the eigen modes
of dielectric (nondispersive) and metallic (dispersive) spheres. We compare results
with the conventional kinetic (Abraham-type) approach. We show that canonical
momentum density of the AM as quantized and has a close relation to the quantum
picture of a single photon. In this study, we provide a solid platform for future
studies and applications of the AM transfer from near fields of spherical particles
to the matter in its vicinity.

Canonical properties of light — linear momenta, spin and orbital angular mo-
menta, energy density, helicity — have a great importance in the field of light and
matter interactions as well as optical manipulation via optical forces and torques [45].
Spin and orbital angular momenta (SAM and OAM) of light are well-established con-
cepts as of today [225-229]. It is of high interest to search various way to control the
exact AM of electromagnetic field. Alongside to the beam optics [230-233] there is
another way — utilizing the properties of near fields of eigen modes of different struc-

tures [234]. The most conventional way among those is to use modes of a dielectric
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or metallic circular waveguide (or a nanofiber) [235-237]. On the other side, one
can utilize Mie resosnances [238| in a single particles and/or collective resonances
metasurfaces to boost the particular effect.

The challenge is to overcome the problem of precise analyses of spin-orbital
content of a particular fields. We focus of the eigen fields of a spherical resonator
made of a dielectric (non-dispersive) or a metal (dispersive). We apply the recently
developed method [45] to find the projection of total angular momenta. We also find
a way how to calculate the canonical square of total angular momenta to identify
the total angular momentum number of the mode but only its projection. Another
important challenge was to make a smooth transition between electromagnetic fields
of a sphere and a field of a single photon [239].

Canonical momenta of an eigen mode can be quantized if one consider mo-
menta per one photon. The effect of quantization of eigen modes of deielectric and
metallic cylindrical waveguides was considered in [170; 240], as well as its conse-
quences to the optical torques [241]. Some recent analyses of the OAM was done
for the multilayered fiber in [242]. The analyses of AM of vector spherical har-
monics was done for non-dispersive media and real valued eigen frequencies in [15;
239]. Multipolar decomposion into the series of Vector Spherical Harmonics harmon-
ics shows its great power when it comes to the symmetry analyses of the studied
structures [243; 244].

In this chapter we study in details the canonical spin and angular momenta
(AM), helicity and other properties of the eigen modes of dielectric (nondispersive)
and metallic (dispersive) spheres. We compare results with the conventional kinetic
(Abraham-type) approach. We show that canonical momentum density of the AM
as quantized and has a close relation to the quantum picture of a single photon.
Our work provides a solid platform for future studies and applications of the AM

transfer from near fields of spherical particles to the matter in its vicinity.
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2.1.1 Canonical field properties and eigen modes of a sphere

Energy density, orbital and spin angular momenta, and square of total
angular momenta

We analyze the eigen modes using canonical properties of the field introduced
recently in Ref. [45] for the, generally, dispersive media, which is crucial for the case
of metallic particles. The Brillouin energy W, linear momentum P, spin S, orbital
L, and total J angular momentum can be formulated in the manner of quantum

mechanics as follows [15; 45; 46]

W= (bl ) = § (EeolBP + fnHP) 2.1
1

P = (b|plY) =~ Tm(EeE" - (V)E + fnoH - (V)H), (2.2)

S = (VI8 1b) = T (EeoB' x B+ fupgH* x H), (23)

L = rxP, J=L+8, (2.4)

and the quadratic form of a square of total angular momenta denoted as [J 2] is

given by
A 1
2 2 = 2 * *
(2] = WL+ S)* ) = Yo Reaaolr i;ZEZ-AQEi—I—Z(E . V)(r-E)
+ (magnetic part: &£ [ﬂo) : (2.5)

which was explicitly written for the first time for the best of our knowledge. Each of
the components can be naturally decomposed into the electric and magnetic parts.

Here (€, 1) = (e,1) + wdy (€, 1), the electromagnetic 6-component “wave function”

is given by |Y) = 1/g/2 (\/anE, v/ ﬂuOH)T [45; 47-51], where the constant g de-
(2w)~"
(S:w)*l

written in the manner of Shrodinger-like formulation of the Maxwell equations. In

Gaussian

pends on the unit system: g(SI ) = ( ) This photon wave function is
literature there is another way of how the photon wave function may written which
is based on Dirac-like formulation of Maxwell equations [52-57]. As well argued by
Bialynicki-Birula [53; 57| and by Sipe [54], for photons it is best to adopt a wave

function whose modulus squared is the photon’s mean energy density, rather than
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being a position probability density, as is the case for electrons [58] which is true
for the both formulations.

Here L = r X p = —ir X V is the orbital angular momenta operator, S
is the spin-1 operator (the generator of SO(3) vector rotations [52; 229|), which
explicitly can be written as

T
A . 0020 00 —1 010 A .
S——i([880]. [93 9] [208])  Sue=—iew  20)

DO
(@)

where ¢;5;, is the Levi-Civita tensor of the 3rd rang. for which we have S§?2 = o =
s-(s+ 1)1‘3217

In contrast, the kinetic (or Abraham-like) total angular momenta density is

which emphasized that the spin of a photon is one.

defined through the Poynting vector TTR¢ as

1 Re 1 *
gﬂ :2—C2Re[E x HJ, J=rXxP. (2.7)

and the decomposition into spin and orbital parts is not obvious especially for the

P:

case of the dispersive media [46].
Finally, the electromagnetic helicity, which is related to the dual symmetry
between electric and mangetic fields [168; 245-249| and is defined for generally

dispersive media as [49]

L L Mo | - €€
Im(H"-E) =
5o 1t ) =1 ce, T RO

where n = /et + WO, +/€N is the group refractive index of the medium. It can be

&= m(H-E)  (28)

also written in the operator form using & = % as & = (Y| S [P).

We consider only low dissipative modes, i.e. with |¢] = ‘&‘ < 1 for
W = WRge — Y. Formulas in this section are written using this assumption. Oth-
erwise, there should be some additional corrections. Further analyses can be found

in the Appendix E.

Eigen modes of dielectric and metallic spheres

We consider dielectric particle of radius a placed at the origin, which can
be formally defined as
Em(W) forr <a Win(w) forr <a

e(r,w) = and p(r,w) = (2.9)
Eout forr > a Hout forr > a
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The eigen modes of a sphere is defined by a Helmholtz equation, which we rewrite

in the form of eigen value problem
HE = k2E. (2.10)

Here operator H=¢1Vx 1~ 'V x contains all the information about the system, in
particular all its symmetric properties. Wigner theorem states that eigen functions
succeed all the symmetry properties of the H [250; 251]. The solution is going to give
the set of eigen modes with corresponding complex eigen frequencies w = wge — 1Y,
where v is the dissipation rate. For the non-magnetic media with @ = 1 we can
rewrite Eq.  (2.10) using Lagrange’s formula V X V X E = V(V - E) — V’E =
—V2E in a more conventional form as —e 'V?E = kZE.

Let us describe the eigenmodes of a spherical particle. Two conditions for elec-
tric and magnetic fields of eigenmodes must be fullfiled: (i) they must obey Maxwell

equations with frequency w, and electric and magnetic permittivities ¢ and p:
V X E =iwupgH, V X H=—iweeE. (2.11)

and (i) they must have a particular symmtery properties. Spherical particle has
spherical symmetry, thus, the system operator H is invariant under all symmetry
transformations of the O(3) group of a sphere. According to the Wigner theo-
rem [244; 250; 251], the eigenfunctions of such operator should transform under the
irreducible representations of O(3) group. VSH denoted as N,,;, M,,;, and Ly,;
(see Appendix I) check all the boxes. VSH with index j are basis functions of the
(27 + 1)-dimensional irreps of O(3) group (numbered by index m = —j,...,7), it
is quite natural that eigenmodes can be described by these functions, which indeed
happens and is shown explicitly in Refs. [16; 252|. We also emphasize that according
to the Wigner theorem the degeneracy of eigen values is equal to the dimension of

the corresponding irreducible representation. It means that eigenvalues of eq. (2.10)

w§”) = ¢4/ [kg]gn) can be numbered by a single index j and has 2j + 1 degeneracy.
Also, there are infinitely many different eigen values for each j numbered by n, each
of them has a generacy described above (e.g. for j = 1 these are first, second,

.., n-th dipole resonances).
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There are two types of modes generally distiguished: transverse electric or TE

mode (r - E = 0) and transverse magnetic or TM mode (r - H = 0):

( 4
E = const;(r) - M,,; ATE ifr<a
TE: < o = | consty (r) = T - .
\H = —consty (1) - iy /Ny, B ifr>a

ifr<a

B™ if r>a
(2.12)

Note, that we did not use the radial polarized harmonics L as those come into

consty(r) = {

)
E = consty(r) - Ny

TM: - I |
H = — consta(r) - iy /M

play for the electrostatic solutions and, for example, resonant state expansion to
form the full basis of vector fields. Up to now, we know everything about modes
except normalization constants which comes from the boundary conditions. Here
we use complexr VSH due to the fact that we study circular polarized modes with
non-zero angular momenta similar to [170]. The radial dependence in M and N

depends on the domain

(ninkor), forr <a
2 = Ji (minkor) (2.13)

hgl)(noutkor), for r > a

The explicit form of the constants A and B depends on the normalization which is
widely discussed in Ref. [252] for dielectrics and in Ref. [253] for the dispersive media
such as metal particles. However, in this work this does not make any difference
since the normalized values of the angular momenta are investigated, i.e. angular
momentum per one photon.

All the eigen frequencies w; = ck(()j ) can be identified as a poles of the scattering
matrix of the systems. To be more precise, by the poles of the standard Mie scatter-
ing coefficients a; and b; which came from the plane wave scattering problem on a

homogeneous sphere [172] (see Appendix G). Importantly, we find the relative values
) (1)

of the constants to be ATE/BTE = b “(Routhoa) (nf“tkoa) and A™ /BT —  /foullin s (n_"“tkoa)
Jj (nmkoa) EinHout  Jj (nmkoa)

which ensures the correct radial dependence.

All the eigen modes can be labeled by the set of three quantum numbers

and a mode type

(XX, n,j,m) (2.14)
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Figure 2.1 — Eigen modes for dielectric and metallic particles for the n =1, ..., 10.

For dielectric particle: a = 100 nm, &, = 10, u, = 1. For metallic particle:

a = 50 nm, Drude model epyyqe = 1 — w?/(w? 4 iT'w) for gold without losses with
w, =1.38-10" 24 and I' = 0

where XX = TE, TM is the mode type, j is the total angular momenta quantum
number, m is the projection of the total angular momenta number, and n is the

radial quantum number.
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2.1.2 Angular momenta of eigen modes of a sphere

Any axial symmetric system

The eigen modes of a sphere is defined by the Helmholtz equation
V X W'V X E—kjeE = 0. (2.15)

For the non-magnetic media with @ = 1 we can rewrite (2.15) using Lagrange’s
formula VX V X E = V(V - E) — V2E = —V?E as

—¢ 'V’E = KE. (2.16)

Operator L = —¢ V2 contains all the information about the system, in particular
all the symmetric properties. Wigner theorem states that eigen functions succeed
all the symmetry properties of the L [250; 251].

Next, we consider any axial symmetric system such as (in)finite cylinder,
sphere, etc. The angular part of —e 1V? leads to the known @-dependence of
eigen modes: E(r) ~ €% which is dictated by the condition E(¢@ + 27tN) = E(¢)
with IV being an integer. Now, let us consider z-component of the total angular

momenta in the cylindrical coordinate system
J,=L,+ S, =rP,+ 5., (2.17)

where spin part is given by

S. = — Im [£eo2i Im (E"E,) + fio2i Im (H? H,)] . (2.18)

4w’
The linear momenta needs extra attention since Eq. (2.2) is written in Cartesian sys-

tem of coordinates. After some straightforward algebra we can get a general formula

1
Z Alqart vocBlgart _ Z Az?yl V(XBZ(_?yl 4 60“9; (Afpyl Bgyl . A;yl B((;yl) (219)

i:x7y7z i:T7(p7Z
Using this, we can write

1

Py = 4w'r

Im [Eegim|E|* — £¢02i Im (E; Ey) + Roim|H|* — fipo2i Im (H; H,)]
(2.20)
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Figure 2.2 — Angular momenta density distribution for the dipole modes for dielec-

tric and metallic particles

Where we have used V, a— and a E tmE. Finally. normalizing total AM

per one photon we can find that

/
Beme b o SE_SORES) Ly

Sphere

Canonical spin and orbital AM. The calculation of the canonical AM density
per one photon for the modes of a sphere is identical to the general approach de-
scribed above for a system of arbitrary symmetry. It means that for all eigen modes

of a dielectric and metallic sphere modes labeled by (mj) one has

w'J, W' ()
W (W)

—m, (2.22)

so that total angular momenta projection on z-axis (density and integral values) is
equal exactly to the azimuthal quantum number m.

The distribution of spin and orbital momentum are also worth attention. Since
the total AM density is quantized, the distribution of the canonical spin and orbital
momenta are not independent. We illustrate it for the dipole modes for the sake of

simplicity but it also true for any other higher modes. The distribution is shown
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in Figure 2.2 for the first dipole resonances of dielectric and metallic particles. In-
teresting to note that while total angular momenta of the dipole mode is positive
(m = +1 in this case), local negative SAM is possible. At the same time, OAM can
be locally larger then total AM. This reveals more opportunities in the light-matter
interaction where local properties have greater importance.

Let us stress the differences in modes of dielectric and metallic spheres. First of
all, for the delectric particle field is localized in the volume of the particle, however,
for the metallic particle electromagnetic enerydensity is localized near a surface,

which is a general feature of surface plasmon modes.

jz=1

I
=

j

I
N

j

Il
w

j

I
N

j

Figure 2.3 — Relation between integrated spin and orbital parts for all modes up
to j = 4. Distribution stays the same for both dielectric and magnetic particles for
TE and TM modes

Kinetic AM. In contrast to the canonical momenta, kinetic momenta tends to
the m number only for integrated values:

w' (J5) _ m- fy dr- 2|z =m (2.23)

Wy drer (|Zj\2+§—+11\Zj—1|2+2fﬁ\zj+1|2>

However, this answer is true only for low dissipative modes, i.e. for the modes with
high @)-factor. The distribution of the kinetic AM density varies and is not constant
in the space. The kinetic momentum density resembles more the canonical orbital

momenta density with slight differences (see figure 2.2).



Figure 2.4 — Step—index fiber and cylindrical and Cartesian coordinates. In some
cases cylindrical radial unit vector can be written as e, instead of e, in order not to

mixed with spherical radial unit vector

Total canonical AM. Once we calculate the square of total angular momenta
per photon, labeled as j2 = (| (L + S)z ) / (P|P), we get the well know in

quantum mechanics answer:
=4 +1). (2.24)

Helicity. For real frequencies helicity inside the particle are equal to zero iden-
tically. However, once there is a complex frequency, we have non-zero helicity
inside the particle

d * r<a y
S ~ Im (iN},, - Mj;,) = —2Re (ijﬁy;m) s;:e T [(z_1 — 2541)" 2] '~ k)P e + O(e?)
(2.25)

Here ¢ = w”/w’ is the small parameter for high-() modes. We also omitted the
angular dependence in the last equation.

The integral value of helicty is zero for any mode
(6)=0 (2.26)

This can be formally shown using the orthognoality relations between VSH (see

Appendix ).
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2.2 Fiber mode profiles

Starting from the Maxwell equations

V -eegE =0, V. B=0
’ o (2.27)
V X E=1wuuH, V XH=—weeyE
and considering space with permittivities
e, 1< Ry
e(r) = ) Hm = Hf = 1, N f = +/Em tHm f, (2.28)
Em, T > Ry

where r is the radial coordinate in cylindrical coordinates (r, @, z) (see Fig. 2.4).
Due to the z — z + Az, VAz invariance and rotation symmetry of the fields results

in a very simple z and ¢ dependence
E, H~ P 01=0,1,2,... (2.29)

where ¢ is the azimuthal mode number, and (3 is the propagation constant and
defined by dispersion relation f = f(w) which comes from the boundary condi-
tions [235; 237]

Ji(hBy) _KilqRy) ] [ neJyp(hBy) ané(qu)] _
hRfJg(hRf) quKg(qu) hRfJg(hRf) quKg(qu)
2B

2
2
kO

1 1
iy 2.30
(hQR? ! q23?> - 230

where h = \/ntk3 — B2 and ¢ = /B% — n2 k% are the transverse part of the wave

vectors, which characterize the scales of the spatial variations of the field inside
and outside the fiber, respectively. Jy, and K, stand for the Bessel function of the
first kind and the modified Bessel functions of the second kind. Prime represents
the derivatives with respect to the argument. When it comes to the numerical
solution of (2.30) it is more convenient to split it to four different branches which

solutions represent propagation constants of two hybrid modes (HE and EH) and
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two transverse modes (TE and TM) with ¢ = 0:

Jl(hRf) Kl(qu)
(=0 TE: _ = - 2.31
hRfJ()(hRf) quKo(qu) ’ ( )
Jl(hRf) n2 K1 (qu)
/=0 TM: _ = 2.32
hRfJo(hRf) ?”Lf quKo(qu) ( )
Jg_1(hRf) n% -+ n2 Kg(qu) !/
>0 HE: —_— = — = — D, (2.33
~ I ReJ (W ERy) T Rk gy e D23
Jg_1(hRf) n% -+ n2 Kg(qu) !/
¢ >0 EH: —_— = — it D, (2.34
- I ReJ, (W Ry) T Rk gk R D23
where
2 1/2
po | (i (KdaR) N (BN L VT
QTL% quKg(qu) nfko Q2R% th% .

Equations (2.31) and (2.32) are obtained by putting ¢ = 0in (2.30). Equations (2.33)

and (2.34) are obtained by solving (2.30) as a quadratic equation e.g. with respect

Jy(hRy)
to hR¢Jy(hRg)

w—f are shown in Fig. 2.5. Is is also clear from the plot that

A family of different solutions for fiber with e = 3.5 in coordinates

Nmko < B < nky. (236)

It means that for the real n; and n,, transverse parts of wave vectors are also purely
real ¢, h € R. In waveguide optics one may most likely find dispersion plotted in the
different coordinates. For the quick reference we insert Fig. 2.8 taken from [254].
Author finds this plot very illustrative and helpful for theoretical investigations.

It is convenient to write the explicit expressions for the fields in the next

manner
EW(r) = e (r)e!/Betivte, HW (r) = hW (r)e!fPHirte, (2.37)

where e (1) and h™(r) are more profile functions which are given in cylindrical

coordinates (r, @, z) as
e (r) foh:(r)
e (r) = | peo(r) |, hW(r) = [ fhe(r) | . (2.38)
fex(r) ph(r)
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These mode profile functions depend on the different branch of solution of the
Maxwell equations. The explicit expression for the mode profiles one can find in
[235]. By index () we denote all the mode parameters (which is slightly different
from [235], where (n) = (f¢p)):

/ XX )
¢ HE,EH hybrid modes: e # 0
(Ww=1m]|, XX =< TE transverse electric: efﬁ) = eg”) =0 (2.39)
K f ) ™ transverse magnetic: hfn”) = hg”) =0
\
p

where XX is the mode type, ¢ is the azimuthal number, m is the radial mode
order, which, in particular, means that \e,(zu)(r, @)| and ]hg”)(r, @)| have m maxima
each in the radial direction, including the peak, if it exists, at the origin. Reader
can notice this feature after careful investigation of Fig. 2.6. Practically, it is the
m-th root in the corresponding solution branch of dispersion equation (2.30). Index
f = =£1 represents positive (+e,) or negative (—e,) propagation direction which
leads to the corresponding propagation phase factor of e*#* or e7#*, Index p = %1
corresponds to the counterclockwise or clockwisephase circulation , corresponding
to the azimuthal phase factor of e™® or e=*®. With such choice we fix the sings

of propagation constant 3 > 0 and azimuthal number ¢ > 0.

2.2.1 Electric field structure and mode designations

In this thesis is used the standard way [237; 255] of labeling different modes:
XXm (2.40)

where XX shows the type of the mode, e.g. hybrid (HE or EH) or transverse (TE or
TM), ¢ is the azimuthal number and m is the radial mode order. Azimuthal mode
number ¢ shows the amount of optical angular momentum [256; 257] which light
carries since wavefront of the mode has an azimuthal phase dependence e®.

The structure of the mode may have dramatic changes. To illustrate this fact
the electric field lines and intensity distributions of the first 12 modes was plotted

on Fig. 2.6 using expressions from [258].
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Figure 2.5 — Fiber dispersion. Propagation constants 3 as branch of solutions of the
fiber dispersion equation (2.30). Here ky = 271/ Ry , wy = 27c/ Ry, Fiber material
was chosen to be with ¢ = 3.5. It is clearly seen from this plot which values

propagation constant can have: ny,ky < p < neky

2.2.2 Mode polarizations and Stokes vector

Fundamental solutions (2.37) are circularly polarized modes (except TE and
TM). But in practice (by someone’s need or due to experimental issues) people are
often faced with custom polarized fields (linear, circular or elliptical). This section
shows how can we connect custom polarization with obtained solutions above.

Fundamental hybrid mode solutions (HE and EH modes) have circular polar-
ization. We can easily build a basis using right and left circular polarized modes
which we denote as ET (p = +1) and E~ (p = —1) correspondingly. The main
idea is a linear combination E®tm = C/Et 4+ CLE~ with C, Oy € C can specify
any desired polarization.

The closest conventional method is to use complex Jones vector J = (j, ja)? .
The only difference is that Jones vector formalism uses linear polarized basis Eq

and Es which can be written as

1 1
E,=— (Et+E" Fo=—
: (BT +E7). SN

7% (Ef-E7). (2.41)

SO
ECSM = 5By + joEs. (2.42)
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Figure 2.6 — Vector field (stream plot arrows) and intensity distributions (gray map)

for the modes in a step index fiber. All modes are grouped by its families: HE, EH,

TE and TM. Red circle represents the fiber border. Parameters: n,, = 1, ny = 1.45,
koRr = 11.81 (corresponds to V' = 12.46)
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Figure 2.7 — Vector field (stream plot arrows) and Cartesian electric component

E; (color map) for the modes in a step index fiber. All modes are grouped by its
families: HE, EH, TE and TM. Red circle represents the fiber border. Parameters:
nm = 1, ng = 1.45, kgRy = 11.81 (corresponds to V = 12.46)
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Figure 2.8 — Dispersion of a fiber with (ns — ny,)/ns = 0.2 and electric field lines of
the first 7 modes. Here b = %, B = koN,V = koRey/ni — n,. Picture is taken
f m
from [254]

From the practical point of view it is more convenient to use Stokes vector S =
(So, S1,99,93)T and Poincare sphere [259] which contains more information, e.g.
non—coherent light (inside the Poincare Sphere). So Jones vector can only represent
the perfectly polarized part of the Stokes vector. Because there is an arbitrary phase,
there are an infinity of Jones’ vectors that fit a given Stokes vector representation.
Fixing that phase, we can build a method how to obtain Jones vector knowing the
Stokes vector: S — J.

The algorithm is the following. At first, we calculate the degree of polarization
p=/S?+ 53+ 52)/Sy, then we normalize Stokes vector S = S/ (Syp) and after
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Table 3 — Connection between common values of Stokes vector and Jones vector

Polarization Label Stokes vector S Jones vector J
Linearly polarized (horizontal) — H (1,+1,0,0) (1,0)
Linearly polarized (vertical) Vv (1,-1,0,0) (0,1)
Linearly polarized (445°) D (1 0,+1, 0) % (1,+1)
Linearly polarized (—45°) A (1, ,0) % (1,-1)
Right-hand circularly polarized R (1 0,0 +1) LQ (1, —1)
Left-hand circularly polarized L (1,0,0,—1) =5 (1, +1)
Unpolarized — (1,0,0,0) -
that construct components of Jones vector
- Sy Sy L
1+ S . )5 5 if j1 # 0,
= Sop 5 1, 72 S()p 2]1 2]1 (243)
1, if j, = 0.

Using these components of Jones vector we can easily build E®™ by using (2.42)
and (2.41).

It would be more precise to call these modes quasi-linear/circular/elliptical
polarized since all hybrid modes has z component.

For a quick reference we write Jones and Stokes vectors for common polar-

izations below in Tab. 3.

2.2.3 Evanescent mode field intensity

The higher field intensity we have the higher dipole moment is induced since
p = «E and stronger interaction we obtain. This behavior remain approximately the
same beyond dipole approximation but with some unique feature as Mie resonances.
The main message here is that we want to optimize the strength of a particular
mode in the vicinity of the fiber.

Naive expectations that the thinner fiber! we have the higher evanescent field

we would obtain are wrong. It appears [235; 260] that there is a maximum of inten-

IThinner fiber here means that we direct Ry to some critical fiber radius when desired modes still

exists
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Figure 2.9 — Electric field intensity in the vicinity of fiber as a function of fiber
radius. Each mode carries the same amount of power. Behavior remains approxi-

mately the same for the bigger distance from vicinity. Parameters: A = 1064 nm,
gvater — 1,77, €3 = 1.0, g = 2.1025,

sity and for each mode it is different which are clearly seen on Fig. 2.9. Interesting
to notice that all the hybrid modes (HE and EH) starts from zero but transverse
modes (TE and TM) has high starting point which is very close to maximum. One
should pay attention to this behavior if there is a need to achieve the most efficient

interaction through the evanescent field.

2.2.4 Angular momentum of dielectric step-index fiber modes

This approach was successfully implemented to describe angular momenta of
dielectric-fiber and metallic-wire modes [170]. It was shown [170; 241] and verified in
this work that both the integral value and the density of the total angular momentum

per one photon is a quantized value

= =0, (=0,12,... (2.44)

where W = 1 (&0€|E[* + pofi/H|?) is the Brillouin expression for the energy den-
sity [15; 169].

Direct application of (1.15)—(1.17) to step-index fiber modes gives its full
canonical picture of AM analysis. Due to the fact that experimentally are only
local densities are measured we bring forward of the AM densities but not integral
values. On Fig. 2.10 and Fig. 2.11 there are maps in (Ry, r) parameter space. SAM
and OAM are normalized as (2.44) so the sum of OAM and SAM at any point of
the map gives azimuthal mode number ¢. For the EH modes family .S, always has

the opposite sign to the L, outside the fiber
sign SPH = — sign LFH, r > Ry (2.45)

This fact allows to obtain higher OAM for the lower ¢ numbers. Moreover, outside
the fiber both S, and L, for HE and EH modes do not change its sign. Inside the
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fiber S, changes its sign 2(m — 1) times for HE modes and 2m — 1 times for EH
modes. Total AM density J. is normalized to the spin momentum of a circular
polarized plane wave in free space SPV' = ;—(CLES where E? = 2{&% is the field
magnitude of a plane wave with carried power P (= power carried by the mode)

normalized on the fiber cross section 7R? and Zj is the vacuum impedance. Total
AM decays with exponential rate and each mode has it is own optimum fiber radius
to observe maximum AM with fixed power carried by the mode.

Ratio between OAM and SAM can be shifted by changing ¢ which is shown
for on Fig. 2.12-2.13. By increasing & we engage field more inside the fiber and this
always decrease the spin part of the total AM.
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Figure 2.10 — Canonical OAM and SAM distributions for the first 4 dielectric fiber
modes. Orbital and spin parts are normalized to the Brillouin energy as in (2.44).

Total angular momentum is normalized to the spin momentum of a circular polarized

ZyP
2nR?

plane wave with carried power P (= power carried by the mode) normalized on the

plane wave in free space SP™ = 72 E§ where Ef = is the field magnitude of a

fiber cross section T[R%, Zp is the vacuum impedance. Ag = 1064 nm, & = 1.45%,
€m = 1.77.
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Figure 2.11 — Canonical OAM and SAM distributions for the second 4 dielectric fiber
modes. Orbital and spin parts are normalized to the Brillouin energy as in (2.44).

Total angular momentum is normalized to the spin momentum of a circular polarized

ZyP
2nR?

plane wave with carried power P (= power carried by the mode) normalized on the

plane wave in free space SP™ = 72 E§ where Ef = is the field magnitude of a

fiber cross section T[R?, Zp is the vacuum impedance. Ag = 1064 nm, & = 1.45%,
€m = 1.77.
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Figure 2.12 — Canonical OAM and SAM distributions for the first 4 dielectric fiber
modes. Orbital and spin parts are normalized to the Brillouin energy as in (2.44).

Total angular momentum is normalized to the spin momentum of a circular polarized

ZoP
2nR?

plane wave with carried power P (= power carried by the mode) normalized on the

plane wave in free space SPV = ;—&Eg where E} = is the field magnitude of a

fiber cross section T[RfQ, Zp is the vacuum impedance. Ag = 1064 nm, & = 1.45%,
Em = 1.77
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Figure 2.13 — Canonical OAM and SAM distributions for the second 4 dielectric fiber
modes. Orbital and spin parts are normalized to the Brillouin energy as in (2.44).

Total angular momentum is normalized to the spin momentum of a circular polarized
ZOP

plane wave in free space SPV = ;—&Eg where E} = is the field magnitude of a
plane wave with carried power P (= power carried by the mode) normalized on the

fiber cross section T[RfQ, Zp is the vacuum impedance. Ag = 1064 nm, & = 1.45%,
Em = 1.77
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Chapter 3. Transverse optical binding via waveguide mode

In this chapter, we study a linear chain of subwavelength particles which are
evenly coupled to a waveguided mode of an nanofiber. Interestengly, it is possible
to make this system table with only one beam (see Fig. 3.1). Under a transverse
plane wave excitation nanoparticles form a stable self-organized periodic array along
waveguide axis through the transverse binding effect. Another two degrees of free-
dom are ensured by a photonic jet effect. Most importantly, the depth of a trapping
potential for each nanoparticle increases linearly with the system size, making the
self-assembly of a longer chain more favourable. We estimatete that for an opti-
cal nanofiber platform the binding energy for two nanoparticles is in the range of
9 +— 13 kT reaching the value of 110 kg7 when the chain size is increased up
to 20 nanoparticles. Finally, we suggest the two counter-propagating plane waves
excitation scheme, which will allow trapping the nanoparticles close to the optical

nanofiber providing efficient interaction between the nanofiber and the nanoparticles.

3.1 General idea

The majority of the optical trapping and manipulation methods are based on

shaping the light field intensity with optical systems such as spatial light modula-

Figure 3.1 — The main concept of this chapter
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Figure 3.2 — The configuration of the system, which allows to achieve the stabel
binding of nanoparticles near the nanofiber in all 3 axis. The nanofiber adds a long

range interaction channel of interaction

tor which provides formation of the dipole trapping potential. This approach has
been effectively used for manipulation of objects in different environment such as
air, water, and vacuum. However, an alternative method of large ensembles ma-
nipulation and ordering bases on self-assembly approach [59]. The field intensity
pattern forms due to rescattering of the optical fields by the objects resulting in
effective dipole-dipole interactions and consequent structuring of large ensembles.
A typical example of such effect is transverse optical binding [60; 61| where the
nanoparticle can form bounded states under homogeneous illumination. Though
the optical dipole-dipole interactions are quite weak, they can be enhanced and
modified with auxiliary photonic structures [62] such as metamaterials [63; 64] and
metasurfaces [65], plasmonic structures [66; 67] and metals [261], photonic crystall
hollow fibers [68] as well as dielectric nanofibers|69]. Binding also can be anhanced
by going beyond the dipole approximation using higher resonances [262] The latter
one represents a versatile platform |70] for studying light interaction with nanopar-
ticles [71; 72] and atoms |73-75] placed close to its surface. Utilization of a single
mode long-range dipole-dipole interactions provided by waveguiding systems has
already been suggested for self-organization of atoms and nanoparticles in waveg-
uiding systems [68; 76; 77].

We propose a geometry of an array of nanoparticles placed close to the ul-
tra—thin fiber and illuminated by a plane wave propagating in the isotropic host
media perpendicularly to the fiber axis as it is shown in Fig. 3.2. Such configuration

allows to take the advantage of the transverse optical binding effect [61; 78]. The
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binding happens due to the interference of the fields scattered by the nanoparti-
cles, and it has been applied for self-organization of nanoparticle ensembles under
the external monochromatic illumination [79-81], including partcle binding near a
metallic surface near surface plasmon polariton resonance (SPP) [82]. In the lit-
erature, a transverse binding has been observed in a large ensemble of dielectric
sub-micron spheres [83] and nanowires [84; 85| with the strong collective interac-
tions through the vacuum.

The nanofiber guided modes allow for accumulation of long-range interactions
between distant nanoparticles due to their extremely low losses, which results in
the increasing particles stiffness with the growth of the nanoparticle chain length.
Moreover, in our particular geometry of binding near a nanofiber, we also suggest
a trapping of the nanoparticles in the radial direction close to the fiber surface by
using two counter propagating plane waves and taking the advantage of nanofiber
photonic jet or lensing effect [86]. In this effect during the transverse excitation
dielectric nanofiber start to act as focusing lens. Thus, we propose a geometry
of the system that allows us to immediately test the claimed effect in a specific

experimental setup using optical nanofibers.

