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INTRODUCTION
For decades, the main interest of the nanophotonics community was cap-

tured by plasmonic structures due to their exceptional ability to enhance the elec-
tromagnetic fields at the subwavelength scale [1, 2, 3]. However, the significant
absorption commonly observed in noble metals due to their free electron response
creates many obstacles, limiting the applicability of photonic devices.

Recently, all-dielectric high-index nanoresonators have gained a lot of at-
tention, providing tools for efficient control of the light-matter interaction [4, 5,
6]. In contrast to their plasmonic counterparts, dielectric nanoresonators exhibit
minimal absorption due to the absence of free electrons. At the same time, high-
index structures allow for enhancing and control of the electromagnetic fields at
the nanoscale. Moreover, the quality factor of such structures is not as affected by
the non-radiative losses and is mostly limited by radiative damping.

Another fascinating phenomenon which occurs in dielectric structures is
their strong magnetic response, which is negligible in metallic structures because
of the non-penetration of the electromagnetic field inside the metal. In accordance
with the Mie theory [7, 8], both metallic and dielectric spheres can exhibit strong
scattering resonances. However, the magnetic multipoles can be excited in the
plasmonic structures only when the shape of the resonator is changed in order to
enable the formation of the circling current inside. At the same time, the dielec-
tric resonators of different shapes possess both magnetic and electric low-order
multipole responses of the same strength, which was shown both theoretically and
experimentally [9, 10, 11, 12]. Furthermore, the resonant properties of the electro-
magnetic response of the dielectric particles can be controlled by their shape, size
and material. The condition for the excitation of the multipoles of the lowest order
imposes the following limitation on the size of the nanoresonator: d ≈ λ/n, where
d is the characteristic size of the nanoresonator, λ is the incident wavelength so that
the wavelength shrunk by the refractive index n is comparable to the particle’s size.

The interference between magnetic and electric types of multipoles in the
dielectric structures provides foundations for a variety of exciting effects such
as zero back-scattering (Kerker effect) when amplitudes of the electric and mag-
netic dipoles are equal to each other. This effect could be implemented to avoid
backscattering losses, which is essential for efficient waveguiding [13]. Moreover,
one could derive parameters for which the front scattering is also almost zero [14,
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15]. Recently, it was shown that due to the presence of both magnetic and electric
dipole moments in the single constituent of the chains of the nanoresonators we
can achieve unique waveguiding properties such as low transmission losses and
low-loss redirection of light [16].

As was already mentioned, the Q-factors of the dielectric nanoresonators
are usually bigger than that of the metallic ones, providing one of the key features
of the all-dielectric structures to store the energy for a long time enhancing the
near-fields [17]. However, the Q of the single dielectric resonator, which size is
compared to the wavelength, predicted by the Mie theory is around 10. One could
increase the quality factor of the nanoresonator by extending its sizes and achieving
the excitation of whispering gallery modes [17, 18]. Moreover, providing certain
conditions, one could excite supercavity modes, which for silicon resonators could
have the Q of the order of 200 [19]. However, combining the dielectric resonators
into different systems can result in higher numbers of the quality factor, which
can find applications in sensing, lasing, and nonlinear photonics [20, 21, 22]. One
way to achieve high Q-factors is by implementing the physics of the symmetry-
protected bound states in the continuum (BIC) for the arrays of dielectric resonators
[23, 24, 25]. The excitation of such a state is possible if the symmetry of the unitary
cell of the array is broken and the state is turned into the quasi-BIC with large but
finite Q [26, 27, 28]. The drawback of this approach is that all the considerations
about BICs are made assuming the infinite size of the nanostructures in at least one
dimension. However, in reality, we are able to work only with finite-sized systems,
which impose new channels of losses lowering the values of theQ-factors [29, 30].
In this work, we will focus on a different way to achieve long storage of the energy
in the systems, which basis lies in the excitation of collective modes in the finite
chains of dielectric resonators of low-order Mie-modes.