3.2 Optical binding near a single-mode nanofiber

The average optical force acting on a single point electric dipole p placed
in local electric field Ejo. is given by [263; 264] F = %Zizx’W Re p;V Ejoc;. The
latter one contains the incident plane wave field E;i,., the field scattered by the
nanofiber Eg., and the field scattered by other nanoparticles E,. The dipole moment
of n-th particle then is defined through the local field strength p; = xgEj.(r;) =
oo (Eo(r;) +Ey(r;)), where we defined Ey = Ejy.+E. as the external field, and o is
the exact dipole polarizability given by the Mie theory [265] (see Appendix B). The
dipole field E, is the field generated by all other nanoparticles and can be expressed
via Green’s tensor formalism. For example, the field generated by the ¢-th particle
at the position of j-th particle has the form E,;; = k%/eoG(r;,r;)p;, where G =
éo + Gy is the total Green’s tensor which consists of two parts: free-space G’O and
scattered Gy, which appears due to the presence of the nanofiber (see Appendix C).

Here kg is the vacuum wavenumber and ¢ is the vacuum permittivity.
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Figure 3.3 — (a) Longitudinal force F, in a single mode regime acting on one of two
particles as a function of distance along the nanofiber axis Az. Red solid line shows
total optical force which takes into account interaction through both free space and
fiber (G + Gy), green dashed line shows only interaction through the fiber (Gy)
and blue dash—and—dot line shows only free space interaction (éo). (b) Equilibrium
solutions. First three branches of the solution for the distance between the two
closest particles ¢ = Az with respect to the total number of particles in a chain
N. (c) Trapping parameter vy, which equals to the effective potential depth of the
trap devided by a thermal energy of the host media k7', and normalized stiffness of

the trap with respect to the number of particles in a chain N
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The radius of a nanofiber can be chosen sufficitnly small such that it supports
only a single guided HE;; mode [266] (SM-single mode regime). In this case we can
expect almost periodical interaction strength between the nanoparticles with the
inter—particle distance Az. Indeed, in Fig. 3.3 a) the force between two nanoparticles
that are located close to the nanofiber is shown as a function of the distance between
them. The contributions of vacuum and nanofiber interaction channels are extracted
by proper choosing the free-space G’O or scattered G part of Green’s function. It can
be seen that the force has a well-defined periodic character, which makes it possible
to form a stable configuration of a stable configuration of a system consisting of
an arbitrary number of particles |77; 267|. The calculation of the optical force
between the two particles was also performed using a complete numerical model
in COMSOL Multiphysics, and a good agreement was obtained with the analytical
dipole model (sec. 3.7).

In a single mode regime the Green’s function of the waveguide can be reduced
to GV8(r; 1) = ng(p, ©; 0, @)eP122 and G¥8(r;r) is purely imaginary for any
waveguiding mode [268]. Here we neglect the contribution of the evanescent and
leaky modes [266], since they fade significantly over long distances. In the field of a
plane wave incident perpendicular to the nanofiber and polarized along the 2z axis
(polarized TM), as shown in Fig. 3.2, the dipole moments will be aligned preferably
along the nanofiber axis, thus having a dominant p,-component, so p; ~ n,p; =
N, Xef . Fo ., (sec. D). TM excitation makes it possible to suppress the vacuum
interaction channel, since the dipole emission along the nanofiber axis is weak. The

force acting on a particle with the number n can be estimated as:

p|*k3 B

FSM _
" 280

N
Im(gzz)z cos(B|zn, — z;|) sign(j — n). (3.1)

j#n
Here N is the total number of particles in the chain, and we introduced the coupling
constant g,,(p) = Q:fz(p, ©; p, @) /ko, which depends only on the radial distance to
the nanoparticle center in the geometry shown in Fig. 3.2. Within the framework
of the considered approximations, the system has a stable equidistant configuration
in which the distance between neighboring nanoparticles is constant [267]. In order
to find it, one needs also to estimate the stiffness parameter k, which determines
the strength of the restoring force F, = —k(z — zy) acting on a single particle
close to the equilibrium position zy. This approach is valid because the non-con-

servative part of the binding optical force is negligible. A stable configuration of
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nanoparticles is observed if the separation distance between neighboring nanopar-
ticles satisfies two conditions: (i) F),, Z]N# cos(g|n — j|)sign(j — n) = 0 and
(ii) Ky oc — Zj\;n sin(g|n — j]) > 0 for all particles. Here ¢ = BAz is the distance
parameter and Az is the distance between the neighbouring nanoparticles. After
taking the sum in Eq. (3.1), the first condition provides us with the expression for
the equidistant solution Nq/2 = m/2 + (N — (), where ¢ is an integer.

The stiffness of the n-th trap k, = —0. F. in the chain of N particles can
be estimated as follows:

N
= B oS sinfaln — ). 32
’ j#n
and the summation is taken in order to take into account the interaction with all
the nanoparticles in the chain. The stability condition requires that k,, be positive
for any particle in the chain. The analytical solution of the algebraic system shows
that there are many stable configurations.

The separation distance ¢ is 27t periodic in SM regime, so we analyze only
the fundamental solution, which is 0 < ¢ < 27t. The distance between the particles
q, which corresponds to ¢ = 1, has a distance parameter |77] ¢; = 2w — /N (see
the blue line in Fig. 3.3 (b)). Moreover, the stiffness parameter k,, = k(V) is the
same for any particle in the chain and increases with the total number of particles
in the chain as k(V) ~ ctg(m/2N), which for N > 1 provides a linear increase in
stiffness k(IV) ~ NN, as shown in Fig. 3.3 (c¢). Other stable equidistant configurations
correspond to other values of ¢ and have larger distance parameter ¢ = 27 — ¢7t/N,
¢=1,2... and ¢ < N/2, as shown in Fig. 3.3 b) for ¢ = 2,3,4. The «,, values for
these solutions also demonstrate the linear growth with /N, however, with a smaller
slope than for ¢ = 1 (see Fig. 3.3 (c)).

3.3 Stability of the trapping

An increase in the stiffness of each nanoparticle trap mainly leads to an in-
crease in the stability of the chain, which can be expressed in terms of the capture
parameter vy, = Uy /kT, where Uy, is the trapping potential separating the sta-

ble and unstable positions of each particle in the chain. It can be expressed as
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Table 4 — Proposed system parameters

Parameter Symbol SM MM
Fiber radius Ry 300 nm 1000 nm
Wavelength Ao 1064 nm
Particle radius R, 150 nm
V-number V 1.860 6.201
Distance to the fiber d 45 nm 50 nm
Pump power P 40 mW /pum?
Pump field magnitude FEj 2.45-10° V/m
Permittivity of media  fiber particle
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Figure 3.4 — (a) The amplitude of the coupling constant g., for different modes in sin-

gle mode and multi-mode regimes for three different fiber radii: 2y = 300, 500, 1000
nm. (b) Longitudinal optical force F, acting on one of the particles as a function
of distance between the particles along the fiber axis Az for multi-mode regime
R; = 1000 nm. (c) The trapping parameter of nanoparticles in a stable equidistant

states as a function of the number of particles in multi-mode regime
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Un(N) = k(N)A(1t/B)?/2, where 7t/ is the half distance between particles in the
limit N > 1 and for £ = 1. The trapping potential for the fundamental configura-
tion with ¢ = 1 then can be estimated in the single mode approximation as follows:
27.3](2
YSM(N) —”4 :%‘i Im(g™9) ctg (%) x N (for N > 1). (3.3)
This expression is one of the main results of the work, showing that the stability of
the system under consideration increases linearly with an increase in the number of
nanoparticles in the chain. This basically means that the self-ordering of nanoparti-
cles in a longer chain will be more preferable and is actually limited only by the width
of the exciting laser beam and the intensity of the light, since yi, ~ [p|*> ~ | Ep|?.
To confirm our analytical results and estimate the achievable values of the
trapping potential, we used a complete model describing interacting dielectric
nanoparticles located close to the nanofiber. We took into account the plane wave
rescattering on the nanofiber, the nanoparticles self-polarization effect due to the
nanofiber presence, as well nanoparticle cross polarization effects. For the set of
parameters close to the experimental ones[269] and summarized in Table 4, the
calculations give us the estimation of the binding parameter for two nanoparticles
Y(2) & 9 at room temperature, which is a promising value for a potential experimen-
tal applications. Moreover, according to Fig. 3.3 in the chain consisting of N = 20
nanoparticles in the fundamental configuration one can expect y(20) ~ 110, i.e. the

trapping potential can be two-orders of magnitude higher than kT

3.4 Nanoparticle binding in a multi-mode regime

With an increase in the radius of the nanofiber, the number of waveguide modes
begins to increase rapidly, which significantly changes the picture of the interaction
of nanoparticles. The coupling constants for each mode are shown in Fig. 3.4 (a). It
can be seen that higher modes give a greater contribution to the coupling constant,
since their penetration of the field beyond the waveguide is stronger. Simultaneous
excitation of different modes provides a periodic interaction potential between two
particles. Our computational model allows for a full modelling of multi-mode (MM)
interaction between the nanoparticles, and the computed optical binding force is

shown in Fig. 3.4 (b) for the parameters specified in Table 4. Our estimations of
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the trapping parameter for MM regime give the value of yMM(2) ~ 13 for the room
temperature, which is higher than in a single mode regime due to larger number of
modes and their stronger field penetration outside the waveguide [270].

Despite the aperiodic interaction, one still can expect the effect of self-induced
organization of nanoparticles via transverse binding. In the MM regime Eq. (3.2)
will gain another sum over many interaction channels corresponding to different

waveguide modes:
1 M N
(MM _§|p|2€_g Z Bilm {gfz“} Imz e?Bulzn—z] (3.4)
pn=1 j=1

where 3,, = Bug,,, By, --- are the propagation constants of the allowed modes (see
the dispersion curve in Fig. 1 in Supplementary materials), and M defines the num-
ber of the allowed waveguide modes. The stable configuration of the nanoparticle
chain can be found through the maximization of Eq. (3.4). We applied a numerical
optimization algorithm with proper constrains (k, > 0, F, . = 0 for any n) to iden-
tify the nanoparticles configuration and the stiffness of the trap. The optimization
procedure started by a configuration of ordered chain separated with the distance
AzBmax = 41— 1/N, where By is the propagation constant corresponding to the
dominant mode among all the excited ones (HE9; and HE4; for R = 500 nm and
R; = 1000 nm, respectively). The final result after the optimization procedure is
the trapping parameter (y) averaged over particles presented in Fig. 3.4 ¢). It can
be seen that the system demonstrates a stable configuration in which the averaged

capture parameter increases linearly with the size of N, similar to the case of SM.

3.5 Radial and azimuthal binding of nanoparticles

Finally, it is worth speculating about the potential mechanisms of capturing
nanoparticles near the surface of nanofibers. We have not yet discussed the remain-
ing two degrees of freedom of a nanoparticle: radial and azimuthal. Tt is known that
particle can easily experience orbital motion around the nanofiber [271] and we need
to embrace this motion as well. [llumination of the nanofiber by a plane wave forms
an interference pattern in the vicinity of the nanofiber [86], which can act as a trap-

ping potential for nanoparticles. However, single-laser illumination also provides a
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Figure 3.5 — (a) Normalized intensity of the total electric field for two different fiber

radii: Ry = 300 nm and R; = 1000 nm. (b) Potential energy of the transverse
trap along the z axis normalized by kT. (c) Total radial force as a function of
two parameters: the fiber radius R; and the gap between fiber surface and parti-
cle’s surface d. Two horizontal dashed black lines correspond to single mode and
multi-mode fiber radii in Table 4. Inset: the force decomposition into optical force
and van-der-Waals force. The equilibrium distances for single mode and multi-mode

regimes are d®™ = 45 nm and @™ = 50 nm

strong optical pressure acting on the particles, which prevents effective capture in
the radial direction. We propose a geometry with two counter-propagating interfer-
ing beams that fully compensate for the optical pressure force and ensure strong
binding of nanoparticles near the surface of the nanofiber. The formed potential
trap provides both radial and azimuthal stability of nanoparticles. In Fig 3.5 (a)
the field intensity distribution normalized by the intensity of the plane wave is shown
around the SM and MM nanofibers providing stability of nanoparticles in the trap
in the transverse direction along the s-axis. The trapping parameter cross section
is depicted in Fig. 3.5 (b) demonstrating the values of 50 and 100 for a SM and
MM nanofiber, respectively.
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The radial stability of the particles is studied in Fig. 3.5 (c), where the radial
force acting on the particle is shown as a function of the fiber-particle gap d and fiber
radius Ry Total radial force also includes the contribution from the van-der-Waals
attractive force [272] FY4W along with the driving force FV. The white areas on
the 2D map correspond to areas of zero optical strength and, thus, areas of radially
stable configurations where the force changes sign from positive to negative with
increasing clearance. Two dotted lines indicate the radii of the nanofibers SM and
MM. In Fig. 3.5 (c) inset the cross section of the total radial force is shown for
SM regime, demonstrating that a stable point at the gap distance of 45 nm can
be achieved. Finally, it should be noted that by adding a phase difference between
interfering beams propagating up and down, it is possible to gradually change the

radial capture potential and fine-tune the position of radially stable points.

3.6 Two beam trapping by phase tuning

Using two beams instead of one gives several advantages. Firstly, the second
beam suppresses the scattering pressure, which is able to overcome the gradient part
of the force in the case of single-beam transverse pumping. Secondly, by adjusting
the relative phase shift between two counter-propagating perpendicular beams, we
can change the position of nodes and antinodes and, consequently, the position of

the radial trapping (see Fig. 3.6).

3.7 Validity of the dipole model

Depending of the size parameter x = kyR, = ,/€,koR);, a spherical particle
can support different electric and magnetic modes [97] (dipole, quadrupole, octupole,
etc) — the higher z, the richer multipole physics starts to play. The limit x < 1
stands for the pure dipole approximation, otherwise careful investigation is neces-
sary. For each multipole it is possible to introduce polarizability. Particle response

is defined by its scattering coefficients (Mie coefficients). Each Mie coefficient a,
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Figure 3.6 — The total radial force acting on a particle for the configuration of two
oncoming beams depends on two parameters: the radius of the fiber and the gap
between the fiber surface and the particle surface. A sequence of graphs for different
phase shifts between two beams is shown, constructed to show how the equilibrium

capture distance can be adjusted

(electric) and b, (magnetic) is directly proportianal with n-polar electric or mag-
netic polarizability [147].

It means that to estimate multipolar content of the particle it is sufficient to
look only at the scattering coefficients and compare its magnitudes. From Fig. 3.7

one can note that electric dipole scattering coefficient a; dominates at the param-

eters of our choice.
To verify our dipole model we compared it with an exact numerical simulaions

performetted in COMSOL Multiphysics. With the ranger of our parameters we got

a very fine agreement between full numerical solution and dipole analytical model

which is shown on Fig. 3.8.
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3.8 A scientific statement

First scientific statement

An array of subwavelength particles above the waveguide can form a stable
in-line configuration in the field of a linearly polarized plane wave incident
perpendicular to the waveguide axis. The binding stiffness between particles

increases linearly with the number of particles.
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Chapter 4. Spin and orbital momenta transfer from light to
nanoparticles

In this chapter we are going to focus on the transfer of angular momenta
of light from nanophotonics structures to matter. It is known that total angular

momenta J can be decomposed into the sum of spin and orbital components
J=S+L (4.1)

where S is the spin angular momentum density and L is the orbital angular momen-
tum density. These components are not always independent due to the spin-orbit
interaction of light [273]. However, the mechanical action of each component can be

quite distinct. For subwavelength particle the answer is going to be simple and clear
T, ~ S, T =rFy ~ L, (4.2)

However, for the case of Mie particle that is not always the case. As we will show
in 4.1 particle of a size comparable with the wavelength might experience nega-
tive orbital torque.

While we do not discuss beams light beams since it is a very broad topic and
goes out of scope this thesis, we could recommend to read the following Refs. [274—
278].

4.1 Orbital angular momenta transfer

The spin angular momentum (SAM) carried by paraxial light rays in free space
can be transferred to a material object, causing it to rotate around its axis if the
object is absorbing or anisotropic [279]. On the contrary, the orbital angular momen-
tum (ON) in beams with optical vortices can even cause isotropic, non-absorbing
particles to rotate [280; 281]. In nonparaxial light, SAM and OAM can couple,
leading to, for example, orbiting of isotropic particles trapped by a tightly focused,
nonvortex beam [282] and to observable, spin-dependent, transverse shifts of the
light itself [283; 284|. Symmetry breaking in a system consisting of a scattering
particle at the interface between two media, under oblique illumination, produces

an fascinating spin-dependent optomechanical effect [285].
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The evanescent electromagnetic fields that accompany the total internal reflec-
tion and direction of light demonstrate even more complex spin—orbit interactions.
In particular, in addition to the general axial SAM associated with polarization,
such fields exhibit a SAM component perpendicular to the wave vector [286]. In
addition, a material object in an evanescent field may experience a transverse force
depending on light spin angular density, as demonstrated experimentally by means
of a nanocantilever [287] or an optically trapped Mie scattering particle [288] placed
near a total internal reflecting glass surface.

The evanescent field around an optical nanofiber [289] guiding a quasi-circu-
larly polarized fundamental mode is also expected to carry significant OAM that
is transferable to material objects [290]. In spite of numerous demonstrations of
particle trapping, propulsion [260; 291; 292|, and binding [293; 294] in the vicinity
of optical nanofibers, orbital motion of particles in such systems has never been re-
ported in the literature. The main reason for this lack of experimental evidence was
the uncertainty about the polarization of light at the waist of a nanofiber waveguide.
This uncertainty has been lifted only recently [295-297|. In this chapter, we present
a demonstration of the SAM-dependent optical torque by means of light-induced
rotation of isotropic microspheres around a single-mode optical nanofiber.

Let us start with a spherical, dielectric particle (of radius R},) which is placed
in the evanescent field of a single-mode optical fiber (of radius Ry), as shown in

Fig. 4.1(a). The electric field of an elliptically polarized guided mode is given by
E= (x/l + 0Ep—s1 + € V1 - Ggp:_l) /V2 (4.3)

where 0 € [—1,1] is the helicity parameter [284], ¢ € [0,27] determinces the
orientation of the symmetry axes of the polarization ellipse in the xy plane, and
&, = (e,f + pee® +e,2)e’P ¢ is the electric part of the quasi-curcularly polarized
guided mode with a polarization rotation index p = o/|o| = £1 [298]. Here, B is
the propagation constant, and e,, ey, and e, are the cylindrical components of the
mode-profile function of £, with p = +1. The azimuthal component of the Poynting
vector of the elliptically polarized guided mode is I, = o (e h) — e, h%) 2 where h,
and h, are the components of the mode-profile function of the magnetic part, H,,
of the guided mode with the polarization index p = +1. Since the longitudinal field
components, e, and h,, are nonzero, we have Hsff) = lplo_, =p(e:hy —ehl) /2 #
0. It has been shown that Hg:H) > 0 and Hg):_l) < 0 outside the nanofiber [284].
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Figure 4.1 — (a) Isotropic, lossless dielectric particle in the evanescent field of an
elliptically polarized, fundamental mode of an optical nanofiber. Due to the non-zero
azimuthal component of optical force, Fi,, the particle can rotate around the fiber.
(b) We eliminate axial motion by using two oncoming beams with the same intensity

profiles and opposite helicities, 01 = — 05y
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Figure 4.2 — Simulation results. (a) Density of the total angular momentum of
light near a nanofiber (in water) guiding a fundamental mode with o = 1. Inset
shows total angular momentum normalized per photon and its spin and orbital
contributions. (b) The orbiting frequency for a polystyrene particle, as a function
of particle and fiber radii. Inset shows frequency at the optimum fiber radius (R¢ =

0.35 m) for three different particle materials: silica, silicon, and polystyrene
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The force and torque induced by light on any object can be calculated if you
know exactly the incident and scattered electromagnetic waves. In our problem, the
incident wave (here, the evanescent field) is well known [235]. In order to approach
to this problem semi—analytically, we implement the generalized Lorenz-Mie theory:
in incident field can be decomposed into series of vector spherical harmonics, and the
scattered fields are found by proper application of boundary conditions [299; 300].
Therefore, the force and torque, respectively, can be found by integrating the linear
and angular momentum fluxes over the surface enclosing the object. Note that,
although the Lorentz—Mie Theory is a generally accepted and fairly accurate semi-
analytical approach to optomechanical calculations, it does not take into account
multiple re-scattering in the light—matter system.

The optical force exerted on a scattering particle near a nanofiber can be
decomposed into the longitudinal (F,), radial (F,), and azimuthal (F,) compo-
nents [298] (see Fig. 4.1(a)). Under F,, the particle is attracted to the fiber surface
and stays at r = \/m > (Ri+ Rp) (the inequality being due to surface rough-
ness and Brownian motion). Here, we aim at detection of the azimuthal force, Fi,,
which sets the particle into orbital motion around the fiber. Since Brownian motion
disrupts the mechanical contact between the particle and the fiber, it is expected
that the contribution of the light-induced rotation of the particle to its azimuthal
motion will be insignificant. According to our calculations, azimuthal component
Fy, is much smaller than the longitudinal one, F,. In order to study the azimutal
motion only, we eliminate the axial motion by launching a second contr—propagating
HE;; with a power equal to that of the initial mode (see Fig. 4.1(b)).

In principle, the rotation under F, could be studied if beam 1 were elliptically
polarized (07 = o # 0) and beam 2 were linearly polarized (o, = 0). However,
such a beam 2 would produce an axially asymmetric intensity mode profile [301],
and the particle would want to stop at the “hot spots” unless |o7| ~ 1. Since
we consider all possible values of o, we set the polarization of beam 2 to be also
elliptical, with 09 = —07q. In such case, the total azimuthal force is the sum of the
contributions from these two beams.

Once I, is known, the orbiting frequency of the particle at equilibrium can
be easily calculated from the force balance equation, Iy, 4+ Fg = 0, where F§ is the
friction. In our experiments, the particle is immersed in water, which produces a
friction of Fy. = —ywv, where v is the linear velocity of the particle’s center, and vy is

the drag coefficient. As demonstrated by Marchington et al. [302], an appropriate



129

description of the friction for a microsphere in the evanescent field can be obtained
using the lubrication correction [303] v = v¢ [(8/15) In(h/R, — 1) — 0.9588], where
Yo = 6mnR, is the Stokes drag, m is the dynamic viscosity of the fluid (n ~ 1
mPas for water at room temperature), and the distance h = r — Ry [see Fig. 4.1(a)]
depends on the particle surface roughness. We note that the above formula for y
is valid only for large enough particles, Rp > 0.25 pm [303]. The absolute value
of the particle rotation frequency around a fiber when both beams are circularly
polarized (CP) can thus be expressed as

0] ||

[ferl = 2nt(h + Ry) B 2rty(h + Ry)

(4.4)

As follows from our simulations, in the general case of elliptical polarization (EP), the
azimuthal force and the corresponding frequency, fgp, are proportional to o = o7,

with opposite signs:

fep = —o|fep|. (4.5)

This result is consistent with the theoretical findings of Le Kien and Rauschenbeu-
tel [298], for the relevant range of the size parameter, n,, kR, where n,, is the
refractive index of the medium. For convenience, we normalize the rotation fre-
quency by the total optical power, P.

Our theoretical findings are summarized in Fig. 4.2, where J, is the z compo-
nent of the total angular momentum carried by the field near an optical nanofiber.
In order to better understand the structure of angular momentum, we calculated
the SAM and OAM densities [see the inset in Fig. 4.2(a)| using the canonical ex-
pressions [45; 170]. Although most of J, includes the spin part, both components of
the total angular momentum can contribute to the orbital motion of particles near
the nanofiber [241]. As shown in Fig. 4.2(b), the orbital frequency is expected to
reach approximately 56 Hz/W for a polystyrene particle with a 1-pm diameter. As
can be seen in the insert, the maximum frequency depends on the refractive index:
it is equal to 11 Hz/W for silicon dioxide (n = 1.45) and 450 Hz/W for silicon
(n = 3.67). In practice, one should also take into account Brownian motion, which
is inversely proportional to [?,: smaller particles will exhibit longer thermal displace-
ments and, consequently, weaker interaction with the damped field, which decreases
sharply with distance from the fiber, d. As a reasonable compromise, we decided
to use polystyrene spheres with a radius of R, = 1.5 pm. For this parameters, the
expected frequency for CP incident field is ‘ _};CP‘ ~ 21.3 Hz/W.
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Figure 4.3 — (a) Experimental setup (not to scale): once the polarization transfor-
mations in the tapered fiber are reversed by the polarization compensators, PC1 and
PC2, we set the values of 01 and 09 = —0y, by rotating the quarter-wave plates,
QWP1 and QWP2. (b) Transmission image of a 3-pm polystyrene particle optically

captured at the waist of a nanofiber

Our experimental setup is shown in Fig. 4.3(a). The nanofiber is made by
controlled heating and pulling method [304]. The small tapering angles of 3 mrad
provide adiabatic coupling [305; 306] between the fundamental modes in the fiber
pigtails and those in the 2-mm-long cylindrical waist region having a radius of Ry =
0.33 £ 0.04 pm (measured over a set of five nanofibers). The fiber pigtails are
coupled to laser beams 1 and 2 from the same source (Ventus, Laser Quantum Ltd.,
emission wavelength A = 1.064 pm). The initial linear polarization of the beams
(along = and y for beams 1 and 2, respectively) is changed into elliptical by means of
two quarter-wave plates, QWP1 and QWP2, with their slow axes oriented at equal
angles, Oqwp1 = Oqwp1 = 0, with respect to . This results in 0 = —S3 = sin 20,
where S3 is the third Stokes parameter in beam 1.

A nanofiber sample is immersed into 0.3 mL of deionized water with 3-pm
polystyrene particles (Phosphorex, Inc.) and sandwiched between two glass cover
slips separated by 1.5-mm-thick spacers. The sample is imaged by a video camera
(DCC3240C by Thorlabs, Inc.) through a water-immersion objective lens (Zeiss
Plan-Apochromat, 63x/1.00 w) under Kohler illumination [see Fig. 4.3(b)]. In-
dividual particles are picked up from the bottom plate using optical tweezers,
implemented by focusing a collimated beam 3 (from the same laser) using the same

lens. The polarizing beam splitter cube transmits a y-polarized beam 3 and is
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Figure 4.4 — Experimental results for a CP input (R = right, L. = left). (a) Beatings
in the detector signal acquired with an optical power of 15 mW in each beam. The
zoomed-in view (inset) shows the local period, T. (b) Orbiting frequency versus
power in each beam, at 0 = +1. Markers: measured data sets for three samples;
gray area: combined standard deviation range. Dashed line: frequency expected
for the drag coefficient y; solid line: the best fit to the data with y-fit. (c), (d)
Time-lapse compilation of images for 0 = +1 (¢) and 0 = —1 (d)

subsequently used to detect (PDA10A2 photodetector with Si amplification from
Thorlabs, Inc.) laser light coming out of the nanofiber due to particle scattering.

Due to uncontrolled bends, twists or geometric inhomogeneities, the fiber does
not support the polarization of directional light. To control the polarization state
of the nanofiber waist, we reverse unknown polarization transformations for both
beams using two free space compensators, PC1 and PC2. The compensation proce-
dure described elsewhere [297] is based on self-scattering from the waist imaged by
a second video camera, replacing the photodetector for this purpose.

The summary of experimental results for |o| = 1 are shown in Fig. 4.4. The
orbital motion of the particle around the fiber causes clear quasi-periodic fluctuations
of the measured voltage [see Fig. 4.4(a)|. The orbiting frequency, fcp, scales linearly

with optical power, as can be seen in Fig. 4.4(b) for three different nanofibers. The
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the orbiting frequency versus the calculated helicity. Solid lines: simulation us-
ing Eq. (4.5), with o = sin 260

data were fitted to Eq. (4.4) with an adjustable drag coefficient, y-fit. The resulting
frequency;, fcp, fit = 19.2 Hz/V, is about 9% lower than the expected value, a
slight discrepancy, given the complexity of the hydrodynamic problem, the complete
solution of which is beyond the scope of this study.

When the sign of o is reversed, the particle rotates in the opposite direction,
with nearly the same period, T' (see visualizations in the Supplementary Materials
to [307] and the corresponding time-lapse compilations of images in Figs. 4.4(c) and
4.4(d)), where s,—1 2 = o;k;/k;, and the curved arrows denote the rotation of the
electric field vector, E, in the xy plane for each beam, from the receiver’s point
of view. These arrows also indicate the circulation direction of the energy flow (or
Poynting vector) around the nanofiber [297].

The results for 0 # 1 are summarized in Fig. 4.5, where solid lines show the
simulated frequency, pr(G), and each error bar is the standard deviation range for
at least 207" duration. Egs. (4.5) and (4.4) were applied for this data set without
any adjustable parameters. As one can see in Fig. 4.5(b), the transverse spin-depen-
dent radiation force acting on the particle is proportional to the projection of SAM
on the propagation direction, with opposite sign. The observed rotation caused by
light is antiparallel to the azimuthal component of the Poynting vector around the
nanofiber [297]. This counterintuitive “negative” radiation torque (OAM-induced)

happens due to the dominant forward scattering. This is due to multipolar interfer-
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ence when scattering from sufficiently large particles, R, > A/(27n,,) ~ 0.13 pm.
The related direct light scattering linked our results with previous demonstrations
of the “negative” radiation forces [308-310)].

Interestingly, o affects not only the frequency, but also the trajectory of the
particle. For CP input (|o| = 1), it is close to a circle in the xy plane. When the
polarization is elliptical (|o| < 1), the trajectory takes the shape of an eight, with
longer transitions along z for smaller |o|. This distortion occurs due to the lack
of axial symmetry in the intensity distribution for counter-propagating elliptically
polarized modes [301]|. Indeed, for the case of |o| &~ 0, the intensity maxima for
beams 1 and 2 are aligned parallel to the x and y axes, respectively. Therefore, the

particle is pushed towards z > 0 or z < 0 when passing through the xz or yz planes.

4.2 A scientific statement

Second scientific statement

For an orbiting motion of particle around a dielectric waveguide in a viscous
fluid induced by circular polarized fundamental mode there is an optimal particle
radius for which orbiting frequency is maximal. The position of this maxima
does not coincide with the maximum of the canonical total angular momentum

density:.

4.3 Spin angular momenta transfer

Now let us focus on the spin angular momenta transfer. In this section we will
show that even if the particle is anisotripic, the rotational average spinning torque

is also proportional to the spin angular momentum density:.
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4.3.1 Torque from the arbitrary polarized plane wave using Stokes
parameters

The incoming wave is going to be written in the following form. We consider
a polarized electromagnetic wave propagating along z-axis with the wave vector

k = /en?. The complex electric field can be written in Cartesian coordinates as

E=FE|e |e* H==2/=]¢c |e* (4.6)
/ Zo\ H
0 0

where Zy = / o/ €0 is the vaccum impedance and e is the unit polarization vector.

The reduced Stokes parameters [259] of the wave s; = S;/Sy can be calculated as
s1= les|” — ley|?, sy = 2Re(eey), s3 = 2Im(ere,) (4.7)

where Sy = |E|?. The Stokes parameters are the measurable and convenient vari-
ables from the experimental perspective to identify the polarization of the beam,

in contrast to the Jones vector [259].

V4
y
2 x
%
Top view Perspective

Figure 4.6 — Simple anisotropic particle in a field of an elliptically polarized light.
Geometry of the problem. Blue ellipsoid represents the Fresnel ellipsoid

Next, we assume that the probe particle has anisotropy in the z-y plane as
shown on Fig. 4.6. To write dipole moment in terms of polarizability p = &&'E
and m = (up) L& H, we need to rotate to polarizability tensor & to use it in

Cartesian coordinates

& = R(y)aR™(v), (4.8)
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where
cos(y) —sin(y) 0
R(y) = | sin(y) cos(y) 0]. (4.9)
0 1

0
After some algebra we obtain T = (0,0, T Z)T, where torque can be rewritten in

terms of Stokes parameters (4.7) as

1 €€ . 1 €€
T, = —F? [AZ — —Am} (s cos(2y) — sy sin(2y ) + —F? [Ag —Am}
5 Eu e 2008(2y) — s15in(2y) | + 5 By e
(4.10)
where AS and AS ("a" for aligning and "s" for spinning) are the generalized

anisotropic electric polarizabilities

1 k3

AS = 5 Re(af — o5) + — Im(ofo), (4.11)
AS ! Im(af + of) K Re(afos") (4.12)
= —Im — ——Re :

and A" and A7" are the generalized anisotropic magnetic polarizabilities

]{33

m 1 m m m ,,m*
Al = 3 Re(af' — o) + T Im (o] ocy™), (4.13)
AT ! Im (" + of') K Re(af"oty™) (4.14)
= —Im — e : :

Here k = /epnky. The spinning coefficients can be explicitly decomposed into the

meaningful terms as
Ay = AWM 4 pomis (4.15)

where the first terms is responsible for the absorbtion in the particle and the second
term is responsible for the effects of the anisotropy. In the Rayleigh limit we can find
that A2 ~ £ Im(a{"+«f’) for (e) and (m), and Aloamis Re((e (e)as oc;e>qs)2,
A(Sm)anis ~ k1g;t0 Re((ocgm)qs océ )qS)2

One can check that for the isotropic particle with oy = o9 in terms of gen-

127‘[££

eralized polarizabilites we have

kakl
ASm =0, Awm = Im(oce(em)), (4.16)
X1 =09 X1=0K2
Here o“(®™) is the quasi-statics approximation of the polazability which is given

by the (B.4). This means that rotation of the isotropic particle is possible only in
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the presence of losses. Which is a particular case of the fact that lossless isotropic
sphere of any radius cannot be span by any incident field [10; 97; 127; 128].

We rewrite torque as the sum of three terms by its physical meanings as
T, = T8 4 Tabs | panis (4.17)

Similar decomposition but with less detatails was given in [311]. Here T2 is the
alignment torque which is zero once we make the average on y: <Tj‘lg>y = 0. Sec-
ondly, T2 is the torque which is responsible to the ohmic losses and is eventually
is proportional to the Im(e,). In the case of small isotropic sphere torque is given
only by this term T8> = %Im(och)Sg = 5P0asS3, Where oups is the absorption
cross section. It is know that this holds true for the sphere of any radius [127; 128;
312]. More notes on this is given in the sec. 4.3.7. Lastly, T is the torque which
comes from the change of the momentum of the incident wave due to the scattering.
For lossless anisotropic particle with ka < 1 in the circularly polarized plane wave

we have only this component

T.(s3 = 1,Im(e12) = 0) = T2 = (4.18)
kg 1 s(e s(e)* 2 €€ s(m s(m)x* 2
:ESETL—EORe<o€f()—ocg()) +(HH{))2R6<0¢?()—0¢§()>}

Alignment and absorption torques are proportional to the canonical spin angular
momentum density S = S¢ 4 Smas — ﬁ Im [eegE* X E 4+ puoH* X HJ, which is
for the plane wave defined through (4.6) is going to be

eeg B2

Sel _
i 4w

4.3.2 The critical angle

The condition for the critical angle of the elliptically polarized light is given
by the

awp T.=0 or T"&—=_7n (4.20)

where T#% and TP are the first (y-dependent) and the second (y-independent)

terms in (4.10). Polarization in the experiment is controlled by the rotation of the
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quarter wave plate (QWP) on angle dqwp. On the Poincare sphere this rotation
will induce 8-shaped curve and the corresponding stokes parameters are going to
be [259; 313|

1
S1 = 2 sin 49qwp, Sy = sin? 29qwp, s3 = cos 20qQwp- (4.21)

The related electric field is going to be

A +is®+ (1 —1i)sc
- (1-i)

E=—"2|s2+ic%+ (1 —1i)sc (4.22)
2
V2 0

Where ¢ = cosdqwp and s = sinOqwp. This can be found using Jones calculus for-
malism [259]. Condition (4.20) depends on two parameters: y and dqwp. However,
this can be reduced since for every dqwp there is one position of the optical axis (=
one ) for which T## is maximum. This condition leads to y = dqwp — 7/4 for
Yqwp € [0,7/2]. Thus, we can finally find the critical angle of the QWP
e E€0 AM
Qwp = —1 atan A WOAS . (4.23)

e _ £ Am
2 Aa HHOAG

This leads to the almost linear scaling due with the increase of the particle radius

Owp(a) o const; — consty - a. This happens only after taking into account the
magnetic dipole moment as illustrated on Fig. 4.7. In addition to this, we also find
the limit for Reighley particles (ka < 1) to be

(4.24)

o ~ L atan(ka)’ 2e(e) — 1)
QWP P 2 (EJ_+2€)(€|| + 2¢)

4.3.3 Rotation dynamics

Once the spinning torque is larger than alignment torque particle may rotate
with a frequency 2 which is limited by the viscosity of the host media. To study this

process in details, we start from the second Newton’s law for the rotation motion

Jy =T. - py (4.25)
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where J is the moment of inertia, u = 87mva?® is the viscosity coefficient [314, ch. 2],
where a is the particle radius, and v is the dynamic viscosity.

The stationary rotation condition y = 0, vy = ) and assuming the stokes
vector to be s = (1,0,0,1) (circular polarized light) gives the expression for the

rotation frequency

(ka)?,
1/(ka)?, for ka > 1

T, E? [ for ka < 1

I ~ 16mva®

A4 @Ag] &
HHo

Qp = (4.26)
The limit for the ka > 1 is given regardless accidental periodic zeros. The scaling
with the radius if shown on Fig. 4.8. However, solution for an arbitrary Stokes
vector is anharmonic, which is clearly shown on Fig. 4.9. The typical "Bell" curve

is shown on the Fig. 4.10.

4.3.4 Case of two beams

General results is the following. Torque is the quadratic function of fields,
thus in the final expression for the torque from two beams with a total field given

by Ei,t = E; + Es has three terms including the interference terms:

<T2>y - Tl,z + T2,z + Tmix,zy (427)

where 71, = 11 .(Eq), T, = T5 . (Ey), and Thyix» = Tix.-(E1, E2). For incoherent

beams we formally have to do the averaging over relative phase d between E; and
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Figure 4.8 — Scaling of the rotational frequency with the particle radius. Results are
compared the COMSOL simulations, where particle was illuminated by a gaussian
beam (GB) with different waists wy and a plane wave (PW). Electric and magnetic
dipoles are sufficient for the particle radius of a < 300 — 400 nm. For all lines the

magnitude of electric field Ej is constant
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Figure 4.9 — Numerical solution of the system which describes the rotation dynamics
of the anisotropic particle in the dipole approximation. (a) Instantaneous frequency
exhibits oscillations on the double frequency due to the anisotropy; (b) Signal form
y(t) = sin[y(t)] and (c) its spectral representation. Solid lines show the numerical
solution and dashed line is the first order approximated analytical solution. Signal
is fully harmonic for the purely circular polarized light m = 4+ and starts to be
inharmonious close to the critical point. Here Ty = 27/€)y. Other parameters are
Ey=4,A=01,T=03,a=1,p=1,and v=0.1
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Base frequency Q/Qq

~40 -20 O 20 40
Bowr
Figure 4.10 — Simple model solution for the base rotation frequency. Frequency is
extracted numerically and normalized by 2y which is defined by (4.26). This curve

looks very similar to the one in literature [279]

Es which gives zero:
<Tmix,z>5 =0. (428)

Hence, torque on a small particle in two beams is proportional to the sum of spin
angular momenta of each beam without any interference terms.
Next, we consider a particular example of a small anisotropic particle &® with
electric dipole in the field of a plane wave and an evanescent wave. Fields are
1 1

E | E |
Ei=——o | 0 |e™  BEy=—2| k/k | (4.29)

1+ |mq|? 2

+ ‘ 1| —1 \/_ ZK/kZZ

Here k, — k> = k2. It can be parametrised by a single real parameter 0: k, =
kcosh(0) and k = ksinh(0). We assume that particle experience rotation around
y axis and described by the polarizability tensor &ear¢. For this configuration with

my = im/ we have find torque averaged over particle rotation

<T2>y - TLZ + TQ,Z + Tmix,z; (430)
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where
1
Ty, = 553142, (4.31)
Ty, — LEZe e ge (4.32)
’ 2 k., *

(s
. 1 2
T = —EgnEgpe ™ cos(é)L (m’f + i) A

2 \/|m1‘2—|—1 kz

where & = ky — k,z is the interference phase. For incoherent beams this phase is

= (1.33)

incoherent beams

random and, hence, T1,ix . = 0 in average. This leads to an important yet simple con-
sequence mentioned above: torque on a small particle in two beams is proportional

to the sum of spin angular momenta of each beam without any interference terms.

4.3.5 Taking into account chirality

Chiral anisotropic particle is given by [24; 152]

p & Y& [E
= (4.34)
AAT 1 A
m —Zﬁ(xc mcxm H

Here we define &, such that it has dimentionality of the volume, so [&;] = [m?];
Hito

N = /%% I8 the wave impedance. We start from the tensor structure of the
&.. Which acutally can be almost arbirtrary. See many examples in [21; 22].
Let us consider the case of isotropic chirality, besides for this example we as-
sume all other terms to be isotropic as well: & e = focem’c, where I is the
unit dyadic. This case is partially was studied in [24] where it was shown that
chirality reveals cross dependence of linear and angular momentum dependence
between electromagnetic field properties and dipole dynamics. However, authors
in [canaguier-durand2015ChiralRoutePulling| did not consider the correction
term to the torque as we did here. This reveals new unique connection between
optical torque and imaginary part of the Poynting vector. The example below

illustrates this.
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The total torque can be decomposed into the chiral and non-chiral parts

T = Tnon—chiral + Tchiral) (435)
where 5
non-chiral c (e) e (m) q(m
T — \/—g_u [Uabss( ) —l_ O'abSS( ):| (436)
e 3 m
where Gz(mb)s - 4711550 - Atk {Im(ae) o 67f€£o|cx€’3} and O-E(lbs) - 47TL11H0
4mtk | Im(e,,) — Gnk:po‘“mﬂ are the absorption cross sections. The chiral part
is given by
. k3
Tchlral — 2€_H’ Im(OCC)HRe . w ‘OCC‘QS
c 37T
k? 3

k
—a- Re [o¢f (Mot +1 oy ) | TR — 3—7_(Im [ (Mote — Moy, ) | TABT)

where IT" = 1 Re [E* X H] and II"™ = 1 Im [E* X H] are the real and imaginary
parts of Poynting vector; S = z=Im [eggE* X E 4+ pugH* X H| = S 4 8m) g
the spin angular momentum density. Equations (4.35), (4.36) and (4.37) reveals the
true connection between properties of the incident electromagnetic wave and dipole
rotation dynamics. Chirality underpin possibilities of the direct measurements of
the imaginary part of Poynting vector IT™ which signifies the reactive power. For
more theoretical insights see [315-317]. The imaginary Poynting vector was also

measured experimentally via optical force |287] but not optical torque.

4.3.6 Rotation of chiral particle in the field of HE;;

The case of E and H being electric and magnetic fields of propagating fun-
damental linearly polarized mode HEW" simplifies expressions (4.36) and (4.37) for
the torque. Besides, we also consider effects which are connected only with chirality,
this leads to the o, = Re(e.) in (4.34) [318].

Fields of HEW- are explicitly given in [235]

€, CoS @ tfh,sin @
Ei" = V2 |ieysing | €/P7 HM =2 | fhycos | e/P* (4.38)

lin. lin.

fe,cos @ th, sin ¢
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A

We find that in cylindrical coordinates (¥, @, %) spin angular momentum density is

—sin [2¢] Re(eje;) sin [2¢] Re (hih.)
€€ €€
= —Of 2cos?(@) Im(ete,) |, S™ = —Of 2sin®(@) Im (h2h,) | . (4.39)
0 0

where (e,h), .~ are the mode profiles from [235, Appendix A, f = £1 is responsible
for the mode propagation direction along %z correspondingly, and @ = @ — @
is the polar angle with the ¢, being the linear polarization angle of the mode.
We emphasize the angular dependence by colors. The real and imaginary Poynt-

ing vectors are

0 (1+¢) |75 — cos(20)] Im (e )
IR = 0 ;I = - sin [2@] Re (e*h, — e’h.)
f3sin(2@) Re (eth, — e}h.) 0
(4.40)
Where ¢ = Im(ejhy)/Im(eph.) = —s5 ! (}1 SZ;?TSK;}? Here K, =

K, ((B* - nk kY 2r) is the modified Bessel function of the second kind and
parameters s and sy are given explicitly in [235; 290]. Interestingly, the TT™ does
not depend on the propagation direction, i.e. along £z. For the sake of convenience
we plot (4.39) and (4.40) in Fig. 4.11.

Finally, the r- and ¢-components of optical torque on chiral particle in the

field of HEM mode is given by
S,

pehiral — @a2 S —k—goc Re [(nae +n'oy)] | 0 —k—goc Im [(Moee =M o
3m C|7° 3n ¢ ¢ " 3m ¢ c
IR
(4.41)
We also rewrite is in a simplified form to show the essential dependence:
T, =T L84 g Ly (4.42)
H/—/ —— H/—/ —
const() ~sin(2¢p)  ~—sin(29)  ~b—cos(20)
_ l—c __ (s82—1)(Ko+K>)
where b = 120 = oy mRTR) - (R—ky) A0
To =Ty + ... SO+ ... StW4 .11 (4.43)
—— N — \W_/ \‘,_/
const (@) ~cos? @ ~sin? @ ~sin(2¢)

This contribution caused by chirality gives the shift between measured orbiting

frequency and spin angular momentum density.
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Figure 4.11 — Spin angular momentum density S and imaginary Poynting vector

1™ of HEM mode. The black arrows represent the electric field lines

Some numerical results based on the dipole model are shown on Fig. 4.12
for non-chiral particle and on Fig. 4.13 for chiral particles with o = 0.001a® and
o, = 0.1a>. In the case of high chirality radial component of the torque is almost
entirely determined by the radial component of the imaginary Poynting vector ITM™®
rather than radial spin angular momentum density S.. This happens due to the
fact that Sﬁel) and S,gmag) are out of phase as shown on Fig. 4.11 and derived in
Eq. (4.39). Once particle supports both electric and magnetic dipoles, the total

non-chiral radial torque is suppressed.

4.3.7 Torque on a small isotropic dipole particle and dipole
approximation problems

Exact torque on a sphere is proportional to the absorption cross section [10]

— —Uabs — ext = Usc) ) 4.44
i = (O — O3 (141
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Figure 4.12 — Comparison of the optical torque and spin angular momentum density

for a non-chiral particle

where II is the average Poynting vector of the plane wave. In terms pf Mie scattering

coefficients [97] we have

T o> "(2n+ 1) [Re(ay) — |an|* + Re(by) — [ba/*] . (4.45)
n=1
For the dipole approximation we have only term a;. Expending Mie coefficient in
Taylor series over x = kpa we have
2(e—=1) 5 2(2—3e+¢?) 5 4(e—1)7 4

N —l————1° — 4.46
ai ) e 10 x’ —1 52+ ¢2)? x —|—9(€+2)2x + ( )

Next, assuming particle to be lossless, e.g. Im(e) = 0, we have

2

2% 4+ O(2%) = 0. (4.47)

Re(an) o ‘an|2 _ 4(8 — 1) 6 |22(€ — 1)

9(e + 22" et 2

Same is true for the b,. So, in general, once Im(e) = 0 we have identity
Re(an) —|an|* =0,  Re(b,) — [bu]* =0, (4.48)

which is easy to check at least numerically.
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On the other hand, for the case of lossy particle, complex ¢, we have

21 81 2
m<52x3 + Im(e)g(e)x® — LE)LL:L’6
12 + ¢ 12 + ¢

where g(¢) some complicated real function of €. This holds true for any order n and

Re(a,) — |an|? ~ (4.49)

for b,, coeflicients as well. From here we conclude
T=0 < Im(e)=0. (4.50)

Classical formula T = 1/2Re[p* x E] gives only first term which is propor-
tional to the Im(o) oc Re{a;} but not to |a,|? in (4.47) and, hence, leads to the
incorrect result. This happens due to the excess accuracy. That is why it is impor-

tant to consider radiation corrections as well [145].

4.3.8 Some useful decompositions

Some decompositions might be helpful in the theoretical analyses:

Re(o; — ow) = Re(af — ), (4.51)
3
Im(o + o)~ Im(of” + 06382%—67(880 Re [(af)* + (af)?] . (4.52)
logges
and
Re(oq o) ~ Re(ofag™), (4.53)
3

Im(o06) ~ Im(afag™) +

e Re ()" — o ()7 (454)

where k = kgy/e. For the magnetic polarizability one needs to perform the sub-
stitution €y — K.

4.4 Spin angular momenta transfer: non-linear regime

Light cannot exert an optical torque on a transparent object possessing con-

tinuous rotational symmetry, since photons scattered by such an object preserve
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their angular momentum [319]. From this point of view, the phenomenon of op-
tical torque is a consequence of broken rotational symmetry either geometrically
(macroscopic symmetry braking), either via crystal structure (microscopic symme-
try braking). In this work we show the mechanics and the particular example of
torque generated by the microscopic symmetry braking considering structure which
generates higher harmonic.

Time averaged optical torque T on a spherical non-absorbing particle on the
first harmonic is equal to zero, since torque on an arbitrary sized sphere is propor-
tional to the absorption cross section [10; 11|, in terms of canonical spin angular
momenta density we can write T = niocabss, where S is the canonical spin angular
momenta density [45] and ng is the refractive index of the host media. Also we
will fixed the incident direction along z-axis, so k/k = &, and T = T.é,. This
can be explained by the fact that in the linear scattering regime angular momenta
of the scattered field is defined solely by the geometry of the scatterer. Sphere, in
particular, has azimuthal symmetry, hence it cannot change angular momenta of
the scattered field on the first harmonic and torque is going to be zero.

However, once this particle is made of non-centrosymmetric material (e.g. sec-
ond order susceptibility tensor ¥(? # 0) and the particle generates second harmonic
the situation is going to be radically different due to the fact that crystal lattice
of the particle adds additional azimuthal angular momentum number m, such that

(2w) Mm@ where @ is the azimuthal angle.

scattered field on second harmonic is E
Angular momenta must conserve, hence once there is an additional momentum in
the scattered field (which comes from the symmetry of the crystal lattice), particle
must gain the same angular momenta with the same amplitude and different sign.

In the other words, time averaged optical torque on a spherical particle with
non-zero susceptibility tensor X® which is illuminated by a circular polarized plane

wave can be written as
T = TW 4 T (4.55)

where T and T®®) are the optical torques on the first and second harmonics,
respectively. Torque on the first harmonic on a sphere is proportional only to the
losses in the particle. In our case — the case of lossless particle with non-zero
%@ tensor — all the energy lost on the first harmonic is spent to the second har-

monic generation, hence

Tz(w) = iSéw)(rabs - iSéw)GSHG (456)
no no
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where S*) is the canonical spin angular momenta [45| density of the incident wave.
For a circular polarized plane wave we have Sl — Sy-cegkg with & = —1(+1)
for right (left) circular polarization. Within this convection field E = (1, —i, 0)% e
is RCP. Equation (4.56) shows first harmonic contribution of the torque mimics
the spectrum of the SHG. Torque on the second harmonic can be defined by the
scattered field on the second frequency EG®) as

T = f{ M) nds, (4.57)
b))

where M2©) is the angular momentum flux tensor, which is the quadratic function
of the fields on the second frequency; Y is the closed surface which contains the
scatterer, and n is the outer normal to that surface.

It is possible to note some features of the torque on the first and second frequen-
cies in advance. As we see from (4.56) particle gains torque from absorbing angular
momenta from the field which energy goes for the second harmonic generation. Im-
portantly, this part of the torque does not depend on the angular momenta of the
scattered field. In constrast to this, torque contribution on the second frequency de-
pends only on the angular momenta of the scattered field on the second frequency.
It means that we in advance know that there is no contributions from the modes
with total angular momenta zero, i.e. with m = 0 (which is explicitly shown later
in eq. (4.59)). Other contributions with m # 0 or modes with non-zero angular mo-
menta can be defined in advance from the symmetry analyses of the scattered lattice.

[t appears that expressions (4.56) and (4.57) can be expressed through the
same scattering coefficients as follows. The surface integral (4.57) can be taken once

all the fields are decomposed in the complex vector spherical harmonics [97; 320]

EC®) = Ey > (a3, Ny (2w, 1) + b, M (20, 1) (4.58)
nm
where Y = > S _ . The coefficients ay,, and by, implicitly contains
information about x® tensor. The explicit connection with Wigner coefficients
from [320] are written in the Supplementary Materials. Due to the orthogonality
relations of the VSH it is possible to get to the answer [321-324]

1 oeeykl
7w _ _ 850 Zm n(n+1) [, + [65,1%] (4.59)

where ng is the refractive index of the surrounding medium. This expression is

differs to the similar one in [321; 322| due the two factors: 1) there is no "incident"
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wave on the second harmonic and 2) we define VSH with different normalization
constant (see Supplementary Materials). It is also coincides with the scattering
contribution to the torque in the [323, eq. (32)]. On the other hand, cross section
of the SHG is given by

1 s 12 s 12
GSHG:W;WH) 05l + 165l (4.60)

where k(2w) = no22.
Finally, substituting (4.60) into the (4.56), and summing up contributions on

both frequences we come to the final answer
T, = T\ 4170w (4.61)

1% 2(26 —m)n(n+ 1) [|amn|* + |bmnl?]

2[k(2w)] £ o m”
which is the central result of our work. Here & = —1(+1) for right (left) circu-
lar polarization.

Moreover, there is one more thing we can say in advance even before any
numerical calculations. We can identify the multipolar content of the torque on the
second frequency by the selection rules. Indeed, the contribution to torque on the
second frequency can be only from the modes with non-zero azimuthal numbers, i.e.
m % 0. This can be understood in various ways. Firstly, this formally follows from
the eq. (4.59). Second argument is in the physical interpretation of the eq. (4.57).
Particle experience only recoil torque from those modes that have a non-zero angular
momenta projection on the z axis. It can be shown that for the multipoles (or VSHs)
total angular momenta per one photon is equal to its azimuthal quantum number
m. It means that there is angular momenta only from the modes with non-zero m.

Next, the selection rules suggest what exactly azimuthal numbers are permit-
ted in second harmonic. This is dictated by symmetry of the lattice (via %@ tensor),
nanoparticle, and the incident field. It can be shown, that for spherical, cylindrical,
and conical AlGaAs particles under left (right) circularly polarized plane wave only
harmonics with m = 0, +4 for LCP and m = 0, —4 for RCP are allowed [320; 325].
The lattice orientation is also important, we have [001] || . in our case. Thus we ex-
pect to see only one peak in the second harmonic part of the torque spectrum T?®)
exactly at the resonance with m = +4. Alongside with this, the first harmonic part
of the torque is directly proportional to the SHG spectrum as eq. (4.56) states. We

are going to demonstrate this via numeric verification in the next section.
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4.5 A scientific statement

Third scientific statement

For a non-absorbing particle geometry of which is axially symmetric with respect
to the direction of incident wave, the mechanical spinning torque associated with
the generation of second harmonic radiation can arise. The appearance of the
spinning torque turns out to be associated with a nonzero angular momentum of
the generated second harmonic field, which appears due to the specific structure

of the crystal lattice of the nanoparticle.
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Chapter 5. Momentum transfer from an acoustic wave to scatterer

Linear acoustics is an evolving field of science [5; 326]. It gained huge momen-
tum in its development since experiments become very affordable and even bachelor
students can assemble a simple acoustical tweezer setup. Moreover, many important
concepts which are vital in optics are much easier to understand using the scalar
fields in linear acoustics [327; 328].

5.1 Main acoustics equations and variables

Sound or an acoustic wave is alternating areas of compression and decom-
pression which propagate in a medium with internal forces. The amplitude of the
pressure of these oscillations is usually much lower than the background pressure, so
perturbation theory can be easily applied. We limit to the case where only longitu-
dinal waves are possible which is true for almost all soft bodies, liquids, and gases.

Decomposition up to a 3rd order of total pressure p;, density p; and velocity

gives vy |215; 329; 330]

)
p=po+p+7,

pr=po+p+p, (5.1)
(Vi = 0+v+v' |vi] <es.

7\

Usually, in acoustics only 1st order disturbed values are sufficient to consider. Here
we also assumed that the average displacement of individual molecules is much
smaller than a wavelength. Master equations are linearised Navie-Stokes equation
and continuity equation:

;

PpOyv = —=Vp 1st order N.-S.
BoOip = —V - v 1st order c.e. (5.2)

7\

p= cgp state eq.
\
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Where ¢, = 1/4/poPo is the speed of sound. From above it is also follows that

vector field is curl-free
V xv=0. (5.3)

Media is described by two main quantities: (7) density po, [po] = [kg-m™] and
(11) compressibility 39 = —%%—‘;, [Bo] = [mz : N_l]. Connection with the speed of
sound is given by ¢ = 1/v/poPo.

Object inside this media can be described by its own density p; and compress-
ibility ;. It is convenient to use normalized dimentionless parameters [88-90]: (i)
normalized density p; = p1/po and (ii) normalized compressibility B; = B1/Bo. Af-

ter introducing these normalized quantaties, we can write the wavevector inside

k1 = koy/P1B1.- (5.4)

Usually, losses in linear acoustics are defined as an imaginary term if the wave

the object as

vector ky = k] + i01. Porous materials are the great example of lossy matter in
linear acoustics [89-92]. However, using relative density and compressibility allows
to introduce losses as it is done in optics, so for Im(p;) > 0, Im(B;) > 0 one gets
a lossy particle, and for Im(p;) < 0, Im(B1) < 0 one gets a particle with gain
(for the e™™! choice).

It is convinient to consider complex amplitudes for the monochromatics fields
A(r,t) = Re (A(r)e_iwt) where A = p,p,v. The boundary conditions are shown
in the Table 5.

Table 5 — Boundary conditions. Here €2 is the boundary surface, v,, is the normal
velocity component to the surface
Particle / Fluid Viscous Inviscid

Rigid and lossless vire Q) =0 v, =0

Compressible and lossy v, p continuous v, p continuous
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>
o1, BQJ
R0, Bo J

Figure 5.1 — Acoustic Mie scattering problem

5.1.1 Spin and orbital angular momentum of acoustic waves

Energy density and canonical momenta of an acoustic monochromatic wave

can be written as 93]

1
W= (Bolpl* + polv[?) = W® 4w (5.5a)
1
P = —Im[Bop"Vp+ pov" - (V)v] = P + PV (5.5b)
L=rxP (5.5¢)
S= v xv (5.5d)
2w

where W is the energy density, P is the canonical linear momenta density, L and
S are the orbital and spin angular momentum densities, respectively. Here we have
used Berry’s notation v* - (V)v =37, v Vu; [9].

5.2 Mie scattering problem

5.2.1 General solution and the dispersion equation

The geometry of the problem is shown in Fig. 5.1. Incident field can be
decomposed as [95]

p'=poe™ % = " pujn(kr) Py(cos ©), (5.6)
n=0

where p, = poi"(2n + 1).
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Any radiation from a body located at the origin can be characterized by sums

of multipoles:

Z Z A (W) 2, (k) Y™(0, @) (5.7)
n=0 m=—n
Where z, = j,, hg) are the radial dependent functions which is usually one of the
spherical Bessel functions depending on the boundary conditions, and V,,,(r) =

2,(kr)Y™(0, @) are the modes of the sphere. Next, system has symmetry over @, so

ZA W)z, (kr)P,(cos 0). (5.8)

Particle with radius a is described by p; and ;1 and located in a fluid with py and
9. Boundary conditions are
1+ S — in
L (5.9)
v, + vy = vt

in

Vp , so the second equations tranforms to 9,p' + 0,p° = %&p :

where v = pr

Decompositions for scattered field and field inside the particle are

= ipnan(w)hfz”(’fT’)Pn(COS 0), (5.10)
ancn W) jin(k17) Po(cos 0), (5.11)

where p, = ppi"(2n + 1). Boundary conditions give explicit expressions for a,

and ¢, coefficients:

L i/(ka)?

" alkia)hl (ka) — v, (kia)hlP (ka) o1

B wmamn(ka) — ju(kra)j! (ka)
julkia)n (ka) = vl (kia) b (ka)

where k1 = k+/ 51[_31 andy = %—510 = 4/ [_31/()1. These coefficient are in the agreement
with coefficients A, and B, from [96]: a, = A,, and ¢, = —p1B,, (it seems there is

(5.13)

a typo in [96], ¢, in this work satisfies the limiting case p™(p; = B1 = 1) = p').

Let us consider two general limits in acoustics:
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1. Rigid sphere. For the absolute rigid sphere there is no radial velocity at

the surface. This leads to the next boundary condition

0, ($(r, ) +p'(r,0))| _, =0, (5.14)
which results in y
grisid _ _ In(ka) (5.15)
hY (ka)

The same result can be obtained from (5.13) by taking limit 3; — 0 while
P1 = const.
2. Pressure release sphere. Total pressure at surface vanishes, so the

boundary conditions come to

p'(a,0) + p*(a, 0) = 0, (5.16)
which leads to (
P = — ‘78)( I (5.17)
hy,’ (ka)

The same result can be obtained from (5.13) by taking limit 3; — oo while

pP1 = const.

5.2.2 Sphere resonances

Resonant conditions is given by the zeros of the denominator of inner and
scattering coefficient (5.12) and (5.13)

A = j, (kia) AV (ka) — vj! (kya)h D (ka) = 0, (5.18)

where ki1(w) = k(w)\v/p1B1, ¥ = v/B1/p1 and k(w) = w/c. Solution of this

dispersion equation, in general, are the complex frequencies
W, = Wo, — 10y, (5.19)

where T = 1/29,, is the mode lifetime. This happens because it is an open system
and mode energy leaks to the free space. An example of the complex map to show
approximate location of the roots for some random parameters are shown on Fig. 5.2.

For the case of solid sphere with supports shear waves it is possible to realize bound
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-10

-10

(b)yn=1

log(]A])

log(]A])

Figure 5.2 — An example of the complex roots of the acoustic dispersion equation
with » = 0 and n = 1 for a sphere with p; = 3 4+ 0.1¢ and B; = 4 + 0.3i. Here

r = Re(ka) and y = Im(ka)

state in the continuum with infinite Q-factor [331]. Otherwise, there always will be

an finite lifetime for an open system.

Below we consider some particular cases.

Monopole resonance

For n = 0 dispersion equation (5.18) reduces to
gsin(q)(iz — 1) = yz(qcos(q) — sin(q)),

where ¢ = kj(w)a and z = k(w)a.

(5.20)
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Dipole resonance

For n = 1 dispersion equation (5.18) reduces to

¢ (@ - COS(Q)> v (x + 1)
: = — — (5.21)
(¢> — 2) sin(q) + 2q cos(q) 2z + 20 — ia?
5.2.3 Cross sections
We start with the absorption energy flow W which can written as [97]
W, = —]{HRG -dS, (5.22)

where TTR® = % Re(p*v) is the energy flow or the acoustic analog of Poynting vector.
If W, > 0 energy is absorbed inside the integration sphere. Our fields are the sums
of incident and scattered fields, so we have three types of terms: proportional only
to the incident field, scattered field and interference term. The standard way of
writing it is W, = W; — Wy + Wy where

W, = —R? / dQ% Re p™v!, (5.23)
ir
Wy = R2/d§2% Re p™ 2, (5.24)
im
Wext = —RQ/dQ% Re (ps*vi—kpi*vf,), (5.25)
in

where R > a is the any arbitrary radius of the integration sphere and df) =
sin 0d0de. W; = 0 if the media is non-absorbing. Usually, W is normalized to

the intensity of the incident wave o = W/I,.. We can write

Ocxt = Oabs T Osc, (526)
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where after integration we get expression very similar to the identical ones in the

electromagnetic Mie scattering problem [97]:

4 (0.¢]
Oy = k—T;Z(QnJrl)\anF, (5.27)
n=0
47T
Oext ~73 (2n + 1) Re(ay,), (5.28)
n=0
47T 9
Ous = —73 (2n+1)(\an| +Re(an)> (5.29)
n=0

Plot for some artificial parameters on Fig. 5.3. We also provide a table of cross
sections for various combination of popular acoustic materials which is about to
help to find a proper resonant material: air, water, porous silicon, epoxy resin, and

aerogel (fig. 5.4). The general rule of thumb is that the acoustic refractive index
should be Naeoustic = €2t/ cbarticle — /5,3, > 1.

Figure 5.3 — Normalized acoustical cross sections for an absorbing sphere with
pr=3+0.1iand B =2+ 0.2

Let us consider the case of small particles. In terms of monopole and dipole

polarizabilities, which are defined in Sec. 5.3, we can rewrite it as:

Oext = k (Im(otpr) + Im(ap)), (5.30)
o = (|ocM|2 ; 1|ocD12) (531)
47 3 ’
Uabs:kImOCM—k—4|OCM\2+kImocD——4 opl? (5.32)
N AT PN 127t )

~~ "~
M D
O‘abs cyabs

Since polarizabilities are scaled as the volume of the particle oy, oep ~ a®, we can

conclude that for lossy (Im(p),Im(B) ~ 1) subwavelength particles oaps ~ a® >



Osc/Ogeom

Osc/Ogeom

Osc/Ogeom

Osc/Ogeom

Figure 5.4 — Normalized scattering cross sections 0g./0geom (With Ogeom =

airin air

€
o
)
o}
2
&
¢}

0 -l T T

0 2 4

water in air

1.0 1

o
U
|

0.0 1

aerogel in air

- n=0 -=-= n=1
air in water
102- g
1004 N 2P
/ 7 N 727 NA
4 X A
/ P 2
5 A \y,, )
10724 /) ¢+ / A1y
1 ,’ ¢ Wy
;7
A I!
I
10—4 —L lI L ;
0 2 4
1 water in water

102_

100 4

10—2 4

1074

resin in water

102_

100 4

160

n=2 ---

air in pSi

Si in pSi
1 p p
O-l T T
0 2 4
resin in pSi
1.5 1
1.0
0.5 1
/
0.0 1 _‘,__=/_‘\:~(‘

0 2 4

aerogel in pSi

n=4

airin resin

102 4

100 i

10—2_

1074 4

water in resin

100_

10—2 4

1074 4

resin in resin

102 4
100_

10—2 4

1074

n=6

air in aerogel

pSi in aerogel

10 -
5 m
0 4
0 2 4
resin in aerogel
1.0
0.5 1
.~ )
0.0 - ’_25’_2“3‘_
0 2 4
1 aerogel in aerogel
O -l T T
0 2 4
ka

mta?) for

various materials versus size parameter ka, where k is the wavevector in the host

media and a is a particle radius. For all materials we have artificially added small

losses as p; — p1(1+0.017) and B1 — B1(1+0.01i) to remove some extremely sharp

peaks which do not occur in real life. Red arrows show extremely sharp monopole

resonances which occur for some particular combinations (log scale is applied for

these plots). pSi is a shorthand for porous silicon, resin is a shorthand for epoxy

resin
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0. ~ ab. In other words, small particles absorb better than scatter. However, for

bigger particles scattering become more dominant.