An interesting example of the high-Q collective modes in the finite chains
of oscillators is the band-edge mode, which frequency is the closest one to the fre-
quency of the monotonic dispersion curve at the edge of Brillouin zone qa ≈ π,
where q is the Bloch wavenumber and a is the chain period, as it is shown in Fig. 1
a). Such states have been considered in photonic crystals [31], and already found
their applications in lasing and sensing [30, 32, 33, 34]. The Q-factors for such
modes are relatively high because in the finite chain, at such frequencies, the dif-
ference in the phases of the fields in the neighbour resonators tends to π. This
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phenomenon results in destructive interference between the waves scattered by
individual resonators, causing a significant reduction in radiation [35, 36]. The
asymptotic behaviour of the Q-factors in the finite electric dipole chain for the
band-edge modes is shown in Fig. 1b) by the blue dashed line. One can see that
Q-factors of suchmode are scaling asN 3 [37, 38]. It was previously shown that for
the dispersion relation ω−ω0 ∝ (q−q0)

a, the quality factorQ scales asNa+1 [39].
For the monotonic dispersion, only even powers contribute to the dispersion rela-
tion near the edge of the Brillouin zone, hence, ω−ω0 = c2(q−q0)

2+.... Therefore,
the third power in the Q-factor asymptotic is justified.

Fr
eq

ue
nc

y

Wavenumber, qa

High-Q state

Band-edge
mode

+

a) b)

π

Figure 1 – a) The solution of the dispersion equation for the infinite chain of the
electric dipoles representing the chain of Mie-resonant nanoparticles (insert). The

inflection point on the dispersion curve triggers interference between the
band-edge mode and another standing mode in a finite array. This interaction
leads to the formation of a highly localized state characterized by a high-quality
factor. b) The dependence of the Q-factor on the number of particles N for three
different periods: a = 0.238λ, 0.239λ, 0.240λ, the maximal values for which are
achieved for different numbers of particles N . The brown dashed line shows the
asymptotic of the Q-factors of “high-Q” band-edge modes. The blue dashed
curve corresponds to the asymptotic of the Q on N for the regular band-edge

mode. The figure is reproduced from ref. [36]

The typical periods of chains of particles for which the band-edge modes
can be realized are around 0.35λ [36]. However, if one starts to shrink the chain
period, at some point, the dispersion will bend as it is shown in Fig. 1a). One can
notice that due to the presence of the inflection point in the dispersion curve for
the infinite chain, the finite chain with the same parameters supports two modes
with very close frequencies, which can interact with each other constructively or
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destructively via the radiation continuum. The destructive interference leads to the
increase of the Q-factor of one of the two modes. The Q-factors of such “high-
Q” band edge mode asymptotically scale as Nα, α ≈ 7, as shown in Fig. 1b)
by the brown dashed line [36]. Note that the dipoles in the considered chain are
perpendicular to the axis of the chain. For the case of the dipoles oriented along the
axis, the coupling constant would not have a far-field term proportional to ∝ 1/r,
and, hence, the collective interactions would be weaker, and we would not have
the same effects [35].

It is important to stress that the periods of a chain of dipoles, for which the
dispersion with inflection point occurs, are around 0.24λ. However, as discussed
above, for the dielectric structure with Mie-type resonances, the condition for the
appearance of the lowest order multipole resonances (such as a dipole resonance) is
d ≈ λ/n. The typical value of the refractive index in optics is around 3 [1], which
means that the minimal size of the realistic dielectric nanoresonator is around 0.3λ.
Moreover, the value of the period in the structures also includes the non-zero value
of the gap between resonators, which makes the period of the chain of the resonant
dielectric particles a > 0.3λ. However, as we saw above, for such periods in
the pure electric dipole approximation, the dispersion is monotonic, and, hence,
we will be able to achieve only Q ∝ N 3. This means that we cannot predict the
behaviour of the realistic resonators by using the existing model.

Using the previous discussion, we can formulate the goal of this thesis. In
this work, we will construct the dipole model, with which we will be able to in-
vestigate the formation of the “high-Q” band-edge modes in the realistic chains of
dielectric resonators. The model will include simultaneous electric and magnetic
dipole responses of resonators, and we will analyze how the radiative losses of the
chain depend on the interaction between magnetic and electric dipoles. Within this
goal, we can formulate the following tasks.

In the first chapter, we derive the system of equations describing the infi-
nite chain of coupled magnetic and electric dipoles both perpendicular to the axis
of the chain and to each other (since only in this configuration magnetic and elec-
tric dipoles will interact with each other). We will analyze how the solutions, i.e.,
the dispersion branches, of such a system depend on the ratio between the reso-
nant frequencies of magnetic and electric dipoles of a single particle. Moreover,
we will compare the results with the dispersion branches of the chains of solely
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magnetic or electric dipoles. Furthermore, we will approximate the electromag-
netic polarizabilities, which will be embedded into the dispersion equation, with
analytical functions. We will find the parameters for which one of the dispersion
branches of the chain will have an inflection point. We will define the maximal
values of the periods for which the bend dispersion occurs for each ratio of the fre-
quencies. Using the obtained knowledge about the properties of the infinite chain,
in the second chapter, we will solve the eigenproblem for the finite chains, and
evaluate the dependence of the highestQ-factor fromN , whereN is the number of
particles in the chain. We will show that, by accounting for the interaction between
magnetic and electric dipoles in the chain, we can obtain the model with which it is
possible to predict the radiative properties of the realistic chains of nanoresonators.
To solidify our results, they will be compared with the full-wave simulations.
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1 Theoretical description of the infinite chain of nanoresonators with
simultaneous magnetic and electric dipolar responses
In this chapter, we describe the formation of “high-Q” band-edge modes