5.2.4 Decomposition of the scattering coefficient in Taylor series

Monopole coefficient:

2*(B1— 1) + =2° (Bi(p1 +5) — 1531 +9) — —:1: 5(Br — 1)2+ O(z")
(5.33)
Dipole coefficient:

al_l 391_1+zx5§%(61_1>_@1+1_1x6 pp— 1
201 +1

2
7
34
3° 9%, +1 ' 5 (2p1 + 1)2 9 )JFO(”“”) (5:34)

One of the important features of this decomposition is that for the case of real
parameters |a,|?+Re(a,) = 0 for the all orders. This fact is important since exactly
this combination presents in the absorption cross section in (?7). It represents no
losses for the real valued particle parameters p; and 3;. The order of first non-zero

terms in the decompision of scalar Mie scattering coefficient are presented in Tab. 6.

5.3 Monopole and dipole polarizability and its connection with
scattering coefficients

5.3.1 Monopole polarizablity

The monopole strength M is by definition is the volume flow through the

surface of the object per second [95; 334]. For the sphere of radius a it is given by

M(t) = j{ v - dS = 47a® (v,(a, ). (M] = [m?®-s7'], (5.35)

particle

where (v,(a,t))g, 18 the average radial component of the velocity of the sphere

0,9

surface. Radiation of the point monopole is given by [334] p(r,t) = %;T/C). For
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Table 6 — Orders of first non-zero terms in decomposition of scattering coefficients.
This decomposition is in consistent with [332]. Names of the multipoles are taken
from [333]

Coefficient a, O(Rea,) O(ma,)
Monopole ay ~ 75 ~ 73
Dipole ay ~ 75 ~ 23
Quadrupole 9 ~ 1Y ~ 0
Octupole as ~ gl ~ '
Hexadecapole ay ~ 18 ~ z’
Dotriacontapole as  ~ x?? ~ g
Tetrahexacontapole ag ~ 20 ~ 13
Octacosahectapole  ar ~ 3V ~ 1?
n-th multipole ay, ~ 2@t g2t

the monochromatic wave p(r,t) = Re (p(r)e"®") We have (the signs are defined
opposite to those in [95; 334])

poCk’2 eikr

A7t ikr

pu(r) = (5.36)

For the sake of convenience we also write velocity radiated by a monopole M in
the far field (FF)

VM =1

kM ikr 1 kM ikr
e <1 . ,—> B e (5.37)
1kr

4Tt r 4T r

where n = r/r. Next, we define monopole polarizability as

= —iwPRooup, (5.38)

where p is the total pressure field. By comparison (5.36) with the zero term (n = 0)
of (5.10) and using definition (5.38) we find

41 4t 4

o = =g R a (B—1), (5.39)

where Zy = poc = v/po/Bo is the impedance of the host media. And also helpful
as a reference the explicit expressions for the real and imaginary parts in the lowest
approximation Re(oyr) = Fa® - (Re(B1) — 1) and Im(axps) = 4Fa® - Im(By).
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5.3.2 Dipole polarizablity

The dipole strength by definition is given by [95]
D=Md, [D]=[m" s] (5.40)

where d is the vector which connects two opposite monopoles M. For the point
dipole (|d| — 0) and monochromatic fields dipole radiation can be written in a

vector form as (the signs are opposite to those in [95; 334])

eikr
= ip0ck(D - 5.41
pp(r) = ipock(D - V)°— (5.41)
or in spherical variables (r,0, @) as
(r) = pock?D cos0 [ 1+ —- e (5.42)
pp(r) = poc COS el Ry :
For the sake of convenience we also write radiated velocity vp = z.wlpo Vpp of a point
acoustic dipole D = Md in a vectorial form:
ik? hy(kr) hy(kr)
= DY D- 20\
vo(r) 47t ( r +(D-r)V [ r
ike'™ 0 3i
= D1+ — D- kr —3 — — 5.43
A2 [ ( + /4:7“) +n(D - n) (Z " k:r)] ( )
or in spherical coordinates
Uy k%D cos(0) (1 + 2 - (ki)z) Zﬂkr
vp(r,0,¢) = | vp | = ED sin(0) (1 + &) o : (5.44)
Vo 0
We define dipole polarizability as
D = apv, (5.45)

where v is the total complex velocity vector. To get the explicit expression for the
ap we do the same steps as we did for the ops. After comparing (5.42) and first
term (n = 1) of (5.10), using relation between pressure and velocity magnitudes
Do = Poc|vo| = Zy|vol|, where Zj is the impedance of the host media, and assuming

the particle is isotropic (i.e. D||vy), we come to the next expression

A~ A3 =) (5.46)

Xp = ——=3a1 ~
b BT 3 T
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And also helpful as a reference the explicit expressions for the real and imaginary
32|p1|*—Re(py)—

1 JR—
EETE and Im(ap) =

parts in the lowest approximation Re(oap) = 4ma
47_[a331m(f)1)

12611

5.4 Acoustic force and torque

Let us go deeper into the acoustomechanics. Now, when acoustic polarizabil-
ities are well defined, it is possible to write very clear expressions for the acoustic

force and torque in the subwavelength regime.

5.4.1 Limit for the small particles. Connection with canonical
momenta

Handwavy approach

Main idea of this approach:

—
force = —V (interaction energy)

However, this approach cannot give non-cervative part of the force, but it still gives

great amount of intuitive understanding.

Monopole force. FEnergy is proportional to the mass acceleration of the outgoing
wave multiplied by the displacement magnitude which is proportional to the pres-
sure, i.e. E o poQ(t) - p(r,t). Since we am interested in the average quantities,
we replace (a(r,¢)b(r,t)) — 1 Re (a*(r)b(r)) and d; — —iw. The correct precon-
stant can be identified e.g. by the comparing with the plane wave pressure (1.51).

Finally, the monopole force can be easily written as

1 *
Fy = —5~1m (M"Vp). (5.47)
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Dipole force. The dipole interaction energy can be written in the same manner
as in electrodynamics, i.e. £/ oc D - v. Identifying the dimensional preconstant in

the same way as it was done for the monopole, we come to
Fp = 5 Re (D" (V)v). (5.48)

where we have used Berry’s notation D* - (V)v =5 ._  D;:Vu; [9].
Rigorous approach (integration of the stress tensor)

The most rigorous approach of the force calculation is based on the integra-
tion of the stress tensor (similarly to the Maxwell stress—tensor) ij = DOij + PV
over the surface enclosing the object|212; 213]: = ¢ d¥ (IL;;) n;, where an-
gle brakes show time average. In the similar manner to the force, the acoustical
torque is defined by the flow of flux density of angular momentum M ; = €;pori1ly;
(M = r x II) over the surface ¥ enclosing the object [167; 212; 218-221]:
(T;) = — 392 d> </\}lﬂ> n;. To obtain a simple expression for small particles, we
implemented the same approach used in optics [335]. We decompose the total field
into incident and scattered parts (p,v) = (p, v)™ + (p, v)*. Since 11 is quadratic
with respect to the field, this gives us three types of terms: (1) f[o which is propor-
tional only to the incident field; (2) [T which is proportional only to the scattered
field; and (3) I1,ix which consists of mix products. The terms involving the incident
field only (as if the particle were not there) give no net contribution to the force and
torque. Therefore we am left with the contribution to the force from the fields scat-
tered by the monopole () and dipole D, and the contribution due to the cross terms
involving both the scattered and incident fields. Integration of the mixed terms is
convenient to perform in the near zone decomposing incident field, however ﬂse]f 1S

much easier to integrate in the far field. The result is the following [336; 337]:

3

1 1 ok
F=—- —M*Vp — pD* - ——Im[M*D 4
5 Re | -M"Vp—pD" - (V)v 12n m [ ] (5.49)

-~

Fself

Fu+Fp

Which is in consistent with the result obtained by the expending the solutions of

the general Lorentz-Mie solutions in acoustics [338]. We also introduce monopole
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o = —%ao ~ %”a?’([g — 1) and dipole ap = —%Sal = %ﬂcf’% polarizabilities
such that induced monopole and dipole moments are written as M = —iwoprp(ro)

and D = apv(rg), where ag, a; are the acoustic scattering Mie coefficients, ry is the
position of the particle. After that, it is possible to write a direct correspondence
with the energy and canonical momentum densities [336].
Same approach is valid for the torque as well:
p pk’

T = Re(D" xv)~ o —Im(D" x D) (5.50)

or in terms of absorbtion cross section and canonical spin angular momentum density
the torque is going to be

T =c,0h S (5.51)

abs

where c¢; is the speed of sound in the host media. To the best of knowledge, egs. (5.50)
and (5.51) are written the first time and have lots of similarities with the ones
in optics [94].

The last term of (5.49) is responsible for the recoil force, which is partially
proportional to the radiated energy flow with the negative sign which can seen
from (5.57). Small particle charachterized by the relative density p; and compress-
ibility 1 is in the field of a incident plane wave p(r) = ppe’**. Monopole and dipole
polarizabilities have the same scaling o, xp ~ (ka)? [336] so the scattered inten-
stity is comparable. The sum of a dipole and monopole radiation gives directional
scattering diagram (similarly to the Kerker effect in optics) [337; 339|, which de-
pends on the relative phase between () and D. This relative phase can be tuned by
changing complex parameters of the particle {p, B} [337].

A helpful reminder here of the polarizability definitions

4 4t 5 =

o = =G0 N —-a B-1), M = —iwp oy, (5.52)
2l d) 4t .3 (p—1)
Xp = —?SM ~ ?a W, D= XpV. (553)

We need to mention that this expression depends only on the incident fields.

General notes about egs. (5.49) and (5.50). Those equations support lossy
particles. Also, for the case of lossless particles it is in consistent with solutions of
Gor’kov [213] and others [215; 340]. And it is totally in consistent with eq. (5)
from [341].
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Using polarizabilities we connect the field action on a small particle with the

canonical properties of the acoustic incident wave:
F = Fgrad + Fscat 4 Frecoil (5 54)

Here the gradient and scattering parts are related to the real and imaginary parts

of the particle polarizabilities:

Fead — Re(oy) VIV + Re(ap) VIV, (5.55)
et — 90 [Im(ocM)P(p)+Im(ocD)P(V)] (5.56)
recoi k.4 * e * m

Frecoil e (Re(oear o) ITNC + Im (ocpr o)) TI™) (5.57)

These laconic expressions reveal the direct relation between the scattering force
(which is associated with the absorption of phonons by the particle) and canoni-
cal momentum density of the acoustic field this is partially is published in [336;
337]. Such decomposition of the recoil part of the force is done first time to the

best of my knowledge.

5.4.2 Evanescent wave. Complex angle approach

ka <1
Figure 5.5 — Geometry of the problem. Similar approach to the [171, § 4]

As an example of the usage of optical method in acoustics let us consider a
complex angle approach for an evanescent wave which first appeared in optics [171].
The incident plane wave pP¥(r) = ppe’** can be transformed to the evanescent wave

by the rotation its argument on the complex angle

pevan(r) _ pp.w.(ﬁ)(ia)r) _ poeikcosh(cx)ze—ksinh(oc)x’ (558)
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A cosh(a) 0 —isinh(o)
where R(io) = | '(1)1( )é g( ;)
isinh(x cosh(x

Mie operator is also linear so we know the scattered field in the case of evanes-

cent incident wave for any sphere
p’(r) — p*(RGx)r) (5.59)

so x — ' = xcosh(a) —izsinh(), y — ' =y, 2 = 2/ = ixsinh(«x) + z cosh(x))
or for spherical coordinates r — ' =17, 0 — 0’ = cos™! 27/, and @ — @' =tg ' L.
And the velocity is always defined as v = ﬁVp. Since we know the all the fields, we
can numerically integrate (1.47c). The result of calculation is presented in Fig. 5.6.

Note that repulsion and attraction forces to the surface are possible.

501 ; p
; 25_ eikzz—Kx X

& & é) >

x V4

% 0.01

(]

g

S —2.51

(a) (b)

05 10 15 20 25
ka

Figure 5.6 — Gradient force F), (a) and pressure force F, (b) for a lossless particle.

With parameters B; =3, p; = 2, and o« = 0.8

5.5 Green’s function

Green’s function method is powerful tool in various branches in physics such
quantum mechanics, classical electrodynamics, and others. It is also well established

in linear acoustics. Since Green’s function is a solution of the delta perturbed master
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equation, it shows how the simplest source radiates. For the case of acoustics,
Green’s functions shows the monopole radiation field. For a monopole M and a
dipole D located at ry its radiated field can be expressed as [95, § 6.5]

pu(r) = —ipckMG(r, 1)) (5.60)
pp(r) = —pck(D - V; )G(r,10)|ry=r, (5.61)

where for the free space Green’s function is going to have a very simple form

eik‘|r—r0|

GO(I', ro) = m (562)

For any other geometries, all the complexity of the problem is going to be inside of
a GF such as proper reflection coefficients and so on. Some simple geometries can

be solved analytically such as infinite half space sustrate [342, § 3|.

5.6 A scientific statement

Fourth scientific statement

The acoustic force acting on subwavelength particles are directly proportional to
the sum of the density of the linear canonical momenta and the gradient of the
energy density. The acoustic torque on subwavelength particles is proportional

to the canonical spin momentum density:.
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Conclusion

In this thesis we have solved several problems regarding optical and acoustical

mechanical action. Here are the highlights of the most important results:

L.

In Chapter 1 we have presented a consistent overview of the optical forces
and torques. How it should calculated in different approximations for var-
ious particle types such as isotropic, anisotropic, and chiral particles. We
also showed the connection between canonical properties of light and optical

forces. Finally, a brief verview of acoustical forces was also presented.

. In Chapter 2 a complete picture of eigen modes analyses for spherical and

cylindrical shapes was outlined.

In Chapter 3 the effect of stable optical binding of a linear array of nanopar-
ticles trapped by a transverse pump near a nanofiber via photonic jet effect.
The stability is achieved by long-range interaction by waveguided mode.
In Chapter 4 two scenario of angular momenta transfer were analyzed:
(1) transfer of orbiting motion of a microparticle around a nanofiber; (2)
spinning motion of an anisotropic partile in a complex fields. Finally, the
non-linear effects were also considered. We have shown that it is possible to
spin azimuthally symmetric object via second-harmonic generation process.
In Chapter 5 we have illustrated and outlined in details how one can suc-
cessfully implement the well established methods from optomechanics in
the area of linear acoustomechanics. The main achievement in this chapter
is the explicit connection between canonical momenta of acoustic fields and

acoustomechanics action on a subwavelength particle.
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Komrenust ¢Bsi3u MexK/1y KAHOHUIECKUME CBOHCTBAMUI
9JIEKTPOMArHUTHOIO ITOJIsT M OITOMEXAHMKOM JJIsI JaCTHI] CyOBOJIHOBOI
bl CyIIecTByeT TaKzKe TOJIHAasT aHaAJIOTHA JIJIs aKyCTHICCKIX
IoJIeil 1 aKyCTOMEeXaHUuKNI .

Pacripeiesienne 1JIOTHOCTH YIJIOBOI'O MOMEHTa, JIJIsT JIUIIOJIbHBIX MOJ, JIJIs
JINJIEKTPUIECKUX U METAJINIECKUX TaCTHII .

OcHoBHasI njest IVIaBbl 3: MacCuB CyOBOJIHOBBIX YACTUIL BOJIN3U
HAHOBOJIOKHA C IONepedHoil Hakadkoil. [loreniuas 3axsara BIOJIb OCH
BOJIOKHA PACTET JIMHEHHO C YMCJIOM YacTull B nenu. JlajibHee
B3aNMO/ICCTBAE JIOCTUTACTCA 3a CUeT B3aNMOJICIICTBUA Yepe3
BOJIHOBOJIHYIO MO/LY

(a) Ipomosbaast cua F, B 0JHOMOIOBOM peKuMe, JIefiCTBYIONas Ha
OJIHY U3 JIByX YaCTUIl B 3aBUCUMOCTH OT PACCTOSHUS BIOJIb OCH
HaHoBosiokHa Az. KpacHast cruionHast JIMHIS OKA3bIBAET IOJIHYIO
OITUYECKYIO CUJIY, KOTOpas yINThIBACT B3aUMOJICIiCTBIE KaK depe3
CBOOOHOE MPOCTPAHCTBO, TaK 1 Uepe3 BOJIOKHO (G’S + G’O), 3eJIeHast
IYHKTUPHAs JIMHUSA [TOKA3bIBAET TOJIBKO B3aMMO/IeCTBIE Yepes
BOJIOKHO (G’S) U CHHSISI IIYHKTHPHAsI JTUHUSI IIOKA3BIBAET TOJIbKO
B3auMoieiicTie B cBobogHOM npoctpanctse (Go). (b) Pasrosecubie
perierus. [lepBbie Tpu BeTBU pelieHust JJis PACCTOSTHUS MEYKJLY JIBYMs
omKaiimuMy JacTurnaM ¢ = Az} B OTHOIIEHNN OOIIero 9mc/ia
gqactuil B ienouke N. (c) Ilapamerp JioBymiku 7y, KOTOpbIil paBeH

5 HeKTUBHOI HOTEHIUAILHON TJIyOrHe JIOBYIIKM, JIeJIEHHON Ha
TEIIOBYIO 9HEPIUI0 BMeIaoleil cpeibl k7', 1 HOpMUPOBaHHAS

KECTKOCTD JIOBYHIIKHN IIO0 OTHOHIEHNIO K YUCJIa YaCTUIL B TEIIOYKE N
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B I'maBe 4 paccMOTpeHbI TPH OCHOBHBIE CUCTEMbI, B KOTOPbBIX
IIPOUCXO/IUT IIepejiatia CIIMHOBOTO U OPOUTAJBLHOIO YIVIOBBIX MOMEHTOB
(SAM u OAM). Crnera namnpaso: nepegada OAM or Kpyrosoii
MOJITPU30BANHON OCHOBHON Hampassdionieit Bosinsl HEq1; epemada
SAM ot mornepedHoro CrnHa, KOTOPbI UCXOAUT OT JIMHEHHO
noJisipuzoBantoit Mojsl HEq(q K anu3oTponHbiM qacTunam; HeJinHeinast
nepegada SAM oT 1710CKOI KPYTOBOil MOJISTPU30BaAHHON BOJIHBI Yepe3
IIPOIIECC MeHepaIlny BTOPOI TapMOHUKN, HAJIMIIE MOMEHTa 00bsICHIETCsT
3 3akona coxpanennss AM . . .

Mexanu3m HeJMHEHHOIO KPyTsIero MoMenTa. LupKysspHO
HOJIIPU30BaHHAasl ILJI0OCKAs BOJIHA C 4acTOTOH W najaer Ha IUINHID 0e3
H0TEPb, IOCASIHSA IeHEePUPYET BTOPYIO TAPMOHUKY C HEHYJIEBBIM
YIJIOBBIM MOMEHTOM, KOTOPBIi OIpeJIe/IsieTcs paBuIaMi 0TOOPA.
BcesejicTBue coxpaHeHnst yrjioBoro MOMEHTa CYIIECTBYET HEHYJIEBOI
MEeXaHNIeCKNIIT MOMEHT

Concept of the connection between electromagnetic field properties and
optomechanics for subwavelength particles. There is also a full analogy
for the acoustic fields and acoustomechanics .

Angular momenta density distribution for the dipole modes for
dielectric and metallic particles .

The main concept of Chapter 3: an inline array of subwavelength
particles near a nanofiber with transverse illumination. The trapping
potential along the fiber axis growth linearly with the number of
partiels in the chain. The long-range interaction is achieved via the

interaction through the guided mode
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46
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(a) Longitudinal force F, in a single mode regime acting on one of two
particles as a function of distance along the nanofiber axis Az. Red
solid line shows total optical force which takes into account interaction
through both free space and fiber (G’S + éo), green dashed line shows
only interaction through the fiber (és) and blue dash—and-dot line
shows only free space interaction (Gy). (b) Equilibrium solutions. First
three branches of the solution for the distance between the two closest
particles ¢ = Az[3 with respect to the total number of particles in a
chain N. (c¢) Trapping parameter vy, which equals to the effective
potential depth of the trap devided by a thermal energy of the host
media k7', and normalized stiffness of the trap with respect to the
number of particlesinachain N . . . . . . .. ... ... ..
Three main systems considered in Chapter 4 where the spin and orbital
angular momenta (SAM and OAM) is transferred. From left to right:
OAM transfer from the circular polarized fundamental waveguided
mode HEq1; SAM transfer from the transverse spin which comes from
the linearly polarized HE{; mode to the anisotropic particles; non-linear
SAM trasnfer from a plane circular polarized wave via second harmonic
generation process, the presence of torque is explained from the AM
conservation law . . . . . . . ...
The mechanism of the non-linear torque. Circularly polarized plane
with frequency w wave is incident on a lossless cylinder, the later one
generates second harmonic with non-zero angular momentum which is
defined by selection rules. Due to the conservation of the angular

momenta there is a non-zero mechanical torque . . . . . . . . . ... ..

The change in the flux of the momentum energy tensor and the flux of
the angular momentum density during integration through the closed
surface X shows what force and torque acts on the particle with the
parameters € and W . . . .. ...

Artistic view of the optical force decomposition for the small particles
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Schematic of the “direct” and “crossed” momentum transfer
interpretation of optical forces and torques applied to a chiral dipole.
The nonchiral component &, 0, of the dissipative force (the torque)
couples the linear (angular) momentum of the light to the linear
(angular) momentum of the particle, while the chiral component o, of
the dissipative force and of the torque cross-couples linear to angular
momenta in both directions. Adopted from [24]. The explicit dependicy
is written in egs. (1.26) and (1.27) . . . . . .. ...
Simplification of the anisotropic bipolar sphere. We take into account
only electric p and magnetic m dipole moments, and also neglect the
bipolar structure of the anisotropy. For this geometry
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Eigen modes for dielectric and metallic particles for the n =1, ..., 10.
For dielectric particle: @ = 100 nm, ¢, = 10, n, = 1. For metallic
particle: a = 50 nm, Drude model eppuge = 1 — u)]%/(w2 + T'w) for

gold without losses with w, = 1.38 - 10'° % and'=0 . ... .....
Angular momenta density distribution for the dipole modes for
dielectric and metallic particles. . . . . . . . . . .. ...
Relation between integrated spin and orbital parts for all modes up to

j = 4. Distribution stays the same for both dielectric and magnetic
particles for TE and TM modes . . . . . . . . . . . . ... ... ....
Step-index fiber and cylindrical and Cartesian coordinates. In some
cases cylindrical radial unit vector can be written as e, instead of e, in
order not to mixed with spherical radial unit vector . . . . . . . .. ..
Fiber dispersion. Propagation constants 3 as branch of solutions of the
fiber dispersion equation (2.30). Here kt = 27t/ Ry , w¢ = 2mc/ Ry, Fiber
material was chosen to be with ¢ = 3.5. It is clearly seen from this plot
which values propagation constant can have: ny ko < p <ngkg . . . . .
Vector field (stream plot arrows) and intensity distributions (gray map)
for the modes in a step index fiber. All modes are grouped by its
families: HE, EH, TE and TM. Red circle represents the fiber border.

Parameters: ny, = 1, ng = 1.45, koRy = 11.81 (corresponds to V' = 12.46) 101
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Vector field (stream plot arrows) and Cartesian electric component &,

(color map) for the modes in a step index fiber. All modes are grouped

by its families: HE, EH, TE and TM. Red circle represents the fiber

border. Parameters: ny,, = 1, ny = 1.45, kgRy = 11.81 (corresponds to
V=12.46) . . . . 102
Dispersion of a fiber with (ng — ny,)/ne = 0.2 and electric field lines of

the first 7 modes. Here b = Z;_‘gin, B =koN,V = koRiy/nZ — 1,

Picture is taken from [254] . . . . .. ... oo 103

Electric field intensity in the vicinity of fiber as a function of fiber

radius. Each mode carries the same amount of power. Behavior

remains approximately the same for the bigger distance from vicinity:.
Parameters: A = 1064 nm, e = 1.77, ' = 1.0, ¢; = 2.1025, . . . . . 105
Canonical OAM and SAM distributions for the first 4 dielectric fiber

modes. Orbital and spin parts are normalized to the Brillouin energy as

in (2.44). Total angular momentum is normalized to the spin

momentum of a circular polarized plane wave in free space

SP¥- = 2 [58 where Ej = 2{&% is the field magnitude of a plane wave
with carried power P (= power carried by the mode) normalized on the

fiber cross section R?, Z is the vacuum impedance. Ag = 1064 nm,
ep=1.45% e, = 1770 . . 107
Canonical OAM and SAM distributions for the second 4 dielectric fiber
modes. Orbital and spin parts are normalized to the Brillouin energy as

in (2.44). Total angular momentum is normalized to the spin

momentum of a circular polarized plane wave in free space

SPW- = L ES where Ej = QZTSJI% is the field magnitude of a plane wave
with carried power P (= power carried by the mode) normalized on the
fiber cross section R?, Zy is the vacuum impedance. Ag = 1064 nm,

e = 1452 e = LTT. . . . 108
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2.12 Canonical OAM and SAM distributions for the first 4 dielectric fiber
modes. Orbital and spin parts are normalized to the Brillouin energy as
n (2.44). Total angular momentum is normalized to the spin
momentum of a circular polarized plane wave in free space
SPY- = 2 [§ where Ef = 2 R2

with Carrled power P (= power carried by the mode) normalized on the

is the field magnitude of a plane wave

fiber cross section mR?, Zy is the vacuum impedance. Ag = 1064 nm,

er=1.45% e = 177 . . .
2.13 Canonical OAM and SAM distributions for the second 4 dielectric fiber

modes. Orbital and spin parts are normalized to the Brillouin energy as

n (2.44). Total angular momentum is normalized to the spin

momentum of a circular polarized plane wave in free space

SPY- = 2 [58 where Ef = 2 R2

with Carrled power P (= power carried by the mode) normalized on the

is the field magnitude of a plane wave

fiber cross section R?, Z is the vacuum impedance. Ag = 1064 nm,
er=1.45% e = 177 . . .

3.1 The main concept of this chapter . . . . .. ... .. ... ... .. ..

3.2 The configuration of the system, which allows to achieve the stabel
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adds a long range interaction channel of interaction . . . . . ... . ..

3.3 (a) Longitudinal force F, in a single mode regime acting on one of two
particles as a function of distance along the nanofiber axis Az. Red
solid line shows total optical force which takes into account interaction
through both free space and fiber (G’ s+ CA;’O)7 green dashed line shows
only interaction through the fiber (G) and blue dash-and-dot line
shows only free space interaction (Gy). (b) Equilibrium solutions. First
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(a) The amplitude of the coupling constant g,, for different modes in

single mode and multi-mode regimes for three different fiber radii:

Ry =300, 500,1000 nm. (b) Longitudinal optical force F, acting on

one of the particles as a function of distance between the particles along

the fiber axis Az for multi-mode regime Ry = 1000 nm. (c) The

trapping parameter of nanoparticles in a stable equidistant states as a
function of the number of particles in multi-mode regime . . . . . . .. 117
(a) Normalized intensity of the total electric field for two different fiber

radii: Ry = 300 nm and Ry = 1000 nm. (b) Potential energy of the
transverse trap along the x axis normalized by kT'. (c¢) Total radial

force as a function of two parameters: the fiber radius Ry and the gap
between fiber surface and particle’s surface d. Two horizontal dashed

black lines correspond to single mode and multi-mode fiber radii in

Table 4. Inset: the force decomposition into optical force and

van-der-Waals force. The equilibrium distances for single mode and
multi-mode regimes are @™ = 45 nm and ™ =50nm . . . . ... .. 120
The total radial force acting on a particle for the configuration of two
oncoming beams depends on two parameters: the radius of the fiber
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shown, constructed to show how the equilibrium capture distance can

be adjusted . . . ... 122
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(a) Isotropic, lossless dielectric particle in the evanescent field of an
elliptically polarized, fundamental mode of an optical nanofiber. Due to
the non-zero azimuthal component of optical force, F,, the particle can
rotate around the fiber. (b) We eliminate axial motion by using two
oncoming beams with the same intensity profiles and opposite

helicities, 01 = —09 . . . . . . . . ..
Simulation results. (a) Density of the total angular momentum of light
near a nanofiber (in water) guiding a fundamental mode with o = 1.
Inset shows total angular momentum normalized per photon and its
spin and orbital contributions. (b) The orbiting frequency for a
polystyrene particle, as a function of particle and fiber radii. Inset
shows frequency at the optimum fiber radius (R¢ = 0.35 m) for three
different particle materials: silica, silicon, and polystyrene . . . . . . . .
(a) Experimental setup (not to scale): once the polarization
transformations in the tapered fiber are reversed by the polarization
compensators, PC1 and PC2, we set the values of 07 and 09 = —07q, by
rotating the quarter-wave plates, QWP1 and QWP2. (b) Transmission
image of a 3-um polystyrene particle optically captured at the waist of
ananofiber . . . . ...
Experimental results for a CP input (R = right, L = left). (a) Beatings
in the detector signal acquired with an optical power of 15 mW in each
beam. The zoomed-in view (inset) shows the local period, T". (b)
Orbiting frequency versus power in each beam, at o = +1. Markers:
measured data sets for three samples; gray area: combined standard
deviation range. Dashed line: frequency expected for the drag
coefficient y; solid line: the best fit to the data with y-fit. (c), (d)
Time-lapse compilation of images for c = +1 (¢c) and o= -1 (d) . . . .
Experimental results: (a) dependence of the measured orbiting
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Simple anisotropic particle in a field of an elliptically polarized light.
Geometry of the problem. Blue ellipsoid represents the Fresnel ellipsoid
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4.7  The critical angle for the QWP to observe rotation of the uniaxial
anisotropic particle. Calculated for ¢ = 1.77, ¢ = 2.9128, ¢, = 2.2641
and A=1064nm . . . . . ...
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Appendix A

Helpful math identities

Integrals with different number of n:

/ dQn; =0, / dQn;n;n, =0, / dQ(odd number of n) =0, (A.1)
4m 4 47

/ dQnin; = 4—7T62-j, / dQnin;ngng = i (8ij0ke + Oirdje + dirdjr) .  (A.2)
am 3 am 15

where 1,5,k = w2, n = (sindcos@,sindsin (p,cosS)T, and [, dQ =
JTddsind [ de.

As far as Berry notation A - (V)B = > > Ai@V«B; [9] appears
quite often, we give some general rules. First of all, nabla operator should be just
replaced to the corresponding nabla operator in desired coordinate system [343].
For the main coordinate systems we can write:

1. Cylindrical coordinates. For the cylindrical coordinates (r, @, z) with

V=(3, g 5-)" this transformation can be written as

E ' cart cart __ E : cyl cyl 1 cyl peyl cyl peyl
i:x7y7z 7::7.7(072

(A.3)
2. Spherical coordinates. For the spherical coordinates (r,9, @), & € [0,7],

. T . .
@ € [0,2m] with V = (%, %6%, rsilnsa%) the rotation matrix is

A = R(9, @) A", (A.4)
where [344]

sindcos @ cosVdcos@ —sin@
R@®, @)= | sindsing cosdsing cose |, R D 0)=RD, ).
cos ¥ —sind 0
(A.5)
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After some algebra this transformation can be written as

1
Z A;_;artv(xBl(':art _ Z A;phvaBZ?ph + 6ae_Asth19Bsph
T

i:mvyaz ’L.:’I“,lt),(P

+ 60@7’ SilnﬁAsth(szph’
= 3 APyt 50@% (Brhag" - Byt a)
i=r9,
APt (B,S,ph sind + B cos 8)
* Oag rsind ’
B (Aiph sind 4+ AP" cos 19)
~ dag rsin?d ’ (A.6)
where
5 0 -10
Q = R7'(9, @)%R(s,@) =11 0 0f, (A7)
0 0 O
0 0 —sin?d
Q° = R, @)%R(s,@) =] 0 0 —cosd|. (ASB)

sind cos?d 0

Unfortunately, this results is quite ugly compared to the result in cylindrical

coordinates.
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Appendix B

Electric and magnetic dipole polarizabilities

B.1 Definitions

In SI units we define electric and magnetic polarizabilities as

1
p = «.E, m=—o,H. (B.1)
HHo
This definition is different from [150], where m = og™ I, o ol 90 =
ﬁocf,,};is work — Exact electric and magnetic dipole polarizablity for a sphere are
given by:
3¢ 3p
o, = 47e - 2%3 = 47y - z%gbl (B.2)

Here k = \/en?, € and p are the electric and magnetic permeabilities of the host
medium, a; and by are the first Mie coefficients [172]. Expanding in (ka) series [154;
172| we get first order correction to the electrostatic polarizabilities which satisfies
the optical theorem [27; 147|:

ol e
. k3 _(0)7 me k3 (0)7
1 - Z67t££0(xe 1 - Zﬁnuu Xm

(B.3)

(Xe:

where the electrostatic polarizabilites (or to be more precise, first non-zero terms
in Taylor series of a; and b;) for the particle are defined by ¢, and w, are given
by [120, see SM|,[172, § 5.1]

¥ = dreeod? :;;ﬁj (B.4)
_ drtpg e, — €

O _ 4 3 Hp — 1 O((ka)?) = Ho &p ka)® B.5

X HHoa Hy + 2u * (< a) ) k3 30¢ ( a) H=pp=1 < )
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The Mie coefficients for the sphere with ¢, and p, in the host media with ¢ and
w are given as [172]

. um?j,(ma) [z, ()] — wyjn(x) [maj,(mz)] | (B.6)
2, () [2hf) ()] = b () s (ma)]

b — Wy Jn (M) [xjn(ﬂf)]/ — Hjn( ) [mx]n(m:c)]/ (B.7)
o) (b (@)] = wh) (@) e (ma)

Here, x = nkya is the normalized particle radius; ky = w/c is the wave vector in
vacuum, with w being the angular frequency and ¢ being light velocity in vacuum;
m = ny/n = \/g1,/ /e is the relative refractive index of the particle. j, and
i) are the spherical Bessel and Hankel functions of order n (which is an integer
from 1 to infinite). The derivations are performed with respect to the argument,
e.g., Ju(nz)" = d[jn(nz)] /d(nz).

Radiative correction (B.3) can be also found via renormalization proce-
dure [345].  The dipole radiation can change its own dipole moment, for-
mally it be written via free space Greens tensor as p = oc,(so) (E+ Eg) =
ol (E + (e€0) 1 k2Gy(ro, ro)p>, where r( is the location of the dipole. The main
obstacle here is to find the free space Green tensor at the origin. The real part
diverges, so Re Go(rg, o) — 0o but imaginary part is finite Im Go(r, o) = G%i,

2, ~ -1
1— ocgo)s%z Im Gy (ro, r0)> océo).

SO Xe = <
For a particle made of chiral media with bulk parameters n = (e, i, k), po-

lazizabilities are defined as

P \_ [ %M dxm))(E
(uuom> N (ioc?(n) ocm(n)> (H) 9

and can be found regorously for a spherical particle from bi-anisotropic meterial
with constitutive relations by solving Mie scattering problem [346, § 6.1.1][347,
SM]|[24; 31-33; 348-351]

6TtEE 3 (& —

(e — 1)(
o = ~4 , B.9
* T et (& +2) (1 + 2) — K2 (B.9)
O7TiLpg 3(“7‘ - 1)(57' + 2) — K
m = b1 =~ 4 : B.10
M LU P ® (B.11)

E e 12 +2) - K2
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where €, = ¢,/¢ and p, = p,/p. Correct imaginary part of the approximate values
can be found via optical theorem for chiral dipole particles, see eq. (B.30). The Mie

coefficients for the chiral sphere are

o VDAL +Va(L)AR) B2
Wi(L)Va(R) + Wy (R)V, (L)
s WalL)Bu(R) + Wa(R)B, (L) B3
Wi(L)Va(R) + Wi(R)Va(L)
L WalR)ANL) = Wa(L)A(R) B
Wi (L)Va(R) + Wi (R)Va(L)
with
Wi(J) = mb, (myz) &, (z) — & (2)by;, (my2) (B.15)
Val) = b (my2) &, (z) — m& ()b, (myz) (B.16)
Ap(J) = mby (myz) by (2) — ()], (myz) (B.17)
By(J) = by (myz) by (z) — mby(z)by, (my2) (B.18)

here J = RL, © = ka = \ERL, Ya(p) = pjn(p), En(p) = phi(p) with j, is
being the spherical Bessel function and h%l) is being the spherical Hankel function

of the first kind. The relative indices my, mg and the mean refractive index m take
expressions of my = (\/EpHp £ K) /R and m = (my + mp) /2.

B.2 More on Mie

Some properties of the Mie coefficients

1. Mie coefficients are symmetric:

an(era IJ'T) - bn(ura Er) (B19)

where where ¢, = ¢,/¢ and W, = p,/p are the relative permittivity and
permiability. See Fig. B.1 for an example. However, this is not the case for
the acoustics.

2. Mie resonances are relevant only for particle sizes around kR, ~ 1, other-
wise it does not give any significant increase in scattering (Fig B.2).

3. Plot of first several Mie coefficients is shown in Fig. B.3.
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Figure B.1 — Comparison of scattering cross sections between electric (g, = 16,
1, = 1) and magnetic (¢, = 1, pu, = 16) particles in air (¢ = p = 1) to illustrate

the symmetric properties of the Mie coefficients

B.3 Comments on the connection with the literature

Usually polarizabilities are written in Gaussian units. Moreover, for the mag-
netic polarizability are at least two conventions:
1. Nieto et al. [143; 155; 156] (Gaussian units)

m = x,,B (B.20)
2. Bekshaev et al. [120; 154] (Gaussian units)

m = ‘o, H (B.21)
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Figure B.2 — Example of scattering cross sections for polysterene and silicon in

water. Mie resonances give a huge enhancement in scattering only for sizes x ~ 13

This was done in order to obtain more symmetric expressions in [154].
Bekshaev explicitly notice the difference with the other sources [143; 155;
156].

If one expands both expressions, then everything converges to the same thing, there

are no contradictions! Two formalisms are connected in the Gaussian system as

OCNietOLL2 _ ocrliekshaev (BQQ)

m

Also, in [24] magnetic dipole moment is defined slightly different such that

mfrom [24] ~ 47_(““0&3 Hp — W H, mthis work 47’(@3 Hp — 1 H (B23)
Hp + 21 Hp + 21
so mm™om 2 = yyomt™s work and hence have different dimension.



227

A Za YN TN Nl
0 f T T T bl
0 2 4 6 8 10
RN —
0 T T T T b2
0 2 4 6 8 10
11 — a;
0 T T T T b3
0 2 4 6 8 10
- DA NTNTN =
0 T T T b4
0 2 4 6 8 10
N L AT T
0 T T T b5
0 2 4 6 8 10
] [ AN —
0 T ‘L T T b6
0 2 4 6 8 10
] W oo\
0 T Il 1 T T b7
0 2 4 6 8 10
N VAW o
0 T T — T T b8
0 2 4 6 8 10
] L "
0 T T T T b9
0 2 4 6 8 10
1 -
! ,! ‘)_( ‘ — a0
0 T T T 11 f ‘ - blo
0 2 4 6 8 10
11 I A — a1
0 T T T L 1[ = bll
0 2 4 6 8 10
14 ! I — a1
0 T T T I l | I b12
0 2 4 6 8 10

size parameter, x = kR,

Figure B.3 — Absolute values of Mie coefficients for scattered field for silicon particle

in water (e, = 11.5, &, = 1.77, pp = by = 1)
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B.4 Dipole approximation for the scattering cross section

Let us assume that particle support only electric and magnetic dipole modes
with polarizabilities (p = o.E and m = (upg) ', H) expressed through the Mie

coefficients as stated by (B.2). Then the cross sections are going to be

R I S 47tk T B.24
Oext Ocxt T Oexg 47’(850 U m(o%) + 47TFLFLO T m(ocm) ( . )
1 87T 1 87
=09 4o =_ "~ Y P+ ———— kY| B.25
Ose = 00 + o0 (imeen? 3 oce|” + ) 3 || (B.25)
and, finally, the electric and magnetic absorption cross sections o,ps = GS:))S"'GS;) are
3
© _ k[ R e B.26
ol = o [mx) = o (B.26)
and " 3
R E—— {Im(ocm) - —|cxm\2] (B.27)
HELo O7TLLL

For the case of no-inside-gain particle, i.e. there no energy is emitted by the particle

internally (oa,s > 0), we have a particular case of the optical theorem

1 1 263 [ Joce|? | ot |2
I m 2
(e |:(47'[€£0)2 (4d7tpg)?

B.28
ATteg ATt 3 ( )

The sign of equality is achieved for non-absorbing particles, i.e. for Im(e) = Im(pn) =
0.
For chiral partiles (B.8) with

— E (S . C
LUilpm H —1X, Oy
The generalization of the optical theorem is going to be the following [27, eq. (13)][34]
1 (—1 =1\ k(1 0
L) o) e
2 o\ 0 /(o)

The sign of equality is achieved for non-absorbing particles, i.e. for Im(e) = Im(p) =
Im(k) = 0. We note that it is equivalent to the (B.28) in case of k = 0. The cross

Kl
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case are [26; 31; 349

k (m)

O-gj()t = 8_80 Im((xe), Gext = 8_80 Im((xm)
@ , m Ck 2
Oext = Oext T Oexg — 67N 2 (Re(oceocfn) + |(XC‘ )
Oabs,c = O-E(:{J)S,C + O-;Il?s),c
k
0-2(:25,0 - 8_50 (Im(“e) - ge‘(xe|2 - gm|o¢c‘2)
m k
Gz(lbs),c - 8_80 (Im((xm) - gml(xm‘2 - ge"xc|2)
yfﬁsyc = 2wIm(a.) — 2wg. Re(x0) — 2wg,, Re(om o)
Ve = 2W0n Im(xyo) — 2wg. Im(otex?)
. o k‘3 . ]{3
with g. = frces and ¢, = T

(B.31)

(B.32)
(B.33)

(B.34)

(B.35)

(B.36)
(B.37)
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Appendix C

Fiber Green’s tensor

The classical electromagnetic Green’s tensor of our system can be found from

the vector Helmholtz equation:

2
—w—s(r,w) +V x Vx| G(ryr,w) =16(r — 1), (C.1)

2

where €(r,w) is the complex dielectric function and I is the unit dyad. In our case,
we consider a dielectic cylindrical waveguide of radius p. and dielectric permittivity
¢ being constant inside the cylinder. To find the solution we apply the scattering
superposition method [352; 353|, which allows to expand the Green’s tensor into the

homogeneous and inhomogeneous terms:
G(rr',w) = Go(r,r,w) + G4(r,r',w). (C.2)

As soon as we consider dielectric particles in the vicinity of the waveguide,
so that r,r’ are outside the cylinder, the homogeneous term is always present and
describes the field directly generated at the field point r by the source placed at
the point r’. This term can be obtained analytically from the Green tensor written
in cartesian coordinates using the transformation from cartesian to cylindrical coor-
dinates S(@)G§! (r,r',w)ST(¢’), where G§** has an analytic expression [354]

and is given by

GSi(r, v, w) = (I + %V ® V) Go(r,r’,w), (C.3)
here Go(r,r',w) = e**"'l /4mt|r —r'| is the Green’s function of the scalar Helmholtz
equation.

The scattering term can be calculated via the integral representation of the
homogeneous part. To obtain this representation we apply the method of vectorial
wave function (VWF) explained in details in Ref. [352; 353|, here we cover only
the basic ideas and provide the final expressions. To find the solution of the vec-

tor Helmholtz equation (C.1) we introduce the scalar Helmholts equation and the
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solution of this equation in the cylindrical coordinates:

Vip(kr) + k*@(kr) =0,
@n(kz,r) = Jo(kop)e @2 (C.4)

here J,,(z) is the Bessel function of the first kind, r = (p,@,z) are the cylindrical coor-
dinates and k,, k, are the projections of the wavevector k. The solution of the vector

Helmholtz equation may be written in terms of the following vector wavefunctions:

M, (k.t) = V x [@n(ks.r)e,)

N, (kor) — %v X M, (1) (C.5)

where e, is the so-called pilot vector, the unit vector pointing in the z direction.
These VWFs My, (k.,r), Nyu(k,,r) correspond to TE/TM modes of the field.
One can show [352] that the homogeneous part of the Green’s function can be

expanded in terms of these vector wavefunction in the following way:

87t ~ p

Go(r,r', w) = 62;6 r—r) T Z / w(ko, 1, 1) (C.6)

and the F, (k,,r,s) function is given by

W) (. VM k., t)N
MY (k. r )MT;(k r') + N (ks v )Ng(’“ r') (C.7)

M, (ko 1)M,, (k1) + Ny (ke 1)N, (k)
here the first line holds for p, > p,» while the second one for p, < p,s, and kg = w/c,

kop = \/k% — k% and the superscript (1) in vector wave functions denotes that the
Bessel function of the first kind J,(k,p) should be replaced with the Hankel function



232

of the first kind Hél)(kpp). Here we provide the explicit form of VWEF:

M, (k.,x) = | —kop(Jp (kopp»’ e/ etz (C.8)

ik kop

kOpp
N, (k,,r) = ”k % T (Kopp)

k:op
J kopp )

ne+ik,z (09)

mJ k()pp

M, (k,r') = —kop k:Opp e ine' ik (C.10)

Zk kop kopp/))/
Nn(kz,r’) _ nk J (kOpp) —m(p —ik, 2 (Cll)
’“OPJ (Kopp")

where J,(kop)" means derivative with respect to the dimensionless argument.

Now having the integral representation of the homogeneous term of the Green’s
function, we can construct the scattering term in a similar fashion. Let us denote
the medium outside the dielectric cylinder as 1 and the medium inside as 2. The
particular form of the Green’s tensor depends on the position of a source point
r’: whether it is inside or outside the cylinder. As soon as we are interested in a
situation, when both source and receiver are outside the cylinder and in the latter

we consider only the second case. Thus, the total Green’s tensor can written as:

GH(rr,w) = Gii(r,r,w) + Gl (rr W),

(C.12)
G2 (rr w) = G (r,rw),
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here two superscripts denote position of the receiver the source point respectively

and the two scattering parts of the Green’s tensor has the following form:

Glier'w) = = 30 [ M M )
R (ke )N (e ),
Faioy (kr) = RibyMUY (ke,r) + RN, N (op),
P (ker) = RiyM) (k. 1) + RNyNy) (ko). (C.13)
Ggl(rar/7w) - SL zoo: /d_];ZFI%}I;n,Q(kzvr)MSl(kzvr/)
Ut ) kp1

FRL,o(kor) = B33 M, o(ker) + RN, ok x),
Flino(k:r) = RiyMua(k.,r) + RyyNya(k..r), (C.14)

N—

here the scattering Fresnel coefficients RZ 5 are introduced and the second subscript
in the VWEs denotes that k and k, should be replaced with their values inside
the corresponding media k; = \/Mko, koi = \/W and also kg, becomes
koi. We should notice that unlike the case of the homogeneous term, here we have
products of M and N, which is due to the fact that the normal modes in our case
have hybrid nature.

The form of the Fresnel coefficients mentioned above can be found by imposing

the boundary conditions on the Green’s tensor at the surface of the cylinder

ep X [G1 (1., ) — G2 (1,x',0)]lp,—p. = 0.

e, X Vy x [GH(rr,w) — G (r,r,w)]

Pr=pc — 0.
(C.15)

Solving for this, we can find the Fresnel coefficients RZB and, finally, construct the
scattering part of the Green’s tensor G4(r,r’,w). We provide the explicit expressions
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for the Fresnel coefficients below:

2 ’ (1) /
DT(k.) = — <% _ %) k?nQ + (Jn(ko2pe)) . (Hn ((J)Cplpc)) %
ka kpl kPZJ’ﬂ(kP2pC) k‘len (kp1pc)

(Jn(kp2pe))' k3 (HY (Kp1pe)) ki
]fp2Jn(k/’p2p(;) kle,gl)(kplpC)

2
c

11

In(ko1pc) < 1 1 )2 2 2 ((Jn(kpzpc))’ (Jn(kplpc))’)
Rifa (k) = —B0lPe) () k2p? — - x
atna (Fz) H (kpipe) | \ Ko Koy kozJn(ko2pe) ko1 Jn(kp1pe)
1

(Jn(kp20e)) k3 (HS (koprpe))'k7 ) o
kPZJn(kP2pc) kle’ﬁbl)(k}plpc) ¢

DT (k.)

R (k) = I (Ferpe) L(%_%> (n(ko1pe))' _ (Hi” (p1pe))' | Kaksnpe
H® (kp1pe) kor \kg1 k3o In(ko1pc) H® (kprpe) ) DT(k=)
Riin (k) = RNum

Jn(ko1pe) 1 1)? (Jn(ko2pe)) (HS (kp1pe))’
Rll kz — _In\vplbc) - k§n2 _ [ _ P x
NN( ) H,,(ll>(]€plpc) ng kgl kaJn(kpzpc) kley(Ll)(kplpc)
1

((Jn(kpzpc))’ki (Jn(kplpc))/k%>

2
kp2Jn (kp2pc) ko1Jn(kp1pe)

c

DT (k=)

(C.16)
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Appendix D

Effective polarizability. General case

The effective polarizability of a nanoparticle placed in the vicinity of a
nanofiber waveguide and accounted for the interaction with another particle can

expressed as follows:

. . k22.m.w.71‘ k2.
) 1_(_) &G ol (I+—G”&§!)), D.1)

€0 €0

where : = 1,2 and 7 = 1-9d;0 + 2 - &;1, G:éo—ké’s and
. . 2.\ !
é(gj) = Xy <I — OC():G?) . <D2)
0

Here we consider the polarizability for the case when Eg(r1) # Eg(r2). Hence,
it follows that it is impossible to factor out the external field Ej to obtain expression
as p = &egEo. Yet we can still introduce the effective polarizability tensor if we
convert it into an operator by introducing a shifting operator. The obtained operator

of the effective polarizability will have a form:

. . L2\ 2 T 2.

oy = |I - <£—> &G NG| &) <I+ a—GwécS)e(“ﬂ'V) . (D3)
0 0

where ¢ = 1,2 and 5 = 1 0;0 + 2 - 0;1, G = G’o + és, e(r27 1)V g the shifting

operator. Using (D.3) we can calculate dipole moment in a straightforward way as

p; = &GE(r;). (D.4)

e

We also need to note, that this expression is a generalization of what was

used in this paper, as we considered that all the particles are placed in the same
external field Ey(r;) = Ey(rs).
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Appendix E

Canonical properties for complex frequency domain

E.1 Mean of an arbitrary quadratic form

Let us have two monochromatic real functions A(t) and B(t) defined though its
complex amplitudes A and B as A(t) = Re [Ae '] and B(t) = Re [Be "*]. We
let frequency be complex-valued, so w = w’ + iw”. Now we find the time-average

value of its product

1 "
<AB>fast time — 5 R‘e [A*B] 62w ! + O(E) (E]‘)
For the next calculations we denote observable electric and magnic fields as
E(t) =Re [Ee ],  H(t) = Re [He "] (E.2)
w=(1-0.02))
3
— A(t)B(t)

A 0.5Re[A *Ble2w't

| m
V V V v V VnVA AVAVAVAVAvAvAv“v"v“v"v"V"vm AAAAAAAAAAA

0
00 25 50 7.5 10.0 12.5
time, t- w'/2n

Figure E.1 — An example of real and mean values of a product of two monochromatic

functions with complex frequency

E.2 Poynting vector

The mean value of Poynting vector is going to be

(IT) = (€ x H) = %Re [E* x H| 2"t (E.3)
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E.3 Canonical spin angular momenta density

Using expression from the field theory, the SAM density (its electric part)
can be written through the vector potential A as S = £ x A [168; 355]. The

mean value is going to be

" 1 _‘ "
S = <3<el>> — %Re [E' x A]e* = ZRe [E x —ZE] 20"t

1 ’
N o m [E* x E] " + O(¢?), (E.4)

here we have used 1/w &~ (1 — ie) + O(e?) and the fact that Re[E* x E] = 0.

Here ¢ =

w//

w’ "

E.4 Canonical linear momentum density

Using the same approach we have
1 1 ]_ - ) 12
P = <P(el)> =3 Re[E - (V)A] 2@ = 5 Re [E* : (V)—ZE] 2wt

1 * 20" 1 * 20" 2
5 [E*- (V)E]e*®" — ¢ - 5o ke [E*- (V)E| " 4+ O(¢*)E.5)

Q

E.5 Energy density

Electromagnetic energy density gains just an exponent factor

W= (W) = (B +[HP) (E6)
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Appendix F

Photon wave function

It is possible to rewrite Maxwell equations as

-~

N f M
or
Hf = i0,f
where
H=M'N
Operator H is hermitian for the scalar product defined as
(fi,6) = / dPrf M,
S0

(f1, HE) = (Hfy, £)

It is possible to redefine the wave function as

[T . . (E
v= EN“(H)

And after all the quantum mechanics formalism will work as expected.

(F.1)
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Appendix G

Mie coefficients and dispersion equations

To find the dispersion equations we need to apply boundary conditions, namely
(E" — E°") x &, and (H™ —H°") x &, at the boundary r = a for all & and ¢. Tech-
nically it is sufficient to consider only 9-components of the fields, i.e. for TE mode

,
TE 3 7in _ RTE j sout
ATEpfin| = BTE )

r=a r=a

4 (G.1)

—4 €in€o ATENén

S Eout€0 BTENout
Hin Ho v

Hout Ho

\ r=a r=a

Here superscript “in” shows that z; — jj(ninkor) and “out” shows that z; —
h;l)(noutkor). System (G.1) can be written as [: ] [gi};} = 0 which gives us the
dispersion equation as det [: ] = 0. In a similar way one can perform this procedure

for the TM modes. The final answer is

Hin h(l (noutz) j’-(ninz)
dispersion eq. for TE: 1+ nggz—————| =1+ nyz= (G.2)

Hout 7i(ninz)
(1) !
& hy " (nout Nin 2
dispersion eq. for TM: 1+ noutzW =1+ ninz]]( n?) (G.3)
Eout h] (noutz) ](ninz)
Here z = kpa = %a € 7 is the dimensionless complex frequency. For wo =

Wine = 1 is in consistency with [252]. We note that the zeros of denominator of Mie

coefficients a,, and b,, are exactly zeros of the dispersion equations for TM (G.3) and

TE modes (G.3), respectively (see Appendix ). Also, we do not include extra zeros

which may appear on the real axis, i.e. with Imz, = 0. The most robust way to

search for the roots is to look at the poles of the Mie scattering coefficients [356-358].
Importantly, we find the relative values of the constants to be

AW (noutkoa)

ATE BTE — ].
/ jj(ninkoa)

/ —pD NoutKoa
ATM/BTM _ €out Hin ‘7' ( th0 ) <G5)
€inHout ]j (ninkoa)

(G.4)

and
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which ensures the correct radial dependence.
The Mie coefficients for the sphere with €, and p, in the host media with ¢
and p are given as [172]

o = ma) a@) i) )] -
wm2js(m) [0 (@)]" = whl (@) s (ma))

= Hdi ) [0, (2) —m ) [ (ma)] .
i) [0 @)] = b (@) pa s (ma))

Here, x = nkor is the normalized particle radius; kg = w/c is the wave vector in
vacuum, with w being the angular frequency and ¢ being light velocity in vacuum,;
m = n,/n = ,/g,1,/\/€R is the relative refractive index of the particle. j; and
hY are the spherical Bessel and Hankel functions of order j (which is an integer

J
from 1 to infinite). The derivations are performed with respect to the argument,

e.g., jj(nx) = dlj;(nx)] /d(nz).
We note that the roots of denominators of a; and b; are exactly the roots of
(G.3) and (G.2) correspondingly:

denfa;] =0 +— Dispersion Eq. (G.3) for TM mode (G.8)
den[b;] =0 <— Dispersion Eq. (G.2) for TE mode (G.9)
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Appendix H

Derivation of Optical force from Maxwell stress tensor

We follow the work [142] by Chaumet, Patrick C. and Rahmani, Adel. How-

ever, here we write a more detailed deriviation. We consider only electric and

magnetic dipoles in vacuum with ¢ = u = 1.

Force is given by (cgs units)

1 1
F = RerQ/ dQ8—Tt {(E -n)E* + (H-n)H" — n; (|E]* + \HP)}
47t

7

-~

Fn

Maxwell stress tensor can be decomposed using

E(r) = Ey(r) + E4(r), H(r) = Hy(r) + Hy(r).

Thus
T = To + Trnix +  Tsat
~~ ~~~ ~~~
~FEZ, no contribution ~ ~EoEy, gives Frix  ~E?, gives Fyeir
Where

1 k*
F=F,+Fop= 5 Re [p;VEy +m;V Hy| — T Re[p X m’]

H.1 Helpful identities

(H.1)

(H.2)

(H.3)

(H.4)

The electric and magnetic fields from electric and magnetic dipoles in free

space are

E;, = _(3n(n-p)—p) (i—%>+k?2(n><p)><n—k2(n><m)

k?

e

Hy, — ¢ |(3n(n-m)— m) (i _ @) F(nxm) X n+ k(0 x p) (% + E%IH)

with n = r/r.
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Integrals with different number of n:

/ dQn; =0, / dQn;njng, = 0, / dQ(odd number of n) =0, (H.7)
4m 4m 4m

ATt ATt
/ dQnmJ = ?5”’, / dQnmjnkng = (5@'6/{6 + 6ik5jg + 5Z‘g6]’k> s
47 47

— H.8
i (H.8)
where ikl = zy,z n = (sindcosq,sindsing,cosd)’, and [, dQ =
foﬁ dd sind fOQﬂ de.
For two Levi-Civita symbols we have
Eijk€imn = OjmOkn — 0ij0km. (H.9)
In the free space without charges we have
V- -Ey=0 (H.10)
Also helpful will be
V X E=1kH (H.11)
H.2 Calculating F,x
From (H.1) for cross terms we have
Fuix = 8% Re Tz/dQ{(Ed ‘n)Ej + (Eg -n)Eq + (Hg - n)H) + (Hf - n)Hy — n[(Eq - Eg) + (Hq - Hp)) } (H.12)

The next important step is to take this integral in the near field (NF'). Suppose
we have only electric dipole p then

Eo(r) ~ Eg + r(n- V)E,, E, = 2oplp (13
Hy(r) ~ Hy + r(n - V)H, H, Y ikn x p |
We consider different terms separately
r2 /M 4B, - gy (17) and (L.13) /4,1 102(n - p)(n - V)E; 1) %”(p.vmg (H.14)
r? An AQ(E; - n)Eq (H.13) 72 AndQ [Ef +r(n- V)(E; - n)] %
(L.7)

[ 0300 9)5 m)n - pn — (- V)5
() o (0, w1 2%, v, (1.15)
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4 " 4T . Am .
—r? [ dQ(Eq - Eo)n = — 5 PiVEy - g(p -V)Ep + 5 PiVE; (H.16)

47

N An . H.11) and (H.9) 47t « 47 X
—r2/ dQ(Hg - Hg)n = ik - eqin Hoipr (H.11) and (H.9) 5 P Vo - g(P -V)Eg (H.17)
47
. A . H.11) and (H.9) 47 " 4 *
7‘2/ dQ(H} - n)Hy :zk?uikHol-pk( ) and ( )?ijon - ?(poV)EO (H.18)
47

Other terms does not contribute to the electric dipole force. After summing ev-
erything up we have
@ _ 1 .

Analogously, we can get force on the magnetic dipole m so

1
Fuie = 5 Re [p;VEG; +m;VH;;]| . (H.20)

H.3 Calculating F.¢

From (H.1) for self-action terms only we have

1 i i 1
For = o RerQ/ dQ{ (Eq-E}) + (Hq - H)) —ng (|Ba|® + [Ha|?) } (H.21)
47
does not contribute (e.g. consider NF using (H.7))

1 2 2 2
= g Rer AndQ(\Eﬂ + [Hg[*) n (H.22)

We will integrate this in the far field (FF), then for p and m we have

E;= ¢ nxpxn—nxm] (.23

HdF:Feik’”kTQ[nXan+n><p] |

Consider different terms separately
rQAﬂdean B k“LdQ(nXan+n><p)~(n><m*><n+n><p*)n
(L7 E* . dQ2Re[(n X p) - (n X m* X n)|n
b(ave)=c(ab) and (H.8) 4;21; Re[p x m"] (H.24)
r? 5 dQ|E4|*n = %”zk‘* Re[p X m"] (H.25)
And finally
4

Fer = —— Re[p X m"] (H.26)

3
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The total force in the dipole approximation will be
1 . \ k* )

This derivition is done for the point electric and magnetic dipoles in vacuum with

e = pn = 1.
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Appendix I

Complex Vector Spherical Harmonics

I.1 Explicit form

We define complex vector spherical harmonics in the similar way to the classical
Bohren & Huffman book [172|. We stick to the already build-in functions in most
popular scientific packages such as SciPy, Wolfram Methematica, and others. So,
the only difference with [172] is the we use spherical functions instead of associated
Legendre polynomials, i.e. (Gime ) Pi"(cos @) — Y/"(9, @) which means that there
are no even or odd harmonics. The usage of spherical harmonic ensures us the
symmetry with m — —m with no additional rules. This is similar to the basis
change from linear to circular functions.

We start from the solution of the scalar Helmholtz equation which has all
the symmetries of the problem. In our case we have spherical symmetry and the

scalar function is going to be
w
WP, 9, @) = 2 (P)Y" (D, @), p=hkr=eu—r (I.1)

Here z;(p) = 7;(p), yn(p), h;l)(p), hgz)(p) is spherical Bessel of the 1st and 2nd kind,
spherical Hankel functions of the 1st and 2nd kind, respectively, and p = kr with
k = \/en? being the wavevector in media. Next, we follow the standard procedure

as in Bohren & Huffman book and define vector harmonics as
1 1
Mmj =V X (I‘ll)mj), ij = EV X Mmj; Lmj = EVll)mj. (12)

Note that in other sources L such as [172] is defined to be dimensional but not
in this work. There an alternative form of the M harmonic as M,,; = —z'IAAl)mj,

where L = —ir x V is the orbital angular momentum operator. In the spherical



246

coordinate system (F,0, @) this leads to
0

](] 'kr J
Muy = | 2550n0V0.0) | Ny = | s (br)] 4170, 0) |
(k) 170, ) sk [z (k)] Y70, 9)
'z;(kr)ij(e, ®)
Loy = |Z28Y7(0,9)| - (1.3)
B sglnﬂ Z_;"Yj?m(e’ (P)

One of the impornant properties is that VSH are connected with each other through
curl operation:

1 1

N = —V X Mmj; Mmj = E

It means that if e.g. electric field is given by the N harmonic then magnetic field
is automatically is given by the M harmonics and vice versa.
Any vector field can be decomposed into the series of complex vector spherical

harmonics as

o
A=>">" ANy + ByMy; + CoojLiy (L.5)
j=0 m=—j
In the case of sphere, omitting the electrostatic modes described by the L harmonics,
we get (longitudinal harmonics are used for the electroscatics, anisotropic structures
and RSE applications to name a few [252; 253; 359]).
Some properties:

1. M and N are the solutions of the Helmholtz equation

VxN:%VxVxM:kM, (L.6)
2. M and N are solenoidal,
V- M=V .N=0, (L.7)
3. L is potential,
V xL=0. (1.8)

To complete the picture with all the explicit definitions we also write the

definition of the spherical function

m . 2]+1(]—m)' m ime
Y"(®, ) \/ yp- (j+m)!Pj (cosd)e"™?, (L.9)
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and associated Legendre polynomials with Condon-Shortley Phase [360] included

m m m dm
P (z) = (=1)"(1 — %) /de—ij(x), (1.10)
_ (j —m)!
P =(-1)"—=P" [.11
N i (L)
where the Legendre polynomials are defined as

All the equations (1.9, 1.10, 1.12) are already coded in most math packages such as
SciPy and Wolfram Mathematica. It can be shown that

}/j_m(ea (P) - (_1)mY}m*(e’ (P)a (113)

M_,,; = (—1)™M:

mjo

N_,, = (—1)"N;

mjo

L, = (—1)"L,,. (L14)

only for real valued z;(kr).
1.2 Orthogonality

Spherical functions are orthogonal
L dQY;" Y = 858 (I.15)
U

The orthogonality of vector spehrical functions is more complicated |16,
p. 418|:

/demj\? = j(j + 1)|z(kr)|? (1.16)
[aamp = B G D) 4 Sl )
J AU = G sk + G Dlsaen)?] (L18)
[aon;, N, - Jéj 2 (B = Pz (k) (119)

All other combinations are zeros.
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1.3 Connection to the other sources

COMSOL Multiphysics

In COMSOL Multiphysics spherical harmonics defined as [361]

(1) /ot nm)l i (9) " 40— (P, (cos(8))) €™ m > 0

4t (n+m) d(cos(0))
n n—|ml|)! . m [m| im
VB sin(0) " St (Pa(cos(8))) € m < 0
(1.20)

The only difference with (1.9) is the case of m = 0, e.g.

m __COMSOL ym
and
e 2n+1 e
Y00, @) = \/? COMSOLym=0(9, ) form =0 (1.22)
Jackson. Classical electrodynamics
Jackson defines his own vector harmonics as [15, § 9.7]
Xy = LY, ) (1.23)
Im l(l n 1) G=I\" P), .
where L = —ir X V is the A1 times angular momentum operator. Xj,, is defined

to be zero for [ = 0. Explicitly it can written as

Xim = mym (I.24)
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Definition of ¥7,,(0, @) from Jacskon’s book is identical to (1.9) with j — [. The

relation between M harmonics can be written explicitly

Moj(p, 9, @) = —i0/j (G +1) - 2(0)Xizjm (D, @) (1.25)

So, it means that Jackson harmonics X are in fact the radius independent part

of M harmonic.

de Witt & Jensen. Uber den Drehimpuls der Multipolstrahlung

De Witt in [362] also uses functions very close to VSH which he calls §zark0

and §rak1. They are connected as
M,,; = —iS1—j M=m k0 (1.26)

for frr(r) from [362] being j;(kr).

Bohren & Huffmann. Absorbtion and scattering of light by Small
Particles

Bohren & Huffmann [172] use linear polarized-like basis, i.e. real valued VSH.
Because of that there two types of harmonics: even and odd. Instead of (I.1)

they have chosen

PBUH . costme) - pm g9y, () (L.27)

emn sin(m)

and VSH are defined as

1
M=V x (rp?H)  N= VXM, L= VB, (1.28)
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The explicit view of harmonics is

0
MBS — = gin (me) P (cos 9) zu (p) | (1.29)

emn sind

| — cos(m(p)%Pﬁ”(cos )z, (p)

0
MpS = | 25 cos(m) P (cos 9) 2, (p) (1.30)
| — sin(me) &P (cos 9)z,(p)
_Z"T(p) cos(m@)n(n + 1)P(cos D)
NOW = | cos(me) = d (o2 (o)) |, (1.31)
| —msin(me) S5 [00(p)]

_z”T(p) sin(me@)n(n + 1)P*(cos )
Nowr = | sin(me)tBgee=tld o7 ()] (1.32)
| mcos(me) LA (o2 (p)]

,(9) Py (cos D) G
dP(cosd) cos(m

T g aa(p) Py (cos 9)

+1° psin{)z” cos(mo)

The connection with VSH of this work for m > 0 is given by

2j+1(j —m)! B&H - AB&H
Wi = \/ A (G+m)! (M + M) 5 (1.34)
2j+1(j —m)! B&H A B&H
2j+1(j—m)! 1 _pen + B&H
L, — C(LBYH 4 BEH ) (136
o R ). s

Note that VSH from Bohren & Huffmann book does not follow (I.14) due to the
convention (I.11) on associated Legendre polynomials. One should use (I.14) to

calculate the case of m < 0 if using B&H functions.

Stratton. Electromagnetic theory

Same as Bohren & Huffmann.
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Varshalovich, Moskalev, and Khersonskii. Quantum theory of angular
momentum

Spherical tensor Y9, which is defined [363] to be such that

YL = JJ+1)YE, (1.37)
LY = MY (1.38)
LY, = L(L+1)YLH, (1.39)
S’y = S(S+1)YE, (1.40)

Vector spherical harmonics are closely connected to this spherical tensor Y% N3l
which is defined to be with rank S = 1 which are Y41, = Y%, :

YJM Z Lm 10YLm (9, ¢)é,. (1.41)

In particular, it is connected with spherical vectors Y(J?}\Z where A = 0, £1.
Theses vector are not eigen functions of f;2, however they have a very helpful prop-

erty with respect to the unit orth n = r/r as
n- Y =n- Y =0, nxY()=o0 (1.42)
Which are connected with the spherical tensors YL, as

J+1 _ J
Y%Z(ﬁ, Q) = \/ ijMl’l(& ®)+ \/ THY:;]J\}M({}, ®)

YU (9, 0) = Y7L,(9, ¢) (1.43)
_ J _ J+1
Y0/ (3 9) = ijMLl(Sa ®) =\ Y']H 19, )

Connections with the Jackson’s X is given by

Xém(ﬁa (P> - YS():)é,M:nL(97 (P) YJ 0, M= m(ﬁa (P) (144)

The explicit connection with complex vector harmonics used in the this paper are

the following;:

Mg}(p,ﬁ, ¢) = —iV/J 1)j;(p J ]M (D, @) (1.45)

1 .

—Vi+1Gia(e)Y 2.0, 9) (1.47)
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Here p = nykor, (9,9) = r/r.

I.4 Helpful math identities with vector spherical functions

Decomposition of the plane wave [52, Eq. (2.2.27)]

‘ k r
ik-r N - Mk m
_ 4 Y™ (2 vy (—) 1.48
e ngmw(r)n (k>n . (1.48)
Connection between real and k-space arguments of vector spherical functions
L K\ xr L r

Where gp(kr) = 4miljp(kr).

Since the eigen modes in k-space is proportional to the spherical tensors
L%, (k/k) it is usefull to write a transformation of JiL%,, (k/k) = J(J +
)LE,(k/k) with Jx = —ik x Vi + S to real space:

/ Ae™ F2LL,  (k/k) = / AdQue™ T J(J + 1)L%,,(k/k) (1.50)
/ Aee™ T JELE (k/k) = J(J + 1)gr(kr)LEy, (x/r) (1.51)

Lets proof that gngM with gy = g¢(kr) being any function of r = |r|, is the

eigen function of J2. Action of the J? in the real space
I (9650 ) = L2 [90Y 0] +87 [96Y 0] +2(S L) [0 Y 5] = (G +1)ge Y5y (1.52)

here we have used that S? = s(s + 1) = 2, I?Y?M = (0 + 1)Y§M7 and the
fact that orbital angular momenta operator acts only on the angular part, since
it can be rewritten as

- S~ 1 0 .0

= ix (sin((p)% + ctg(9) cos((p)%)

+iy (— cos((p)% + ctg(d) sin((p)i> — zii (I.54)
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and identity for vector spherical harmonic [363, eq. (67)]

(8 E)Y = 5[0 +1)— (+1)~2 (1.55)

. Asph 1A . .
For general purpose we also write S = R™!S;R for i = z,y,2z which acts on a
vector in a spherical basis. Here

0 —sin@  —cosdcos @
sin @ 0 sind cos @
cos P cos @ — sind cos @ 0

(1.56)

S . [ 0 cos @ —cosVdsin @
. " = — — Cos @ 0 sind sin @
{i}eart {7k }spn cosdsin @ —sindsin @ 0

0 0 sin &
0 0 cos?d /
—sind —cosd 0

and
sindcos@ cosdcos@ —sin@

R = |sindsing cosdsing cos@ (L.57)
cos v —sind 0
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Appendix J

Explicit form of j? for several first multipoles

wJ

7 we find a general form

For total angular momentum per one photon j =

2

4 [m cosecd [Py Pi]? + cosec? d [m ([m cosec P + ([P]L"]'B)Q) +2mctgd [P]; Pﬁ”] ’
Jmn(r) =

(J.1)

2
[(m cosecdP)? + cosec?d (1 +n)cosdP + (m —n — 1)Pﬁ1)2]

We note that it does not depend on r and . For the first several n and m we find:

. 10 4+ 2 cos 29

o, = C’)LTW (J.2)
.2 sin?(40) cosec? (0) 4 ctg?(0)(sin(40) cosec() — 2(cos(30) + sec(0)))?

Tz T 4 (cos?(8) + cos2(20))? (J:3)
.2 2 (cos(20) — 10 cosec®(0) + 2 cos(6)(cos(20) + 3) ctg(0) cosec(6) + 9)

e T T (cos2(8) +1)° (J.4)
.2 16 cos?(0) (20 cos(20) + 75 cos(40) 4 33)% + 4sin?(0)(60 cos(20) — 75 cos(40) + 143)?

T T 16 (cos?(0) (15 cos(20) — 7)2 + (5 cos(20) + 3)2)? (:5)
.2 2(936 cos(20) + 332 cos(40) + 24 cos(60) — 27 cos(80) + 783) cosec?(0)

e T (28 cos(20) + 9(cos(40) + 3))? (J.6)
, cosec’(0) (f 48(C°S(29)"\'/3:i;§29()6>‘Sin(e)|3 + 124 cos(20) + 9 cos(46) + 187)

=T 8 (ctg?(0) + cosec2(9))2 (J.7)

It can be shown using these known relations of associated Legendre polynomi-
als at zero [364]

P™(0 2 18

(A P A T L e vy (18)

dP;Ln(QI) B 2m+17.c1/2 (J 9)
dz |, L(3n —sm+ 35)T(—3n — 3m) .

where ['(z) is the gamma function, that

PO =0)=m? (J.10)



255

Appendix K

Integrated values of the square of kinetic AM

Jackson in his fundamental book Classical Electrodynamics made wonder on
angular momenta calculation of the multipoles in § 9.8. Using kinetic approach for

the AM calculation (i.e. using Poynting vector)
1 *
Jkin = @Re [I' X (E x H )] (Kl)

where H = const - lehl(1>(k7“). In the far field zone (for kr > 1) we have used

a different approach

our approach: <ka>4” = m? - 8 f do

W a1 (K-2)

sin

from Jackson [15]: ((&L}T/l;n))) = m? (K.3)

The answer (K.2) was obtained rigorously and verified by the numertical calcula-

. . <9 w? <J12(in>
tions. For some first multipoles we find (j3, ) = — 5.

W),
(i (1)) = 2:1.5 (K.4)
(2) = 1 ~s2 (5)
(Jtin(nze)) = 4—75~6.43 (K.6)
(o)) = %%73 (K.7)
Grm(525)) = %~9.55 (K.8)
(Jiu(ns)) = 11_715@15,91 (K.9)

The result (K.2) was obtained using a number of recurrent relation. Especially
helpful was to use [363]

—2m ctg O, (9, @) \/l [+ 1) —m(m+ 1)e @y m+1(D, @)
VI 1) = mlm = DeY; o 1(8, ). (K.10)
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Appendix L

Fundamental connection between diffusion and friction coefficients

Let us start with the Langevin equation
mi = —Cr + Fy (L.1)

All we know about stochastic force Fy is that it is zero in average and each mo-
ment in time is independent from the past (white noise). Mathematically, it can

be written as

(Fa(t)), = 0, (L.2)

(Faa(®)Fap(t +7), = 2D8eg8() (L.3)
T/2

where &, = z,y,z and (f(t)), = Tlim :lp [ dtf(t). Constant D is proportional to
=00 P

the diffusion constant and “2” is chosen for the sake of convenience.

Here we will show that
D = kgT(C (L.4)
Equation (1..3) can be written in terms of auto-correlation function as
@r(7) = (Fu(t) - Fy(t + 1)), = 6D5(x). (L5)
Next, from a very general considerations we can write
D =D(T). (L.6)

In order to find this dependency, some work needs to be done. On of the keys to
the solution of this problem is thermodynamics.

At first, we find spectral density Sp(w) of the stochastic force Fy () using

Wiener-Khintchine theorem?

o

Sp(w) = /dteiwtch(t)zﬁD. (L.7)

—00
'For a signal function y () Wiener-Khintchine theorem reads as:

o0

o)) = [ Gre S, (@)

27

—0o0

It states that auto-correlation and spectral density functions are connected through Fourier transform.
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Afterwards, we want to find the auto-correlation function of speed @,(t), since it
is connected with average kinetic energy Uy, o @,(t = 0). However, we don’t
know the exact time dependence v(t). We can work out this by finding v(w)

using Fourier transform:

mv = —(v + Fy s viw) = t(_w) : (L.8)
¢ —iwm
Spectral density of the velocity 2
o , 1 1 , 6D
Suw) = Jim ZIV(W)" = s A FlF @) = 7 =s e (L9)
Applying Wiener-Khintchine theorem, we finally get
dw . 3D C
o) = [ —e7"'S,(w) = — ——1t| ). L.10
0.(t) = [ Gre i) = 2 exp (<221 (L.10)
As a final step here, we note that ¢,(t = 0) = <v2>. In other words,
m {v? kT
(Ukin) = <2 > = /from thermodynamics/ =3 R (L.11)
so we found the solution to the (L.6):
D = kT (L.12)

2For a signal function y(t) we have (proof of Wiener-Khintchine theorem)

(y(t)y(t + 7)), = lim Oodt [y(t) </ Z‘”e—z’w(tﬂ)y(w)ﬂ _

T—o0 T

T d , 7 . 1 [ do
= Jim [ ey [ (e%(t))] = Jim [ SRy (w) =

9y(T)

_ Oodw —iWT [ . 1 21 oodw —iwT
- /27:6 _Tlféo:r‘y(‘“”]_/me Sy(w).
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We examine acoustic radiation force and torque on a small (subwavelength) absorbing isotropic particle
immersed in a monochromatic (but generally inhomogeneous) sound-wave field. We show that by
introducing the monopole and dipole polarizabilities of the particle, the problem can be treated in a way
similar to the well-studied optical forces and torques on dipole Rayleigh particles. We derive simple
analytical expressions for the acoustic force (including both the gradient and scattering forces) and torque.
Importantly, these expressions reveal intimate relations to the fundamental field properties introduced
recently for acoustic fields: the canonical momentum and spin angular momentum densities. We compare
our analytical results with previous calculations and exact numerical simulations. We also consider an
important example of a particle in an evanescent acoustic wave, which exhibits the mutually orthogonal
scattering (radiation-pressure) force, gradient force, and torque from the transverse spin of the field.

DOI: 10.1103/PhysRevLett.123.183901

Introduction.—Optical and acoustic radiation forces and
torques are of great importance from both practical and
fundamental points of view. On the one hand, these
mechanical manifestations of the radiation power underpin
optical and acoustic manipulations of small particles [1-6],
atomic cooling [7-9], optomechanics [10], acoustofluidics
[11,12], etc. On the other hand, radiation forces and torques
reveal the fundamental momentum and angular-momentum
properties of the optical and sound wave fields [13-23].

Since Kepler’s observation of the comet tail and early
theoretical works by Euler and Poynting [13,14], the
studies of optical and acoustic momentum and forces were
developed in parallel ways. Remarkably, despite numerous
works calculating radiation forces and torques acting on
various small particles in optics [24-30] and acoustics [31-
41], the explicit proportionality of the force and torque to
the local wave momentum and spin angular momentum
densities was properly established in optics only recently
[42-51]. The reason for this is that, in generic inhomo-
geneous wave fields, the force and torque on an isotropic
small absorbing particle are proprtional to the canonical
momentum and spin densities rather than the Poynting
(kinetic) momentum and angular momentum commonly
used for many decades [45-48,50,52-54].

In acoustics, such explicit connection between the
radiation force (torque) and momentum (spin) in generic
inhomogeneous fields has not been described so far.
Moreover, the concepts of the canonical momentum and
spin angular momentum densities in sound wave fields
have been introduced only in very recent works [55-58].

In this Letter, we provide a simple yet accurate theory of
acoustic forces and torques on small (subwavelength)

0031-9007/19/123(18)/183901(7)
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absorbing isotropic particles in generic monochromatic
acoustic fields. By employing methods well-established
in optics and involving the monopole and dipole polar-
izabilities of the particle (determined by the leading terms
in the Mie scattering problem), we derive simple analytical
expressions for the acoustic forces and torque. Most
importantly, these expressions indeed expose the intimate
relation to the canonical momentum and spin densities in
the acoustic field. We show that our results agree with
specific previous calculations and exact numerical simu-
lations. We illustrate our general theory with an explicit
example of the forces and torque on a small particle in an
evanescent acoustic wave.

Properties of acoustic fields.—We will deal with mono-
chromatic but arbitrarily inhomogeneous acoustic fields of
frequency @ in a homogeneous dense medium (fluid or
gas). The complex pressure and velocity fields, p(r) and
v(r), obey the wave equations [59]

iwpp =V v, iwpv = Vp, (1)

where the medium is characterized by the compressibility
S, the mass density p, and the speed of sound ¢ = 1/+/pp.

We will characterize the dynamical properties of the
acoustic wave field by its energy, canonical momentum,
and spin angular momentum densities. The energy density
reads [59]:

1
W= P BlpP +plv?) = W) - W), 2)

The canonical momentum and spin densities of acoustic
fields were introduced very recently [56-58]:

© 2019 American Physical Society
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1
P= @Im[ﬁp*vp +pv - (V)] =P - PO, (3)

p *
S = 26OIm(v X V), (4)
where [v* - (V)V]; = X0V, [42].

The energy (2) and momentum (3) densities are
represented as symmetric sums of the pressure- and
velocity-related contributions, indicated by the correspond-
ing superscripts. This is similar to the symmetric electric-
and magnetic-field contributions in electromagnetism
[42,45-48,52,54,60]. In contrast, the spin density (4) has
only the velocity contribution because the scalar pressure
field cannot generate any local vector rotation.

Note that the canonical momentum determines the orbital
angular momentum density L =r x P [45,48,52,53,58],
and that the more familiar kinetic momentum density (the
acoustic analog of the Poynting momentum) is given by
M=P+1VxS=(1/2c*)Re(p*v) [58,59]. The equiva-
lence of the canonical and kinetic momentum and angular
momentum quantities appears for their integral values
for localized acoustic fields: (P) = (II) and (S) + (L) =
(r x II) [45,48,52,53,58], where the angular brackets stand
for spatial integration. However, here we are interested in
local rather than integral field properties, which are very
different in the canonical and kinetic pictures; below we
show that it is the canonical quantities (3) and (4) that
correspond to the force and torque on small particles.

Interaction with a small particle.—The most straightfor-
ward way to detect the momentum and angular momentum of
awave field is to measure the force and torque it produces on
a probe particle [13-22,43-46,48-51,56,61]. Therefore, we
consider the interaction of a monochromatic acoustic wave
with a small (subwavelength) spherical isotropic particle of
the radius a, density p; and compressibility f;, with its center
at r =r,. We allow the particle to be absorbing; i.e., the
parameters {p;, 3| } are generally complex.

The wave-particle interaction is directly related to the
wave scattering problem. For small isotropic particles, the
scattered field is conveniently represented by a multipole
expansion [62—-64], where the small parameter is ka < 1
(k = w/c is the wave number). For electromagnetic waves,
the leading term is the dipole one [1-4,24-26], because the
monopole cannot radiate transversal waves. In contrast, for
longitudinal acoustic waves, the leading terms are the
monopole and dipole ones, and these generally have the
same order in ka [11,31]. Therefore, a small particle in an
acoustic wave field can be approximated by a monopole
and dipole, which are induced by the incident field and are
interacting with this field (so the interaction is quadratic
with respect to the field).

The oscillating monopole and dipole modes of the
particle are schematically shown in Fig. 1. The monopole
mode is associated with the isotropic compression or
expansion of the sphere, while the dipole mode represents

Monopole mode

Dipole mode
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FIG. 1. The monopole and dipole oscillatory modes of a

spherical particle. These modes are associated with an isotropic
compression or expansion and a linear oscillatory motion of the
particle, which are induced by the oscillating scalar pressure p
and vector velocity v fields, respectively.

oscillations of the particle position along certain direction.
It is easy to see that these modes can be excited by the
oscillating pressure p and velocity v fields, respectively.
Therefore, the induced monopole and dipole moments of
the particle can be written as:

0 = —iwpa,,p(ry), D = a,v(ry), )

where, following optical terminology, «,, and a, are the
monopole and dipole polarizabilities of the particle, and
the prefactor —iwf in the monopole term is introduced for
the convenience in what follows and equal dimensionality
of the polarizabilities. Comparing the leading terms of the
multipole expansion of the acoustic Mie scattering problem
with the standard expressions for the acoustic monopole
and dipole radiation [63,64], we find the expressions for the
polarizabilities (see the Supplemental Material [65]):

4mi 4r . -
Uy = =5 a0 :?a3(ﬂ—l),
4ri 4z ,3(p—1)
=——3aq=—at——. 6
@ == gE e Ega S (6)

Here, p = p,/p and = 3,/ are the relative density and
compressibility of the particle, ay and a, are the first two
Mie scattering coefficients, and we approximated these
coefficients by the leading (ka)? term in ka < 1 (see the
Supplemental Material [65]). Naturally, the monopole
and dipole polarizabilities are related to the differences
in the compressibilities and mass densities between the
particle and the surrounding medium, respectively. These
differences induce relative compression and shift of the
particle as shown in Fig. 1.

Absorption rate, force, and torque.—The interaction of
the induced monopole and dipole moments of the particle
with the acoustic field can be described via the minimal-
coupling model between the moments (5) (Q,D) and the
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fields (p,v). Introducing the proper dimensional coeffi-
cients, the complex interaction energy takes the form
Wit = 1[(i/w)Q*p — pD* - v]. Notably, this energy is
precisely equivalent to the energy of the electric dipole
D and charge Q in the electric field E = pv and the
corresponding electric potential ® = iw™!p (E = —V®).

The interaction can be characterized by the rates of the
energy, momentum, and angular momentum transfer
between the field and the particle, which are quantified
by the absorption rate, radiation force, and radiation torque,
respectively [46]. First, the absorption rate is determined by
the imaginary part of the interaction energy:

A=oIm(Wn) =20[Im(a, )W) + Im(ad)W(V)] L)

It is naturally proportional to the imaginary parts of the
particle polarizabilities (6) (and, hence, of the parameters p
and f3) and to the corresponding pressure- and velocity-
related energy densities (2) of the field.

Second, the radiation force is associated with the
gradient of the real part of the interaction energy and
can be written as [3,4,26,28,29,46]:

F= —%Re [éQ*Vp —pD*- (V)v] =Fedppet (3)

Here the gradient and scattering parts are related to the real
and imaginary parts of the particle polarizabilities:

F2d — Re(a,, ) VW) 4 Re(ay) VW), )
Fscat — 2 Im(am)P(m + Im((xd)P(V)] . (10)

These laconic expressions reveal the direct relation between
the scattering force (which is associated with the absorption
of phonons by the particle) and canonical momentum
density (3) of the acoustic field. Importantly, by substitut-
ing the polarizabilities (6) into Egs. (9) and (10), one can
check that the gradient force exactly coincides with the
force found in earlier calculations for lossless particles
[11,31,36,41] (F*® = 0 in this approximation), while the
scattering-force part is equivalent to that found in recent
works [35,37] considering viscous fluids. Remarkably,
Egs. (8) and (9) are entirely similar to the expressions
for optical radiation forces on small Rayleigh particles or
atoms [3,4,24-26,28-30,42-48]. In this manner, the elec-
tric- and magnetic-dipole terms in optical equations
[28,45-48] (related to the electric and magnetic fields E
and H) correspond to the monopole and dipole terms in the
acoustic equations (related to the pressure and velocity
fields p and v).

Using the above correspondence between the optical and
acoustic interactions, we readily find the acoustic torque on
a small particle. The isotropic monopole moment cannot
induce any torque, and the torque originates solely from the

dipole moment D of the particle. In analogy with an electric
dipole in an electric field [44-46,48,49], we obtain:

T= %Re[pD* x V] = wIm(a,)S. (11)

The very simple Eq. (11) reveals the direct connection
between the spin angular momentum density (4) of the
acoustic field and the radiation torque on a small absorptive
particle. To the best of our knowledge, this equation has not
been derived before. This general connection (entirely
similar to the optical case) is very important, because it
was implied without rigorous grounds in the very recent
experiment measuring acoustic spin [56]. Furthermore, this
connection can be seen by comparing very recent numerical
simulations of the acoustic torque and analytical calcula-
tions of the spin density in the particular case of acoustic
Bessel beams [40,58]. Having the simple expression (11),
acoustic torques on subwavelength isotropic particles can
be readily found analytically in an arbitrary acoustic field.
Equations (7)—(11) are the main results of our work. Even
though some of these are equivalent to the previously known
expressions (such as gradient force on lossless particles),
here the acoustic absorption, forces, and torque are for the
first time presented in a unified and physically clear form.
All these quantities are determined by the fundamental
energy, momentum, and angular-momentum properties (2)—
(4) of the field, as well as by the monopole and dipole
particle polarizabilities (5) and (6). Note that all the
quantities (6)—(11) behave as o (ka)?, i.e., proportionally
to the volume of the particle. This makes perfect physical
sense and allows one to discriminate between various calcu-
lations of radiation forces and torques [see, e.g., torques in
[33,39] with dependences « (ka)? and o (ka)’, respec-
tively]. For larger or lossless [Im(a,, ;) = 0] particles, one
has to involve higher-order terms in ka (see below).
Example: Forces and torques in an evanescent acoustic

field.—To illustrate the above general theory, we consider a

single evanescent acoustic wave with the pressure and
velocity fields given by [56,57]:

. VAW
p= Aelkzz—)(x’ V= w_ ( 0 )etkéz—ﬁcx_ (12)
P \k

z

Here, A is a constant amplitude, k, is the longitudinal
propagation constant, and « is the vertical decay constant.
This example is very simple yet generic. On the one hand,
the evanescent wave can be treated as a plane wave with the
complex wave vector k = k,Z + ikX (the overbar denotes
the unit vectors of the corresponding axes) [45,48] (see
Fig. 2), which allows one to use the exactly solvable Mie
scattering problem for numerical calculations of forces and
torques [82]. On the other hand, the evanescent wave is
inhomogeneous, and it carries the intensity gradient VW,
canonical momentum P, and spin S, which exert the
gradient force (9), scattering forces (10), and the radiation
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FIG. 2. A small spherical particle in the acoustic evanescent
field (12), which can be treated as a plane wave with the complex
wave vector k = k,Z + ixX. The gradient and scattering (radia-
tion pressure) forces (9) and (10) are produced by the energy
density gradient and canonical momentum (the real part of the
wave vector), respectively. The torque (11) is produced by the
transverse spin of the evanescent field [45,48,54,56,57].

torque (11) in the three mutually orthogonal directions
[45,48,54,56,57] (see Fig. 2).

Figure 3 shows the dependences of these two forces and
torque in the field (12) on the dimensionless particle radius
ka for the cases of absorptive and lossless particles. We plot
analytical results from Eqs. (9)—(11), valid only to leading
order,  (ka)3, and the exact numerical calculations using
the Mie scattering solutions together with the momentum
and angular momentum fluxes, similar to the Maxwell
stress tensor approach in optics (see the Supplemental
Material [65]). Note that the forces and torque are nor-
malized by F, = np|A|?a*/2 and T, = Fy/k, so the
analytical dependences (9)—(11) are linear in Fig. 3. For
an absorptive particle, the analytical approximation agrees
with the exact calculations for ka < 0.3.

To improve the accuracy of the analytical expressions
(9)—(11), one can use the exact expressions for the Mie
scattering coefficients a, and a; in Eq. (6) (see the
Supplemental Material [65]). In this case, the monopole
and dipole terms include all orders in ka, although the
higher-order multipole terms are still neglected. The
corresponding refined analytical dependences are shown
in Fig. 3 by dashed curves, and these agree with the exact
numerical calculation for ka < 0.8.

Note important peculiarities (also known in optics) of the
scattering force and torque on lossless particles. First, the
scattering (radiation-pressure) force vanishes only in
the (ka)?® order but is generally nonzero (see Fig. 3). The
higher-order radiation-pressure force originates from the so-
called “radiation friction” effect, which is described by small
higher-order imaginary parts in the monopole and dipole
polarizabilities [29,83,84], and also from the interference
between the monopole and dipole fields [29]. Using the Mie
coefficients a, and a;, we find that the higher-order imagi-
nary parts of the polarizabilties can be written as
&y =, + (ik/4m)a2, and &y ~ ay + (ik*/127)a3, where

Lossy particle Lossless particle

_2_ _2_
)
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FIG. 3. Exact numerical and approximate analytical calcula-
tions of the gradient force, scattering (radiation-pressure) force,
and torque on a spherical particle in the acoustic evanescent field
(see Fig. 2). The field and particle parameters are these:
k./k = 1.34,k/k = 0.89,p =2+ 0.5i, p = 3 + 0.7i (the imagi-
nary parts are omitted in the lossless-particle case). See dis-
cussion in the text.

a, are the leading-order polarizabilities (6) (see the
Supplemental Material [65]). Second, the radiation torque
vanishes exactly for lossless spherical particles of any radius
(Fig. 3). This is also similar to optics, where the radiation-
friction effect produces the force but not the torque on the
particle [27,49]. Thus, the simplest analytical approximations
(6) and (11) coincide with the exact calculations in this case.

Conclusion.—We have presented a general theory of the
interaction of a monochromatic acoustic wave field with a
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small absorbing spherical particle. Our theory is based on
the complex monopole and dipole polarizabilities of the
particle, and it provides simple analytical expressions for
the absorption rate, radiation forces (including the gradient
and scattering forces), and radiation torque. Most impor-
tantly, these expressions reveal close connections with the
fundamental local properties of the acoustic field: its
energy, canonical momentum, and spin angular momentum
densities [56-58]. Thus, one can now use acoustic forces
and torques to measure the canonical momentum and spin
densities of sound waves, and vice versa: use canonical
momentum and spin to predict radiation forces and torques.
Our work also unifies theoretical approaches to the acoustic
and optical field-particle interactions and reveals close
parallels between these. This provides a more fundamental
understanding and new physical insights into these impor-
tant problems.
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Evanescent electromagnetic fields near a waveguide can exert The evanescent field around an optical nanofiber [11] guiding
a transverse radiation force on scattering objects. To prove a quasi-circularly polarized fundamental mode is also expected
this experimentally, we demonstrate light-induced orbiting of to carry significant OAM that is transferable to material objects
isotropic, dielectric microparticles around an optical nanofiber [12]. In spite of numerous demonstrations of particle trapping,
that guides elliptically polarized, fundamental modes. The propulsion [13—15], and binding [16,17] in the vicinity of optical
orbit frequency is proportional to the helicity of the coupled nanofibers, orbital motion of particles in such systems has never
light. Interestingly, the observed motion is opposite to the been reported in the literature. The main reason for this lack of

energy flow circulation around the fiber. This result verifies the
theoretically predicted negative optical torque on a sufficiently
large particle in the vicinity of a nanofiber. © 2020 Optical
Society of America under the terms of the OSA Open Access Publishing

Agreement
9 asingle-mode optical nanofiber.

experimental evidence was the uncertainty about the polarization
of light at the waist of a nanofiber waveguide. This uncertainty
has been lifted only recently [18-20]. In this Letter, we present
a clear demonstration of the spin-dependent optical torque by
means of light-induced orbiting of isotropic microspheres around

https://doi.org/10.1364/OPTICA.374441 Let us consider the interaction between a spherical, dielectric

Spin angular momentum (SAM) carried by paraxial free-space
beams of light can be transferred to a material object, causing it
to rotate around its axis (i.e., spin), if the object is absorbing or ;
anisotropic [1]. In contrast, orbital angular momentum (OAM) in &= ( VI+0E)—1 +e V1= Gg/’:—l) /ﬁ’
beams with optical vortices can even set isotropic, non-absorbing
particles into rotation [2,3]. In nonparaxial light, SAM and OAM
can couple, leading to, for example, orbiting of isotropic particles
trapped by a tightly focused, nonvortex beam [4] and to observ-
able, spin-dependent, transverse shifts of the light itself [5,6].
Symmetry breaking in a system consisting of a scattering object
at the interface between two media, under oblique illumination,
produces an interesting spin-dependent optomechanical effect [7].
Evanescent electromagnetic fields, which accompany total
internal reflection and guiding of light, exhibit even more com-
plicated spin—orbit interactions. In particular, aside from the
common axial SAM associated with polarization, such fields
exhibit a SAM component perpendicular to the wave vector [8].

electric part of an elliptically polarized guided mode is

particle (of radius R;,) and the evanescent field of a single-mode
optical nanofiber (of radius Ry), as sketched in Fig. 1(a). The

M

where o € [—1, 1] is the helicity parameter [6], ¢ € [0, 277 ] deter-
mines the orientation of the symmetry axes of the polarization
ellipse in the xy plane, and £, = (¢,f+ pe, @ + ¢ 2)eiPtire
is the electric part of the quasi-circularly polarized guided mode
with a polarization rotation index p = o/|o| = %1 [21]. Here, 8
is the propagation constant, and ¢,, ¢,, and ¢, are the cylindrical
components of the mode-profile function of £, with p = +1. The
azimuthal component of the Poynting vector of the elliptically
polarized guided mode is S, = o (¢4} — ¢, /7%) /2, where b, and
h are the components of the mode-profile function of the mag-
netic part, H,, of the guided mode with the polarization index
p = +1. Since the longitudinal field components, ¢, and 4, are

In addition, a material object in an evanescent field can experience nonzero, we have Sép) =Sylo=p = plechy —e,h7)/2#0. It
a transverse spin-dependent force, as demonstrated experimen- has been shown that ng =tD 5 0 and S(;‘D =Y 20 outside the
tally by means of a nanocantilever [9] or an optically trapped nanofiber [21].

Mie scattering particle [10] placed near a total internal reflecting The light-induced force and torque on any object can be calcu-
glass surface. lated if one knows the exact incident and scattered electromagnetic

2334-2536/20/010059-04 Journal © 2020 Optical Society of America
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HE 44

o#0 U ki, 01 \j ko, 02
Fig. 1. (a) Isotropic, dielectric particle in the evanescent field of an
elliptically polarized, fundamental mode of an optical nanofiber. Due to
the azimuthal optical force, £, the particle can rotate around the fiber.
(b) We eliminate axial motion by using two counterpropagating beams
with identical intensity profiles and opposite helicities, o7 = —0,.

waves. In our problem, the incident wave (here, the evanescent
field) is well known [22]. Following the generalized Lorenz—Mie
theory, the incident field can be decomposed into vector spherical
harmonics, and the scattered field is thus found by application
of boundary conditions [23,24]. Thence, the force and torque,
respectively, can be found by integration of the linear and angular
momenta over a surface enclosing the object. Note that although
Lorenz—Mie theory is a generally accepted and fairly accurate semi-
analytical approach to optomechanical calculations, it does not
take into account multiple rescattering in the light—matter system.
The optical force exerted on a scattering particle near a
nanofiber can be decomposed into the axial (F,), radial (£,),
and azimuthal (F,) components [21] [see Fig. 1(a)]. Under
F,, the particle is attracted to the fiber surface and stays at
r=4/x2+y2> (R¢+ R,) (the inequality being due to sur-
face roughness and Brownian motion). In this work, we aim at
detection of the azimuthal force, Fy,, which sets the particle into
orbital motion around the fiber. Since Brownian motion breaks
mechanical contact between the particle and the fiber, the contri-
bution from light-induced spinning of the particle to its azimuthal
motion is expected to be negligible. According to our calculations,
F, is much smaller than the axial force, F, which propels the parti-
cle towards z > 0. In order to prevent £, from hindering detection
of the light-induced rotation, we eliminate the axial motion by
launching a second HE;; mode propagating towards z < 0 into
the nanofiber, with a power equal to that of the initial mode. This
is realized experimentally by coupling two non-interfering (due to
the lack of spatial coherence) laser beams into the opposite pigtails
of the tapered fiber [see Fig. 1(b)], wherek; , are the wave vectors.
In principle, the rotation under F,, could be studied if beam 1
were elliptically polarized (0; = o # 0) and beam 2 were linearly
polarized (63 = 0). However, such abeam 2 would produce a mode
with an axially asymmetric intensity profile [25], and the particle
would tend to stop at the “hot spots,” unless |oy| ~ 1. Since we
consider the complete spectrum of o, we set the polarization of
beam 2 to also be elliptical, with o, = —o7. In this case, the total
azimuthal force is the sum of the contributions from both beams.
Once F, is known, the orbiting frequency of the particle at
equilibrium can be easily calculated from the force balance equa-
tion, Fy, + Fi =0, where Fy is the friction. In our experiments,
the particle is immersed in water, which produces a friction of
Fg = —yv, where v is the linear velocity of the particle’s center,
and y is the drag coefficient. As demonstrated by Marchington
et al. [26], an appropriate description of the friction for a micro-
sphere in the evanescent field can be obtained using the lubrication
correction [27] y = y[(8/15)In(h/ R, — 1) — 0.9588], where
Yo =6 R, is the Stokes drag, 7 is the dynamic viscosity of the
fluid ( & 1 mPas for water at room temperature), and the distance
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Fig. 2.

of light near a nanofiber (in water) guiding a fundamental mode with

Simulation results. (a) Density of the total angular momentum

o = 1. Inset: total angular momentum per photon and its orbital and spin
components. (b) Orbiting frequency for a polystyrene particle, as a func-
tion of radii of the particle and the fiber. Inset: frequency at the optimum
fiber radius (Rf = 0.35 pm) for three different particle materials: silicon,
polystyrene, and silica.

h =r — Ry [see Fig. 1(a)] depends on the particle surface rough-
ness. We note that the above formula for y is valid only for large
enough particles, R, > 0.25 um [27]. The absolute value of the
particle rotation frequency around a fiber when both beams are
circularly polarized (CP) can thus be expressed as

| feol = [vl/[27 (h + Rl = | Fy /2y (b + Rp)L. (2)

As follows from our simulations, in the general case of elliptical
polarization (EP), the azimuthal force and the corresponding
frequency, fgp,are proportional to o = o7, with opposite signs:

Sfep = —o0| fopl. (3)

This result is consistent with the theoretical findings of Le Kien and
Rauschenbeutel [21], for the relevant range of the size parameter,
nmk Ry, where 7y, is the refractive index of the medium. For con-
venience, we normalize the rotation frequency by the total optical
power, P. Thatis, we use fcpyEp = fop,ep/P.

Our theoretical findings are summarized in Fig. 2, where /, is
the z component of the total angular momentum carried by the
field near an optical nanofiber. In order to better understand the
structure of angular momentum, we calculated the SAM and OAM
densities [see the inset in Fig. 2(a)] using the canonical expressions
[28,29]. Although the majority of /, comprises the spin part, both
components of the total angular momentum can contribute to
orbital motion of particles in the vicinity of a nanofiber [30]. As
shown in Fig. 2(b), the orbiting frequency is expected to reach
about 57 Hz/W for a 1-pum (in diameter) polystyrene particle. As
one can see in the inset, the maximum frequency scales with the
refractive index: it equals 11 Hz/W for silicon dioxide (z = 1.45)
and 450 Hz/W for silicon (z = 3.67). In practice, one should also
consider the Brownian motion, which is inversely proportional to
R,,: smaller particles would exhibit longer thermal displacements
and therefore a weaker interaction with the evanescent field, which
decreases dramatically with the distance from the fiber, 4. As a
reasonable compromise, we chose to use polystyrene beads with
a diameter 2R, =3 um. Under these conditions, the expected
frequency for CP inputis |fcp| ~21.2 Hz/W.

Our experimental setup is sketched in Fig. 3(a). The nanofiber
is fabricated by controlled heating and pulling [31] of a step-
index single-mode optical fiber (SM980G80 by Thorlabs, Inc.).
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Fig. 3. (a) Experimental setup (not to scale): once the polarization
transformations in the tapered fiber are reversed by the polarization
compensators, PC1 and PC2, we set the values of 07 and 0, = —07, by
rotating the quarter-wave plates, QWP1 and QWP2. (b) Transmission
image of a 3-im polystyrene particle optically captured at the waist of a
nanofiber.

The small tapering angles of 3 mrad provide adiabatic coupling
[32,33] between the fundamental modes in the fiber pigtails and
those in the 2-mm-long cylindrical waist region having a radius
of Rg=0.33 £ 0.04 um (measured over a set of five nanofibers).
The fiber pigtails are coupled to laser beams 1 and 2 from the
same source (Ventus, Laser Quantum Ltd., emission wavelength
A =1.064 pm). The initial linear polarization of the beams (along
x and y for beams 1 and 2, respectively) is changed into elliptical
by means of two quarter-wave plates, QWP1 and QWP2, with
their slow axes oriented at equal angles, Oqwp1 = Oqwr2 =6,
with respect to x, measured from the point of view of the receiver.
This results in o =sin 20 = — 83, where S is the third Stokes
parameter in beam 1.

A nanofiber sample is immersed into 0.3 mL of deionized water
with 3-um polystyrene particles (Phosphorex, Inc.) and sand-
wiched between two glass cover slips separated by 1.5-mm-thick
spacers. The sample is imaged by a video camera (DCC3240C by
Thorlabs, Inc.) through a water-immersion objective lens (Zeiss
Plan-Apochromat, 63x/1.00 w) under Kshler illumination [see
Fig. 3(b)]. Individual particles are picked up from the bottom
slip using an optical tweezers realized by focusing the collimated
beam 3 (from the same laser) with the same objective lens. The
polarizing beam-splitter cube transmits y-polarized beam 3 and
is subsequently used for detection (Si amplified photodetector
PDAI10A2 by Thorlabs, Inc.) of the laser light escaping from the
nanofiber due to scattering by the particle.

Due to uncontrolled bends, twists, or geometrical inhomo-
geneities, the fiber does not maintain polarization of guided light.
In order to control the polarization state at the nanofiber waist, we
reverse the unknown polarization transformations for both beams
using two free-space compensators, PC1 and PC2. The compensa-
tion procedure described elsewhere [20] is based on self-scattering
from the waist imaged by a second video camera, replacing the
photodetector for this purpose.

Experimental results with |o| = 1 are shown in Fig. 4. Orbital
motion of the particle around the fiber causes clear quasi-periodical
beatings of the measured voltage [see Fig. 4(a)]. The orbiting
frequency, fop, scales linearly with optical power, as summarized
in Fig. 4(b) for three different nanofibers. The data were fitted
to Eq. (2) with an adjustable drag coefficient, 4. The resultant
frequency, fcp,ﬁ[ =19.2 Hz/W, is lower than the expected value
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Fig. 4. Experimental results for a CP input (R =right, L =left).

(a) Beatings in the detector signal acquired with an optical power of
15 mW in each beam. The zoomed-in view (inset) shows the local
period, T. (b) Orbiting frequency versus power in each beam, at o = +1.
Markers: measured data sets for three samples; gray area: combined
standard deviation range. Dashed line: frequency expected for the drag
coefficient y; solid line: the best fit to the data with 4. (c), (d) Time-lapse
compilation of images foro = +1 (c) and o = —1 (d).

by about 9%, a small discrepancy given the complexity of the
hydrodynamic problem, a complete solution of which is beyond
the scope of this study.

When the sign of ¢ is reversed, the particle rotates in the oppo-
site direction, with nearly the same period, T, as demonstrated
by Visualization 1 and Visualization 2 and the corresponding
time-lapse compilations of images in Figs. 4(c) and 4(d), where
si—1.2 = 0;k;/k;, and the curved arrows denote the rotation of
the electric field vector, E, in the xy plane for each beam, from
the point of view of the receiver. These arrows also indicate the
circulation direction of the energy flow around the nanofiber [21].

The results for 0 # 1 are presented in Fig. 5, where solid lines
show the simulated frequency, fzp(0), and each error bar is the
standard deviation range for at least 20 T duration. For this data
set, Egs. (3) and (2) were applied, without adjustable parameters.
As confirmed by Fig. 5(b), the transverse spin-dependent radia-
tion force on the particle is proportional to the SAM projection
on the propagation direction, with opposite sign. The observed
light-induced rotation is antiparallel to the azimuthal component
of the energy flow around the nanofiber [21]. This counterin-
tuitive “negative” radiation torque (OAM-induced) is due to the
dominant forward scattering. This is associated with multipo-
lar interference in Mie scattering from large enough particles,
R, > A/(27 1) ~ 0.13 pum. The associated forward scattering of
light relates our findings to previous demonstrations of “negative”
radiation forces [34—36].

Interestingly, o influences not only the frequency, but also the
particle’s trajectory. For CP input (Jo| = 1), it is close to a circle
in the xy plane (see Visualization 1 and Visualization 2). When
the polarization is elliptical (|o'| < 1), the trajectory acquires a
figure-of-eight shape, with longer trips along z for smaller |o|
(see Visualization 3). This distortion is due to the lack of axial
symmetry in the intensity distribution for counterpropagating
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tation (a) or the k-projection of SAM in beam 1 (b). Solid lines: simula-
tion using Eq. (3), with o = sin 26.

elliptically polarized modes [25]. Indeed, for |o| close to zero, the
intensity maxima for beams 1 and 2 are aligned parallel to the x and
y axes, respectively. Hence, the particle is accelerated towards z > 0
or z < 0 when passing through the xz or y z planes.

Here, we presented a clear experimental demonstration of a
transverse, spin-dependent radiation force acting on material
objects in evanescent electromagnetic fields. In contrast to previous
studies on the subject, we used optical nanofibers, which provide
extraordinarily clean experimental conditions, with high visibility
and repeatability of measurements. An indispensable prerequisite
of this experiment was the complete polarization control of light
at the nanofiber waist. In addition to its use for verification of
the above fundamental concept, the examined microparticle—
nanofiber system could find an application in microfluidics, e.g., as
an optically addressed rotary pump.
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Optical binding allows creation of mechanically stable nanoparticle configurations owing to formation
of self-consistent optical trapping potentials. While the classical diffraction limit prevents achieving deeply
subwavelength arrangements, auxiliary nanostructures enable tailoring optical forces via additional interaction
channels. Here, a dimer configuration next to a metal surface was analyzed in detail and the contribution of
surface plasmon polariton waves was found to govern the interaction dynamics. It is shown that the interaction
channel, mediated by resonant surface waves, enables achieving subwavelength stable dimers. Furthermore,
the vectorial structure of surface modes allows binding between two dipole nanoparticles along the direction
of their dipole moments, contrary to vacuum binding, where a stable configuration is formed in the direction
perpendicular to the polarization of the dipole moments. In addition, the enhancement by one order of magnitude
of the optical binding stiffness is predicted owing to the surface plasmon polariton interaction channel.
These phenomena pave the way for developing new flexible optical manipulators, allowing for control over a
nanoparticle trajectory on subwavelength scales and opening opportunities for optical-induced anisotropic (i.e.,
with different periods along the field polarization as well as perpendicular to it) organization of particles on a
plasmonic substrate.

DOI: 10.1103/PhysRevB.99.125416

I. INTRODUCTION required. In order to achieve this with available laser intensi-
ties, the optical binding can be enhanced by localized plasmon
resonances of the nanoparticles [8,17,18]. The localized plas-
mons can improve trapping efficiency at hot spots of a cor-
rugated metal surface [19,20] or provide particle acceleration
against beam direction in plasmonic V-grooves [21]. Three-
dimensional structures of plasmonic particles or alternating
metal-dielectric layers, such as metamaterials [22—24], can be
also employed to trap or manipulate nanoparticles, e.g., for
realization of optical pulling forces attracting nanoparticles to
a light source [25,26]. In the context of optical binding, flat
metal surfaces may be also very relevant. The excitation of
propagating surface plasmon polartions (SPPs) and induced
optical thermal forces are responsible for self-organization of
micron-sized nanoparticles [27]. Moreover, the direct momen-
tum transfer from SPP to micron-sized particles [28,29] can
be used for enhancing the optical forces near planar metallic
surfaces, which can be used for sorting and ordering of
nanoparticles [15,30,31]. Recently, it was suggested that SPP
modes can open the way for manipulating the optical forces
acting on nanosized particles by the directional excitation of
the propagating SPP modes [32-37].

Here, we propose another mechanism of transverse optical
binding via excitation of SPP modes (SPP binding) near
a metallic planar interface. This mechanism is based on
far-field interaction through the interference of SPP waves

Light carries momentum which can influence matter
through optical forces, enabling manipulation of micro- and
nanoscale objects [1] and even atom ensembles [2]. The
methods of optical tweezing [3,4] rely on attraction of small
objects to regions of high field intensity. Spatially nonuniform
intensity distributions used for positioning microobjects at
a predefined pattern can be achieved with a nanostructured
environment or by interference of several beams. Yet, since
the early years of optical tweezing experiments, it has been
discovered that several particles tend to self-organize under
homogeneous illumination [5,6]. This effect is referred to as
transverse optical binding. The interference between incident
and scattered light, owing to its interaction with particles, re-
sults in the formation of a set of potential wells defining stable
positions of particles. Optical binding has been intensively
studied both theoretically [7-11] and experimentally [12—-16],
including as a prospective method for self-organization of
particles. However, the strength of optical binding drops
rapidly with nanoparticle size as the scattering is proportional
to the nanoparticle radius R as ~RC. On the other hand, the
viscous damping is also reduced for smaller particles, which
makes the fluctuations and stochastic processes in liquids
to be more influential. As a result, for reliable optical con-
trol of subwavelength nanoparticles, strong optical fields are

2469-9950/2019/99(12)/125416(11) 125416-1 ©2019 American Physical Society
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and it is different to the formation of resonant nanoparticle
molecules due to their near-field interaction [17,18,38,39].
Compared to common transverse binding in a free space
(photon binding) [40], the proposed approach has several
advantages: (i) It can enhance the binding effect for small
nanoparticles due to the resonant excitation of SPP modes;
(ii) the distance between the bound pair of nanoparticles is
defined by the SPP effective wavelength and, thus, can be sig-
nificantly smaller, surpassing the diffraction limit; and (iii) the
binding occurs in the direction of dipole polarization in accor-
dance with the directivity of SPP emission, which differs from
the case of a free space binding, where stable configurations
are formed in the direction perpendicular to the dipole mo-
ments. In this paper, we theoretically show how SPP-based
transverse optical binding can bring new features.

II. MODEL AND MAIN EQUATIONS

We consider two identical nanoparticles placed close to a
planar metallic interface at coordinates r; and r, in the field of
a normally incident plane wave (see Fig. 1). We assume that
the nanoparticles have radius R and are made of a dielectric
material with permittivity e. In the dipole approximation, the
radius of the nanoparticles R is much smaller than the typical
scale of the electric field variations. In this limit, the time-
averaged optical force acting on a nanoparticle is given by the
expression [41]

1
F= QRe;p;‘VEi(r, ), (1)

where E;(r, o) is the ith component of a local field.

The dipole moment of a nanoparticle p(r) is defined as
p(r) = a(w)E(r), where a(w) is the vacuum dipole polariz-
ability corrected with account for retardation effects:

1 1 ik3
—-—=— = 10, (¥0—47T£()R3 .
+2€1

a oy Ome
where ky is the wave vector in a free space, &y is the vacuum
permittivity, and o is the static polarizability, assuming the
particle is a sphere. The local electric field includes the

@

Einc(r)

G(rz,r)
81=1 \ A /’ &

Gs(rz,rl)

FIG. 1. The scheme of the problem. Nanoparticles with permit-
tivity ¢ are positioned at equal distances from a surface z; =z = z.
The incident wave is described by the wave vector k and the electric
field Eine (r). We assume that the permittivity of the upper half-space
is €1 = 1 and &, is the permittivity of silver substrate.

incident plane wave, the multiply rescattered field between
particles via free-space and substrate channels, and the self-
induced contribution of each particle through the reflection
from the substrate. The local field is given by
k2~ k2~
E(r) = Eo(r) + 260 rps + 26w ep. ()
Here, the first term on the right-hand side E; is the
amplitude of the external plane wave Ei,(r) with the term
corresponding to the reflection from the metallic substrate
taken into account, while the second and third terms corre-
spond to the field generated by the first and second nanopar-
ticles, respectively. The total Green’s function G(r rg) =
Go(r ro) + G (r, rp) is a sum of the scattered G and vacuum
Go components, respectively [43]. The sum of terms on the
right-hand side of Eq. (3) are the fields of the two excited
dipoles, resulting in the formation of the interference pattern.
The polarizability tensor can be simplified with respect to the
self-action Green’s function component G(r;, r;):

~ k2 _ .
Pi =0 |:Eo(1‘i) + ;00(1‘1'7 l‘_/)P_/], i=1,2,j=21
0

Here, we have introduced the effective polarizability tensor

=S .
Q] o a8 follows:

_ -~ K2~ -
O o (11, 0) = a(w){l - a(w)ﬁGs(r;, r;, cu)] ,
i=1,2, )

it 7 corresponds to the unitary dyad. This tensor gives a
correction of a vacuum polarizability a(w) accounting for the
nanoparticle self-action through the substrate [33,43]. This
tensor is diagonal, as is G,(r;, r;) in the case of a flat isotropic
substrate [43].

Without loss of generality, we fix the position of the first
particle in the origin of the coordinate system at x; =0
and y; = 0 and will consider the force acting on the second
particle only. Computing the field at the point of the dipole
according to the expression in Eq. (3), one can achieve a
system of equations for the dipole moments p; and p, (see
Appendix A), and, in the special case of normal incidence of
the plane wave, the expression for the dipole moments can be
simplified even further:

pi = afeffEO(ri ), (5)
2

~ ~ k% ~
(1, ) = a(w)[l — a(@)—Gy(r;, 17, ®)
, o

4

-1
—(@)G(x;, 1)@, e (), 0)G(x;, ri)]
0

PO =P =N
X [1 + ;G(ri, rj)a},eff(rj, w)i|,
0
i=1,2 j=21. (©6)

Now, the polarizability @R, (see Appendix A for the de-
tails) includes all the interaction channels: (i) the self-action
of the nanoparticles through the substrate and (ii) the cross-
action of the two nanoparticles via the vacuum and the
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FIG. 2. The spectrum of the real (a) and imaginary (b) parts of
the xx components of the effective polarizability tensor & (blue
dashed line) and &% (red solid line) shown along with the vac-
uum polarizability « (black dash-dotted line). The polarizability is
normalized over 4w &yR> and calculated for a spherical nanoparticle
of radius R = 15 nm with ¢ = 3 whose center is located above the
surface at z = 20 nm. The inset shows the dependence on the vacuum
wavelength of the SPP typical period, denoted as Lspp = 27 /kspp
(upper x axis), and the imaginary part of the SPP wave vector (lower
x axis). The dielectric permittivity of the silver substrate &, was taken
from Johnson and Christy [42].

substrate. Moreover, it is worth mentioning that though the
effective polarizability tensor @S is diagonal, the tensor @X; is
nondiagonal, as the presence of the second nanoparticle does
not preserve translational symmetry of the system.

The excitation of SPP modes affects both the effective
polarizability due to the substrate mediated self-action and
the cross action of the nanoparticles. The spectra of the real
and imaginary parts of the xx components of @%; (solid line)
and @ (dashed line) are plotted in Figs. 2(a) and 2(b),
respectively, for the case of a silver substrate. The vacuum
polarizability « is also shown in this figure with a dash-dotted
line. We observe that the effective polarizabilities have a
resonance at around 350 nm. From the inset of Fig. 2, one
can see that this wavelength corresponds to the SPP resonant
excitation for the silver/vacuum interface, which is defined
by the condition Re[e;(w)] 4+ 1 =0, and also corresponds
to the maximal value of the real part of the SPP wavevector
kspp = ko~/€s/(e5s + 1), where &, is the permittivity of the
silver substrate [42]. In the inset, the effective wavelength of
the SPP mode defined as Lgpp = 27 /Re(kspp) is also shown.

The strong enhancement of the imaginary part of the effective
polarizability is a sign of strong rescattering of light into the
SPP mode.

III. RESULTS AND DISCUSSION
A. Binding via SPP

By determining the dipole moments of nanoparticles, one
can calculate the optical force acting on each nanoparticle
using Eq. (1) (see the details in Appendix A). In the follow-
ing, we will refer to the optical force acting on the second
nanoparticle only, fixing the first nanoparticle in the coordi-
nate origin. In order to find the equilibrium positions of the
nanoparticle, we plot the dependence of the x component of
the optical force as a function of interparticle distance along
the x axis as shown in Fig. 3(a). The force is normalized to
the optical pressure force acting on the same nanoparticle in
vacuum Fy = 1/2k|Ey|* ITm[a(w)], where |Ey| is the amplitude
of the incident plane wave, and the particles’ parameters
are the same throughout the whole paper: radius R =15 nm
and dielectric permittivity &€ = 3. One can see that the force
periodically varies with coordinate, which is due to the inter-
ference pattern formed in the vicinity of the metal surface,
and the zero-force points show equilibrium positions. These
points can be stable along x if the force is restoring (shown
with solid circles, i.e., point 1) and unstable otherwise (shown
with white filled circles). One should also note that when the
nanoparticles approach each other, the force goes to minus
infinity until the nanoparticles touch each other. However, this
case is out of the scope of the present paper.

To identify the role of plasmons in the interaction force, we
have excluded the SPP contribution from the Green’s function
by integrating over the free space modes only (transverse
component of the wave vector is limited by the incident
wave vector k, k. < k;) in the spectral representation (see
Appendix B). One can see that in the absence of SPPs the
interaction force becomes one order of magnitude weaker,
and the period between stable positions is significantly en-
larged, being defined by the vacuum wavelength of photons.
Moreover, the equilibrium points shown with blue circles are
stable both along the x and y directions, making them globally
stable, which does not happen for equilibrium positions along
the y coordinate in the case of binding with solely photons.
To illustrate this, we plotted the F, force—see Fig. 3(b)—as
a function of the transverse angle ¢ (see the inset in Fig. 3)
in the vicinity of points of stable equilibrium. One can see
in Fig. 3(c) that the dependence of the binding length on the
vacuum wavelength and the period of the SPP wave, which is
equal to Lgpp. One can see that the binding distance is fully
defined by the period of the SPP wave when the excitation
condition is fulfilled, thus providing the binding at distances
significantly shorter than the vacuum wavelength. This also
strongly differs from work of Salary et al. [17], where the opti-
cal forces between two nanoparticles over a metallic substrate
were considered in the regime, where the interaction force is
mainly defined by the near-field components.

In order to support the results discussed above, we have
performed numerical simulations with the COMSOL MUL-
TYPHYSICS package [see Fig. 3(d), scatter line]; numerical
simulation shows good correspondence with the solution
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FIG. 3. (a) The x component of optical force plotted along the x axis coinciding with the direction of electric field polarization. The blue
solid line denotes the force with account for all interaction channels. The red dashed line is for the interaction through the free space photons
only. (b) The y component of the optical force in the direction perpendicular to the x axis, showing the stability of the binding position in
the direction transverse to the x axis. The blue solid line and red dashed line correspond to the force calculated with or without account for
the SPP interaction channel for the equilibrium positions labeled 1 and 2 in panel (a), respectively. The results are shown for the wavelength
A = 350 nm. The values of the force for the red dashed lines are multiplied by factors of 10 and 20 in panels (a) and (b), respectively. (c) The
distance between the stable equilibrium positions obtained from panel (a) compared with the distance L = 27 /kspp. (d) Comparison of the

optical force calculated within Green’s function approach as in Fig. 3(a

) and calculated numerically with COMSOL MULTYPHYSICS package.

The approximate analytical expression given by Eq. (7) for the SPP-induced force is also shown by the dashed line. All the results shown in

the figure are computed for R = 15 nm and z = 30 nm.

obtained with Green’s function approach [see Fig. 3(d), solid
line]. The particles were illuminated by a plane wave, and
the numerical integration of the Maxwell stress tensor over
a sphere surrounding a particle was performed. The Green’s
function approach shows good agreement with numerical
results also at distances comparable to the nanoparticle size.
One can notice that for our range of distances between the
nanoparticles the dipole model gives good agreement with
numerical simulations. The higher order multipoles do not
contribute to the optical force, as evidenced by our calcula-
tions in COMSOL MULTYPHYSICS. It is also in good agreement
with a paper by Khlebtsov et al. [44]. Moreover, on employing
Green'’s function formalism, we have derived the approximate
expression for the contribution of the SPP mode to the optical
force (see Appendix C for the details):

kgPPklzszZ

Fo~ frlpxlzRe[
K2(1— &)

Hf”(ksppx)] exp[—Im(k;,)z].

@)

Here, ki, = ng — képp and ky, = vgskg — képp are z com-
ponents of the SPP wave vector in the upper half-space and
in the substrate respectively, Hl( Y(g) is the first-order Hankel
function of the first kind, and p, denotes the x component
of the dipole moment of the first or second nanoparticle, as
dipole moments for identical nanoparticles are equal. The
derived expression illustrates the origin of the SPP mode:
the Hankel function describes the SPP mode excited by a
dipole and propagating over a flat surface. Its zeros define the
equilibrium positions of the nanoparticle. The z component of
the wave vector is complex since SPP is a localized wave;
thus, the exponent in Eq. (7) shows the decay of the SPP-
dipole coupling.

It should be stressed that the transverse binding in a vac-
uum does not provide stable equilibrium positions along the x
axis [40]. This difference of SPP and photon binding can be
understood through the difference in the scattering diagrams
of SPPs and photons. This is illustrated in Fig. 4 where two-
dimensional maps of the x and y force components are plotted.
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FIG. 4. Two-dimensional maps showing the x and y forces for
SPP and photon binding. The different directionality of the scattering
pattern is responsible for the different geometry of the stable equilib-
rium positions. Results are shown for A = 350 nm and z = 25 nm.
The white regions correspond to the high values of the optical force
in the vicinity of the first particle, the radius of white regions is
around 100 nm; therefore, no equilibrium positions are omitted.

The reshaping of the photon interference [Figs. 4(a) and
4(b)] due to the influence of plasmons [Figs. 4(c) and 4(d)]
is clearly seen. The photon binding is well known to have
stable configurations perpendicular to the field polarization
direction, in accordance with the dipole emission pattern [see
Figs. 4(a) and 4(b)]. The SPP binding, on the contrary, has sta-
ble configurations along the polarization direction, in which
a preferable excitation of SPP modes occurs [see Figs. 4(c)
and 4(d)]. It is also worth noting that the amplitudes of the
lateral forces are several times higher when SPP modes affect
binding.

B. Temporal dynamics of SPP binding

We illustrate the character of SPP binding by calculating
the dynamics of the second nanoparticle motion in the force
field of the first nanoparticle, which is fixed at the origin of
the coordinates. We consider only two-dimensional motion of
the nanoparticle, keeping the z coordinate to be constant. The
dynamics is obtained through direct solution of the equations
of motion under the external optical force with the account for
viscous damping. The details are discussed in Appendix D.

Two typical trajectories are shown in Fig. 5 for two dif-
ferent sets of initial coordinates of the second nanoparticle.
The particles are illuminated by a plane wave. The color map
shows the intensity of nanoparticle attraction to the equilib-
rium positions along the x axis, i.e., the amplitude projection
of the total force F on the unit vector n pointing at the
nearest equilibrium position. The arrows show the force field,
while the lines show the trajectories with color changing from
blue to red as time elapses. One can see that the nanoparticle
actively tends to set the position along the x axis where the
binding force is the strongest.

Attraction force (a.u.)
5 w60

I
IN]
S

&
3
(I
o

300 200 -io0 O 100 200

x (nm) 00 Time (ms)

FIG. 5. The dynamics of the second nanoparticle motion. The
first nanoparticle is fixed at the origin. The color of the trajectory line
denotes the time elapsed since the beginning of motion. The arrows
show the force field: darker arrows indicate stronger optical force.
The color map at the background shows the force which attracts or
repulses the nanoparticle to/from the equilibrium positions at y = 0
and x = 3175 nm. Color represents the projection of the total force F
on the unit vector n pointing toward the nearest equilibrium position.
The intensity of the red color gives the strength of the nanoparticle
attraction, while that of the blue shows repulsion of the nanoparticle.
The parameters of computation are R = 15 nm, z = 25 nm, and ¢ =
3. The laser intensity is taken 5 x 10° W/m?, and the dimensionless
damping factor is y = 0.015, which corresponds to damping in the
vacuum with pressure 107® atm (see Appendix D for details of the
simulation method).

C. Stiffness of SPP binding

The important parameter, which characterizes the stabil-
ity of the equilibrium states, is the stiffness of the trap.
At the equilibrium positions, the total optical force is zero,
but when shifted from the stable positions the nanoparticles
undergo action of a restoring force, which is locally pro-
portional to the amplitude of the displacement F, = —«, Ax,
with the parameter k, characterizing the stiffness of the
system along the x direction. However, this approximation
of the restoring force applies only to the gradient compo-
nent of the optical force. Indeed, we consider the nanopar-
ticles significantly smaller than the wavelength, which re-
sults in low and nonresonant polarizabilities so that where
Im(esr) < Re(aesr), as Im(aerr) ~ (R®/A3), and R < A (see
Fig. 2). Thus, the radiation force, which is proportional to
the imaginary part of the polarizability, can be neglected (see
Appendix D).

The stiffness in the considered system strongly depends on
the mechanism of the nanoparticle interaction, and, as can
be seen from Fig. 3, it is much higher when the plasmon
interaction is enabled. We have plotted (see Fig. 6) the spectral
dependence of stiffness parameter «, calculated at the first
equilibrium position, labeled by point 1 in Fig. 3(a). To avoid
the dependence of the stiffness on the illumination intensity,
we have normalized it to the magnitude ko = Fy/R, which is
the stiffness of a system where the vacuum pressure force Fy
can be restored when the nanoparticle is displaced a distance
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4r z=15nm D. Conclusion
351 In this work, we consider transverse optical binding based

N
<))
T

o
T

Stiffness, norm.
N
T

|
340 360 380 400
Wavelength, nm

FIG. 6. The stiffness «, of the second equilibrium position in
units of ko = Fy/R as a function of the excitation wavelength. The
spectra are shown for different distances z from the nanoparticle
center to the surface. The nanoparticle radius R = 15 nm.

equal to its radius from its equilibrium position. One can
see that the stiffness has a strong resonant behavior, which
corresponds to the excitation of SPP modes at wavelengths
longer than 350 nm. With the increase of the distance from
nanoparticle center to the surface the stiffness rapidly drops,
as the coupling with the SPP mode decreases.

One can see from Fig. 6 that the spectral maximum of
stiffness depends on the height from the surface. This spectral
dependence can be better understood by means of Eq. (7). In
the case of neglible losses in the substrate, one can get a sim-
ple expression for the stiffness at the first stable equilibrium
point, (see Appendix C for more details):

2 Cksep)* ke | e |
k(%(l - 85)

~

Kx ~ ”lpxl

Yy(gq1)exp(—2lki-|z).  (8)

Here, Y>(q) is the cylindrical Webber function of the second
order [45], and ¢ is the first positive root of Y;(q;) = 0, the
cylindrical Webber function of the first order. Note that in the
regime of SPP excitation without ohmic losses the SPP wave
vector can be in a range from ky to 400 when 1 +&; — 0.
Then the expression given by Eq. (C11) goes to zero in
both limiting cases: k, — 0 as kspp — 0/00, which implies
that the stiffness reaches its maximum at some particular
wavelength. This wavelength can be defined for each given
distance over the substrate z. The maximal stiffness can be
achieved close to the SPP resonance when the SPP wave
vector is k ~ 6/z > ko. Then, the maximal stiffness at the nth
equilibrium position decreases with the distance to the sub-
strate as z© (see Eq. (C12) in Appendix C):

L(1\° 1
Kxn ™ |PX| - TYZ(‘]LH—])a )]
z) k§

where ¢,,+1 corresponds to the positive roots of Y} (g2,+1)=0.

There is a strong dependence of the trap stiffness on
the size of the nanoparticles radius and permittivities.
With the growth of the particles’ radius, the maximal value
of the normalized stiffness decreases. The details are given in
Appendix F.

on surface plasmon polariton interference. We show that two
nanoparticles placed in the vicinity of a plasmonic interface
can form a stable bound dimer with a binding length de-
fined by the SPP wavelength. This allows formation of the
dimers with interparticle distance significantly shorter than
the free-space wavelength, thus suppressing the diffraction
limit. The binding states are formed along the direction of
the incident field polarization, in contrast to photon binding,
where the stable bound states are formed perpendicular to
the polarization direction. The excitation of SPP modes also
enhances the amplitude of the binding forces, resulting in a
resonant enhancement of the trap stiffness.
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APPENDIX A: CALCULATION OF A BINDING FORCE

The force F,(r;) acting on the second nanoparticle is
calculated as

1

Fary) = 5Re[ Y puVE@)]. (A
The introduction of the effective polarizability parameters
significantly simplifies the formula for the electric field E(r)
induced by the dipole moments [see Eq. (3)]. By calculating
the field amplitude at the points of the dipoles E(r;) and
E(r,), one can get a system of linear equations on the dipole
moments:

~s ~s sz
p1 =) g E(r) =0 |:E0(r1) + iG(ru, rz)pz], (A2)

_ k3~
P2 =0 [Eo(rz) + S—OG(rz, n)p.], (A3)
0
. K2 -
@ oy (Ti, 0) = 05(60)[1 — ()2 Gy(r;, T, w)] ,
‘ o
i=1,2. (A4)

Solving this system, one may get
k2~
P =3} (Eo(l‘l) + s—"G(rl, ry)
0

k2 ~
X {aé,cff [Eo(rz) + ﬁG(I‘z, rl)pl] }>7 (AS)
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. k2 ~ —
P =)o [Eo(n) + 8—°G<r1, rz)a;.eﬂEo(m]
0

4
kO ~s

+ 051 effG(rl, r2)a\;effa(r27 r)p1, (A6)

The last expression in Eq. (A5) can be simplified even
further, if one renormalizes the effective polarizability tensor
with account for nanoparticle cross action:

~r ~ k2~
o] o (ri, @) = ai(w)[l — (@) —G(r;, 1i, @)
. 0

Ko A - .
—%aiG(ri, rj)oz}effG(rj, r,-):| , =12 j=2,1
(A7)
Here, the self-action Green’s function 6 s(r;, r;) con-

tains the scattered part only, whereas the cross-action part
G(rl, rj) = Go(r,, rj)+ G (r;, rj) includes both vacuum and
scattered parts, determining the cross interaction through vac-
uum and via substrate respectively. The final expression for
the dipole moment will be as follows:

e k2 _
Pi = O o [Eo(l‘i) + ;OG(I‘I', l‘j)a;,efon(l‘j)],

i=12j=2,1 (A8)

The case of normal plane-wave incidence on a planar
substrate, when the nanoparticles are located at the same
height above the surface (see Fig. | in the main text) is of a
particular interest. In this case, the external electric field Eg is
equal in the centers of both nanoparticles, and thus the dipole
moment has a very simple form:

P = afeffEO(ri)v (A9)

~ [~ s . . .
ocfeff = aifeff[l + gG(ri, rj)aj-’eff], i=1,2 j=2,1.
(A10)

The optical force component, then, can be calculated as

1
Fo(ry) = 2Re[ > Pzn(l‘z)axZEn(rz):|

n=x,y,z
Re{ Z p;n(rZ)[avszOn(rZ)
n=x,y,z

k2
+ =2 Z axé Gx,nm (I‘;, r2)‘”2m
& m=x,y.z

ks
- 8)(7Gnm s m . All
+2 E > Gum (T2, T1)p) ” (A1)

0 m=x,y,z
The y and z components can be calculated with the same
expression (A11) by substituting the partial derivative with 9,
and 9, respectively.

APPENDIX B: GREEN’S FUNCTION

The Green’s function tensor of two half—spaces with per-
mittivities &; (for z > 0) and &; (for z < 0) can be expressed
in cylindrical coordinates through [43] (for z > 0):

~ ik L
Gp,¢,2>0) = #/ M(s, p, ) exp(is.z)ds, (BI)
0

where k; is the wave vector in the upper space, s = k, /ko
and s;; = k;1/ko are the radial and z components of the
dimensionless wave vector normalized to the wave vector in
the free space, and Z = zky is dimensionless coordinate;

R Myx  NMyy My
M(s, p, ) = Myy  Myy My |,
My mgy mg

22

N
My = s*rsf(s, P, @) — 5578, P, ),
zl

s
My = s*rsg(s, 0, 9) = ss1rpf(s, p, @),
z1
]
my, = 2 Jo(sp)rp—, (B2)
Sz1
ry + s34 1,
My = My, = Mh(s, 0,9,
$8z1
My, = —My = —STpt(S, P, @),
my; = —Mmzy = —srpw(s, p, @),
where  the functions  f(s, p, ¢), g(s, p, @), h(s, p, @),

t(s, p, @), w(s, p, ) can be expressed:

fls,po@) =2 [sm (©)o(sp) + (p” ) cos(zw}

J
g5 p.g) = 2m [cos2(<p>fo<sp) - % cos(zw)],
h(s, p, ¢) = ws*D(sp) sin(2p), (B3)

t(s, p, ¢) = 2mwi sJi(sp)cos(g),
w(s, p, p) = 2mi sJi(sp) sin(p).

Here, J,,(z) is the first kind Bessel function of the order n.

APPENDIX C: ANALYTICAL EXPRESSION

Here, we analyze the x component of the optical force
acting on the nanoparticles when normal incident light is
polarized along the x axis. This is the case considered in
Fig. 3. According to Eq. (1), the expression for the force will
be as follows:

= ;RC(Z pi(r)*ain(rz)) (C1)

In order to get a simple analytical result showing all the key
features of the SPP-assisted force, we will take into account
that the effective &® tensor has diagonal domination, which
implies that otff- > aﬁ, i#j.

The expression in Eq. (C1) can be simplified:

F, = {Re(pld.Ey). (C2)
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The electrical field generated by the dipole at the point with radius vector r can be expressed through the Green’s function
E;(l’) = 477[((%Gs.xx(r, (07 01 Z))va
Then we have an expression for the lateral component of the optical force written in a very simple form:

Fy = 27k | po " Re[0, G xx(x, (0, 0, 2))] (C3)
The Green’s function is expressed through the integral
ik, [ o ai(p, P)
Goxe(6.3.9) = Gon(p. 6.0 = o5 | muslp, ) exp(isic2)ds,  me = s7:(5) == = ssicry(s)a(p. @),
0 1z
Ji(s Ji(s
ay =2m [sin(tﬁo)zfo(‘rp) + % COS(2¢0)], a =2n [COS(tbo)zJo(Sp) - l%) COS(2¢0)],

s =vV1 =52, 53, =+/g7 —s2. (C4)

Here, we use the same notation as in Appendix B. We are interested only in the component containing r, term as only it gives
rise to SPP response, and also we put ¢ = 0. Then,

iki [, . , Ji(sp)
Gyxx(p,¢,2) = glz/ m (p, s)exp(2is1.2)ds, m,, = —ssi;rp(s)ax(s, p), ay =2mw [Jo(sp) — lsip] (C5)
0
Next, we have
ik [ Ji(sp) A
Gsxx(py,20) =— — ss1.7(8)| Jo(sp) — exp(2isi;Z)ds. (C6)
4 Jo s0
With this, we need to compute 9,Gy yx:
J J J.
8.J0(s0) = kodpdo(sp) = —koshi(sp). 822D = gysa, T g 60D
sp (sp)
which gives us
ik o J(s
0xGsx(p,0,2) = —lko / xzs]zrp(s)[h (sp) — 2 '02)] exp(2is);Z)ds. (C7)
b4 0 (sp)

In order to compute the integral with the help of complex analysis, we first continue the integral bounds to —oo, 400 using
the identity

1 ik o0 HY(sp) _
Jo@) = s [H(@ — (~1'HO(=@)],  8:Gya(p,0.2) = —ko / s2s1rp() | H{V(sp) — —2—= | exp(2isy.Z) ds.
2 8 —00 (sp)
1(s)
(C8)
Now, using Cauchy theorem, we finally evaluate this integral:
ik k HV 3
3:Gyr(p.0,2) = ;—;koszesa(s))uzf = —Zlkomzsu [Hf”(sm - % exp(i31.2)Res(rp(s))ls=s,  (C9)

where Res(7,(s))|s=5 stands for residue, and § = +/e261/(&1 + &2) is dimensionless wave vector of SPP mode.
Finally, computing the explicit expression for the residue and substituting the obtained results into Eq. (C3), one can get

<7c>3(121~>2122-[ oy Hz‘”(fcx)] -
F, = 7| ps|’Red ——— = HP (kx) — —2—= | exp(2ik1.z) | .
Il : B |1 00—~ | expii)
Here, we use dimension variables denoting k = 5k, and k.| ., = 5.1..0ko. We can go even further, taking into account that
|H" (k)| < (k) / (kx)?):
k) (k1) ks, . B
F, ~ 7| px|2Re|:(2)(#Hlm(kx)exp(Ziklzz)]. (C10)
k0(8| — &)

The case of low losses is of special interest. Then, the final expression for the force can be reduced to
S () 1k P13, |

F.=m _— =
* = 7|pal (1 — )

Y, (k*r) exp(—Zszz),
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where Y;(g) is the cylindrical Webber function. By expanding
this expression around the zeros g, of the Webber function
Yi(q) = —Y2(g,)(q — gn), one can find the expression for the
stiffness at the nth equilibrium position along the x axis of the
system [see Fig. 3(a)]:

2 (k) 1Ky ks |
k(e — €2)

~

Kn 2 T | px| Ya(qon-1) exp(—2lki-[2). (CLD)
Note that in the regime of SPP excitation without ohmic losses
the SPP wave vector can be in the range from ky to +0o when
&1 + &, — 0. With that, the expression Eq. (C11) goes to zero
in both limiting cases,
Kk, —— 0,
k—0,00

which implies that the stiffness reaches its maximum at some
particular wavelength. This wavelength can be defined for
each given distance over substrate z. The maximal stiffness
can be achieved close to SPP resonance when SPP wave vec-
tor equals k ~ 3/z. Close to the frequency of SPP resonance
when k — oo, the SPP becomes highly localized close to
the interface |k,| > ko. Then, the maximal stiffness can be
expressed as

3\ 1
~ | pxl ( ) per ——Y2(q2n+1) exp(=3). (C12)

APPENDIX D: DYNAMICS SIMULATION

We write Newton’s law for the second particle,
d2
moa

where F, is given by Eq. (A1l). One can rewrite it as

kZ
t2 r, = ZReipzl |:Eo,~+ ?ZGs,ij(rZer)ij
0 .
j

—r =F,

k? A
+ -~ E Gij(rZ,rl)Plji|}s i,j=x,y2z (DI
0 =
j
where G = 60 + /G\S. In order to decrease the numerical error

in the numerical simulations, we apply the following natural
scaling:

r t ~ E = ~
E=—-, 1=—, E=—, G=4aG,
a T Ey
k=—ak, p=—L =%
4 ega’Ey 4 ega’

D2)

m
T - 72 .
2mweoaky

After such substitutions, we have

a2 [ e ~
= > Re{pziﬁ [Em +ATk Y Gi(6, £)Da;
i j

+A7k Y Gij(&. )P ,-] } (D3)
J

- — Total force
coo Gradient component

x-component of force F /F

100 150 200 250 300 350 400
x-coordinate (nm)

FIG. 7. The total force (blue solid line) and the conservative

(red circles) components of the optical force are shown for different

wavelengths. The parameters of the calculation are the same as in
Fig. 2 of the main text.

We also include the viscosity of the environment by adding
the damping factor y,

2
dr?

where F, is given by the right-hand side of Eq. (D3). Expres-
sion (D4) was a target for the numerical simulation. As a good
compromise between stability and computational complexity,
the Runge-Kutta method of fourth order was applied. Since
the motion along the z axis is fixed, we have plane sym-
metry, which simplifies the force function to F»(§,, §,) = F»

& — &)

d
=& =F.6) -y 7’3, (D4)

APPENDIX E: CONSERVATIVE VS NONCONSERVATIVE
FORCE COMPONENTS

Here, we illustrate the contributions of conservative and
nonconservative components of the optical force. The total
optical force can be described as F = %Re(&eff)V‘E()lz +
%Im(?x}ﬁ)lEOle(p, where ¢ is the phase of the field. The
first term corresponds to the gradient (conservative) force,
which is proportional to a real part of particles’ polarizability,
while the second term corresponds to the scattering (noncon-
servative) force and is proportional to an imaginary part. By
excluding the imaginary part of polarizability one can obtain
the conservative force only [43,46,47]. The result is shown
in Fig. 7. One can see that for the considered set of the
parameters the conservative force strongly dominates over the
nonconservative one, which is the difference between the total
force and the gradient one.

APPENDIX F: STIFFNESS OF THE OPTICAL TRAP FOR
DIFFERENT PARTICLES’ PARAMETERS

The stiffness of the optical binding can be significantly
influenced by the parameters of bounded particles. As can
be seen from Eqgs. (C11) and (2), the dielectric permittivity
and the radius of the particles can change the value of the
polarizability and stiffness. This is illustrated in Fig. 8(a),
where the spectral stiffness of the trap is shown for different
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FIG. 8. (a) The stiffness «, of the second equilibrium position in units of ko = Fy/R as a function of the excitation wavelength. The spectra
are shown for different radiuses R of the nanoparticles. The distance from the surface is zero. (b) The stiffness spectra for nanoparticles made

of different materials and R = 15 nm.

nanoparticle sizes. We hold the distance between the surface
of the particle and the metal interface constant, while varying
the nanoparticle size as shown in the inset. The nanoparticle is
described by a point dipole placed in the center of the sphere;
thus, increasing the radius effectively increases the dis-
tance between the dipole and the surface, making the coupling
between the dipole and SPP mode weaker. This provides the
decrease of the stiffness with the nanoparticle radius increase.
Actually, one may note that the absolute value of the stiffness
will be increased in the end, as the normalization constant
increases with the nanoparticle radius «y ~ R> due to the
increase of polarizability of the particle. Similar behavior
was observed in case of single particle near plasmonic sub-
strate [33].

The case of nonidentical nanoparticles is of a special inter-
est. We analyzed the stiffness of binding for two nanoparticles
of different permittivities. The results are shown in Fig. 8(b),
where the spectra of the stiffness parameter are shown for
three values of the permittivities. We need to note that in the
case of different nanoparticles the system loses symmetry and
a constant force acting on the nanoparticle center of mass
may appear. To avoid speculating on that, we fix the position
of the first nanoparticle at the origin. Lower permittivity
results in decrease of maximal stiffness as the intensity of
excited SPPs is reduced due to the lower dipole moment, and
coupling between the nanoparticles gets weaker. In contrast,
the increase of the permittivity gives an increase of binding
stiffness.
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ABSTRACT: In this paper, we study a stable optomechanical
system based on a nanoparticle chain coupled to a waveguide
mode. Under the plane wave excitation, the nanoparticles form a
stable self-organized periodic array along the waveguide axis
through the transverse binding effect. We show that, owing to the
long-range interaction between the nanoparticles, the trapping
potential for each nanoparticle in the chain increases linearly with
the system size, making the formation of long chains more
favorable. We show that, for an optical nanofiber platform, the
binding energy for two nanoparticles is in the range of 9—13 kT,
reaching the value of 110 kT when the chain size is increased to
20 nanoparticles. We also suggest the geometry of the two
counter-propagating plane waves excitation, which will allow

trapping the nanoparticles close to the optical nanofiber, providing efficient interaction between the nanoparticles and the

nanofiber.

KEYWORDS: optical binding, self-assembly, one-dimensional interaction, nanofiber, optical force

he optical manipulation provides unique opportunities for

controlling micro- and nanoobjects, as well as single atoms,
at the remarkable level of precision. This field has passed
through ages starting from the early astronomical studies by I.
Keppler, to the formulation of electrodynamical grounds in
works of J.C. Maxwell," and later, experimental verification by P.
N. Lebedev.” The modern age of optical forces and
manipulation has started after early works by A. Ashkin,’®
where he proposed the basic concept of optical manipulation of
microobjects, which later led to a revolution in atomic cooling
and trapping. " Today, the standard methods of optomechan-
ical control with spatial modulation of electromagnetic field
intensity® allows one to manipulate single biomolecules” and
sort biological cells.” Besides, it can be precise enou§h to
visualize the spin to orbital light momentum conversion."” The
optical manipulation provides a bridge between classical and
quantum physics on the way of cooling of trapped microscale
objects down to the temperature of quantized mechanical
motion.'"'” On the other hand, the quantum physics has already
gained a lot due to progress in optical manipulation allowing to
trap and study single atoms'> or two-dimensional'* and three-
dimensional>'® atomic lattice providing a reliable platform for
studying many-body quantum physics.

The majority of the optical trapping and manipulation
methods are based on shaping the light field intensity with
optical systems such as spatial light modulator which provides
formation of the dipole trapping potential. This approach has
been effectively used for manipulation of objects in different
environment such as air, water, and vacuum. However, an
alternative method of large ensembles manipulation and
ordering bases on self-assembly approach.'” The field intensity

v ACS Publications  ©2019 American Chemical Society 114

pattern forms due to rescattering of the optical fields by the
objects resulting in effective dipole—dipole interactions and
consequent structuring of large ensembles. A typical example of
such effect is transverse optical binding'”'’ where the
nanoparticle can form bounded states under homogeneous
illumination. Though the optical dipole—dipole interactions are
quite weak, they can be enhanced and modified with auxiliary
photonic structures™ such as metamaterials*"*> and meta-
surfaces,”® plasmonic structures,”*** and photonic crystall
hollow fibers,*® as well as dielectric nanofibers.”” The latter
one represents a versatile platform®® for studying light
interaction with nanoparticles®”** and atoms®' ~** placed close
to its surface. Utilization of a single mode long-range dipole—
dipole interaction, provided by waveguiding systems, has already
been suggested for self-organization of atoms and nanoparticles
in waveguiding systems.”>****

We propose a particular geometry of the nanoparticle chain
placed close to the nanofiber and illuminated by a plane wave
propagating in the free space perpendicularly to the fiber axis, as
it is shown in Figure 1. Such geometry allows to take the
advantage of the transverse optical binding effect.'”*® The
binding occurs due to the interference of the fields scattered by
the nanoparticles, and it has been applied for self-organization of
nanoparticle ensembles under the external laser illumina-
tion,”” ™ including the interference of surface plasmon
polariton modes.*” Recently, a transverse binding has been
observed in a large ensemble of dielectric submicron spheres*!
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Figure 1. Proposed system configuration, which allows achieving
nanoparticles binding close to the nanofiber under transversal plane
illumination.

. 2, . . . .
and nanowires*”*® with the strong collective interactions

through the free-space coupling.

In our work, the nanofiber modes allow for accumulation of
long-range interactions between distant nanoparticles, which
results in the increasing particles stiffness with the growth of the
nanoparticle chain length. Moreover, in the particular geometry
of nanofiber binding, we also suggest a method for trapping the
nanoparticles in the radial direction close to the fiber surface by
using two counter propagating plane waves and taking the
advantage of nanofiber lensing effect,” which is based on the
refraction of the transverse pump and a sharp focal spot on the
other side of the nanofiber. Thus, we suggest the geometry of the
system that allows for immediate testing of the reported effect
within the particular experimental setup with the use of an
optical nanofiber.

B RESULTS AND DISCUSSIONS

Binding of Nanoparticles with a Single-Mode Nano-
fiber. The force acting on a single dipole particle and averaged
over the period of the incident wave is given by e

F= %Z' REH*VEloc,ir where the sum is taken over the

Cartesian components of the dipole moment p and local field
E|... The latter one contains the incident plane wave field E;,
the field scattered by the nanofiber E, and the field scattered by
other nanoparticles E,. The dipole moment of the n-th particle
then is defined through the local field strength Pi = ®Ei(r;) =
ao(Eo(r;) + E,(r;)), where we defined E, = E;,. + E as the
external field, and ay is the exact dipole polarizability given by
the Mie theory"” (see Supporting Information, sec. I). The
dipole field E, is the field generated by other nanoparticles and
can be expressed via Green’s function formalism. For instance,
the field generated by the i-th particle at the position of j-th
particle has the form E, ;= =ki/e,G(r, 1; )p}, where G = Gg + G is
the total Green’s tensor that consists of two parts: free-space G0
and scattered G, which appears due to the presence of the
nanofiber (see Supporting Information, sec. II). Here k is the
vacuum wavenumber and & is the vacuum permittivity.

The size of nanofiber can be chosen in such a way that it
supports only a single guided HE;; mode*® (SM-single mode
regime). In this case, one can expect almost periodical behavior
in the interaction strength between the nanoparticles with the
interparticle distance Az. Indeed, in Figure 2a, the optical force
between two nanoparticles positioned close to the nanofiber is
shown as a function of the distance between them. The
contributions of vacuum and nanofiber interaction channels are
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Figure 2. (a) Longitudinal optical force F, acting on one of two particles
as a function of distance along the fiber axis Az for a single mode (SM)
regime (see Figure 1). Red solid line shows optical force considering
interaction through both fiber and free space (G; + Gy), green dashed
line shows only interaction through the fiber (G,) and blue dash-and-
dot line shows only free space interaction (G,). (b) First three branches
of the solution for the average distance between the two closest particles
q = Azf with respect to the number of particles in a chain N. (c)
Trapping parameter, which is the fraction of effective potential depth of
the trap and thermal energy of the host media kT, and normalized
stiffness of the trap with respect to the number of particles in a chain N.

extracted by proper choosing the free-space éo or scattered és
part of Green’s function. One can see that the force has a well-
pronounced periodic character, which allows forming a stable
configuration stable system configuration consisting of arbitrary
number of particles.*>*’ Calculation of the optical force between
two particles has been also performed using a full numerical
model in COMSOL Multiphysics and good agreement with the
analytical dipole model was obtained (see Supporting
Information, sec. VI, for the details).

In a single mode regime the Green’s function of the waveguide

can be reduced to G 1) = g 50, 05 0, @ )e'ﬁmz' and

G¥(x; r) is purely imaginary for any waveguiding mode.*® Here,
we neglect the contribution of leaky and evanescent modes* as
they decay significantly at long distances. In the field of a plane
wave incident normally to the nanofiber and polarized along the
z-axis (TM polarized), as shown in Figure 1, the dipole moments
will be aligned preferably along the nanofiber axis, thus, having a
dominant z-component of the dipole moment p; & np; =
n,0..E, (see Supporting Information, sec. I1I, for the detalls)
TM excitation allows to suppress the vacuum interaction
channel as the dipole emission along the nanofiber axis is weak.
The force acting on a particle with number n can be estimated as

FSM = I kOﬁI (gzz) X Z cos(flz, — I)sign(j —n)

j#n

1
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Here, N is the total number of particles in the chain, and we

introduced the coupling constant g,.(p) = g:fz(p, @; p, ©)/ky,
which depends only on the radial distance to the nanoparticle
center in the geometry shown in Figure 1. The system within the
considered approximations has a stable equidistant config-
uration where separation between the neighboring nanoparticles
is constant.*” In order to find it, one needs also to estimate the
stiffness parameter k, which determines the strength of the
restoring force F, = —k(z — z,) acting on a single particle close to
the equilibrium position z, This approach is valid as
nonconservative part of the binding optical force is negligible.
The stable configuration of nanoparticles is observed if the
separation distance between the neighboring nanoparticles
satisfies two conditions: (i) F,, Z/#n cos(gqln —jl)sign(j —n) =
0 and (i) k, & — X%, sin(qln — jl) > 0 for all particles. Here q =
PAz is the d1stance parameter and Az is the distance between
the neighboring nanoparticles. After taking the sum in eq 1, the
first condition provides us with the expression for the
equidistant solution Nq/2 = #/2 + x(N — ), where / is an
integer.

The stiffness of the n-th trap &, =
particles can be estimated as follows:

KM= Ipl kOﬁ —Im(g, ) 2 sin(gln — jl)

j#n

—0,,F, in the chain of N

@)

and the summation is taken in order to account for the
interaction with all nanoparticles in the chain. The stability
condition requires that k, should be positive for any particle in
the chain. The analytical solution of the algebraic system shows
that there exists a set of stable configurations. Separation
distance q is 27 periodic in a single mode regime, hence, we
analyze only fundamental solution which is 0 < g < 27z. The
interparticle distance g, which corresponds to / = 1, has the
distance parameter™ q; = 2 — 7/N (see blue line in Figure 2b).
Moreover, the stiffness parameter &, = k(N) is the same for any
particle in the chain and increases with the growth of total
number of particles in the chain as k(N) ~ cot(z/2N), which for
N> 1 provides the linear increase of the stiffness k(N) ~ N, as
shown in Figure 2c. Other stable equidistant configurations
correspond to other values of / and have a larger distance
parameterq = 2z — Iz/N,l =1, 2, ..and] < N/2, as shown
in Figure 2b for / = 2, 3, 4. The «, values for these solutions
also demonstrate the linear growth with N, however, with a
smaller slope than for / = 1 (see Figure 2c).

Stability of the Trapping. Increase of the stiffness of each
nanoparticle’s trap basically leads to increased stability of the
chain, which can be expressed in terms of the trapping parameter
Y« = Uy/kT, where U,, is the trapping potential separating the
stable and unstable positions of each particle in the chain. It can
be expressed as U, (N) = k(N)A(r/f)*/2, where 7/ is the half
distance between particles in the limit N>> 1 and for/ = 1. The
trapping potential for the fundamental configuration, with/ = 1,
then can be estimated in the single mode approximation as
follows:

}/;M( )= I (gw'g)cot( N) «N for N>1

()

This expression is one of the main results of the paper,
showing that the stability of the considered system increases
linearly with the growth of nanoparticle number in the chain.
This basically means that the self-ordering of nanoparticles in
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the longer chain will be more preferential and, in fact, is only
limited by the width of the exciting laser beam and light intensity
as 7, ~ Ipl* ~ 1Ey%.

In order to support our analytical results and estimate the
achievable values of trapping potential, we used the full model,
describing interacting dielectric nanoparticles placed close to a
nanofiber. We took into account the plane wave rescattering on
the nanofiber, the nanoparticles self-polarization effect due to
the nanofiber presence, as well nanoparticle cross-polarization
effects For the set of parameters close to the experimental
ones®' and summarized in Table 1, the calculations give us the

Table 1. Proposed Parameters of the System

parameter symbol SM MM
fiber radius R¢ 300 nm 1000 nm
wavelength Ao 1064 nm
particle radius R, 150 nm
V-number \%4 1.860 6.201
distance to the fiber d 4S5 nm 50 nm
pump power P 40 mW/pum?*
pump field magnitude E, 245 % 10° V/m
permittivity of media fiber particle

en=1 £r=145% £ =25

estimation of the binding parameter for two nanoparticles y(2)
& 9 at room temperature, which is a promising value for a
potential experimental applications. Moreover, according to
Figure 2 in the chain consisting of N = 20 nanoparticles in the
fundamental configuration one can expect y(20) ~ 110, that is,
the trapping potential can be 2 orders of magnitude higher than
kT.

Nanoparticle Binding in a Multimode Regime. With the
increase of nanofiber radius the number of the waveguide modes
starts to rapidly increase which significantly changes the picture
of nanoparticles interaction. The coupling constants of each
mode are depicted in Figure 3a. One can see that the higher
modes give the bigger contribution to the coupling constant as
their field penetration outside the waveguide is stronger. The
simultaneous excitation of different modes provides aperiodic
interaction potential between two particles. Our computational
model allows for a full modeling of multimode (MM)
interaction between the nanoparticles, and the computed optical
binding force is shown in Figure 3b for the parameters specified
in Table 1. Our estimations of the trapping parameter for MM
regime give the value of y}/™(2) ~ 13 for the room temperature,
which is higher than in a single mode regime due to larger
number of modes and their stronger field penetration outside
the waveguide.”

Despite the aperiodic interaction, one still can expect the
effect of self-induced organization of nanoparticles via transverse
binding. In the MM regime, eq 2 will gain another sum over
many interaction channels corresponding to different waveguide
modes:

kMM = |2 ko X Zﬂ Im{gzz}lmz
p=1

i)z, —z]

)

where f3, are the propagation constants of the

= ﬂHE“r ﬂTMU,;

allowed modes (see the dispersion curve in Figure 1 in
Supporting Information), and M defines the number of the
allowed waveguide modes. The stable configuration of the

DOI: 10.1021/acsphotonics.9b01157
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Figure 3. (a) Amplitude of the coupling constant g, for different modes
in single mode and multimode regimes for three different fiber radii: R¢
=300, 500, and 1000 nm. (b) Longitudinal optical force F, acting on
one of the particles as a function of distance between the particles along
the fiber axis Az for multimode regime R; = 1000 nm. (c) The trapping
parameter of nanoparticles in a stable equidistant state as a function of
the number of particles in multimode regime.

nanoparticle chain can be found through the maximization of eq
4. We applied a numerical optimization algorithm with proper
constrains (k, > 0, F, . = 0 for any n) to identify the nanoparticles
configuration and the stiffness of the trap. The optimization
procedure started by a configuration of ordered chain separated
with the distance Azf,., = 47 — /N, where f,, is the
propagation constant corresponding to the dominant mode
among all the excited ones (HE,; and HE,, for R; = 500 and
1000 nm, respectively). The final result after the optimization
procedure is the trapping parameter (y) averaged over particles
presented in Figure 3c. One can see that the system
demonstrates the stable configuration, which averaged trapping
parameter increases linearly with the size N similar to the SM
case.

Radial and Azimuthal Binding of Nanoparticles.
Finally, it is worth speculating about the potential mechanisms
of trapping of the nanoparticles close to the nanofiber surface.
‘We have not yet discussed the remaining two degrees of freedom
of a nanoparticle: radial and azimuthal. It is known that a particle
can easily experience orbital motion around the nanofiber,** and
we need to embrace this motion as well. Illumination of the
nanofiber by a plane wave forms an interference pattern in the
vicinity of the nanofiber,”* which can act as a trapping potential
for nanoparticles. However, a single beam illumination also
provides a strong optical pressure force acting on nanoparticles,
which prevents effective trapping in the radial direction. We
suggest a geometry with two counter propagating interfering
beams fully compensating the optical pressure force and
enabling strong binding of nanoparticles close to the nanofiber

17

surface. The formed potential trap provides both radial and
azimuthal stability of the nanoparticles. In Figure 4a, the field

(a) 10y, I(xy), (b) Trapping potential
5 100 A\ —
< I} -—- SM
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Figure 4. (a) Normalized intensity of the total electric field for two
different fiber radii: R; = 300 and 1000 nm. (b) Potential energy of the
transverse trap along the x axis normalized by kT. (c) Total radial force
as a function of two parameters: the fiber radius R¢and the gap between
fiber surface and particle’s surface d. Two horizontal dashed black lines
correspond to single mode and multimode fiber radii in Table 1. Inset:
the force decomposition into optical and van der Waals force. The
equilibrium distances for single mode and multimode regimes are d*™ =
45 nm and @™ = 50 nm.

intensity distribution normalized by the intensity of the plane
wave is shown around the SM and MM nanofibers providing
stability of nanoparticles in the trap in the transverse direction
along the s-axis. The trapping parameter cross section is depicted
in Figure 4b, demonstrating the values of 50 and 100 for a SM
and MM nanofiber, respectively.

The radial stability of the particles is studied in Figure 4c,
where the radial force acting on the particle is shown as a
function of the fiber-particle gap d and fiber radius R;. Total
radial force also includes the contribution from the van der
Waals attractive force™ F*4W, along with the driving force Fiv.
The white regions in the 2D map correspond to the regions of
zero optical force and, thus, the regions of radially stable
configurations where the force changes sign from positive to
negative with the increase of the gap. The two dashed lines
denote the SM and MM nanofiber radii. In Figure 4c, inset, the
cross section of the total radial force is shown for SM regime,
demonstrating that a stable point at the gap distance of 45 nm
can be achieved. Finally, one should note that by adding a phase
difference between the up- and down-propagating interfering
beams one can gradually modify the radial trapping potential
and finely tune the position of the radially stable points (see
Supporting Information, sec. V).
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B CONCLUSION

In this work, we propose that optomechanical systems coupled
through a waveguide mode can demonstrate stable config-
urations, which stability will be increased with growth of the
particle numbers in the system. This counterintuitive result is
provided by a one-dimensional character of the interaction,
providing that under a stochastic self-assembly process, the
formation of longer chains will be preferable to the appearance
of shorter ones. We suggest the experimental geometry of a
nanoparticle chain located close to an optical nanofiber, which
provides the trapping potential of 9—13 kT for two dipole
nanoparticles at room temperature conditions, reaching the
value of 110 kT for a 20 nanoparticles length chain. We also
propose an excitation geometry based on two counter-
propagating beams, in which one can achieve stable radial and
azimuthal trapping locating the nanoparticles chain close to
nanofiber, thus, making the proposed effect potentially
observable in the experiment. Finally, the result of our paper
can be extended to other one-dimensional systems with long-
range interaction where the stability of the system will grow with
size.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsphotonics.9b01157.

Additional details about a connection between polar-
izability and Mie theory, technical details about fiber
Green’s tensor, the general case of the effective polar-
izability, fiber dispersion to illustrate different numbers of
modes, and a theoretical proposal of the two-beam radial
trapping by phase tunning. Last section is devoted to the
question of the validity of a dipole approximation
supported by the full numerical simulations (PDF)
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