in infinite chains of dielectric resonators with simultaneous electric and magnetic
dipole responses.

1.1 Green’s function
First of all, let us briefly recall Green’s function formalism in order to con-

nect the electric and magnetic fields generated by point dipole sources with their
dipole moments. Note that all the following considerations are performed for the
free space. To define the dyadic Green’s function, we consider the electromagnetic
wave equation [40, 41]:

∇×∇× E− k20E = iωµ0j, (1)

where k0 is the wave vector of the free space, ω is the corresponding wave number,
µ0 is the vacuum permeability, j is electric current density. The dyadic Green’s
tensor is a solution to the wave equation with a source distribution located at r′:

∇×∇× Ĝ (r, r′)− k20Ĝ (r, r′) = iδ (r− r′) , (2)

where Ĝ (r, r′) is the dyadic Green’s tensor, δ (r− r′) is the delta function. Green’s
tensor has rank two because it connects the field vector with the current vector. The
solution of equation (2) is given Green’s tensor for free space:

Ĝ (r, r′) R=r−r′
= Ĝ(R) =

eik0R

4πR

[(
1 +

ik0R− 1

k20R
2

)
Î+

3− 3ik0R− k20R
2

k20R
2

R⊗ R
R2

]
,

(3)

where Î is 3×3 identity matrix,R⊗R is a tensor, which in the Cartesian coordinate
system can be expressed as:

R⊗ R =

 xx xy xz

yx yy yz

zx zy zz

 . (4)
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In the case of a point electric dipole source, the current density j can be
expressed through the electric dipole moment p as:

j(r) = −iωpδ (r− r′) . (5)

Hence, the electric field of an electric dipole moment p is:

E(r) = ω2µ0Ĝ (r, r′) p =
k20
ε0
Ĝ (r, r′) p. (6)

The magnetic field of the dipole moment can be found using Maxwell’s equation
iωµ0H = ∇× E:

H = −iωĜHE (r, r′) p = −ikcĜHE (r, r′) p, (7)

ĜHE (r, r′) = ∇× Ĝ (r, r′) =
eik0R

4πR

(R× Î)
R2

(ik0R− 1), (8)

where c is the speed of light in a vacuum, and the tensor is equal to

R× Î =

 0 −z y

z 0 −x

−y x 0

 (9)

Using the electromagnetic dual concept and equations (6),(7), one can also obtain
electric and magnetic fields of the magnetic dipole momentm:

E(r) = −i
k

ε0
ĜHE (r, r′)

(m
c

)
, (10)

H(r) = k20Ĝ (r, r′)m. (11)

1.2 Equation describing eigensolutions of the chain of coupled dipoles
In this section, we will derive a dispersion equation that describes collective

oscillations in chains of nanoresonators with simultaneous magnetic and electric
dipolar responses.

In our case, as building blocks of the system, we consider dielectric particles,
which can be represented as the composition of magnetic and electric point dipoles
perpendicular to the axes of the chain. The magnetic and electric dipolar responses

15



of a single resonator can be represented in the following way [10, 42]:

p = α̂EEloc (r′)

m = α̂HHloc (r′) ,
(12)

α̂E, α̂H are the second-rank polarizability tensors,Eloc andHloc are the local electric
and magnetic fields at the point of the dipole r′. In this work, the particles that we
consider possess inversion symmetry, therefore, the bianisotropic response is not
taken into account, which means that magnetic and electric dipoles do not interact
with each other within a single nanoresonator [43]. It is also important to note that
equation (12) is written for relatively small particles neglecting non-local effects,
i.e. excluding all orders of the field derivatives in the right part of (12) [42, 44].

When we consider the system consisting of a single nanoresonator then Eloc

and Hloc are equal to the incident fields. However, if we consider the system of
more than one nanoresonator it is also crucial to take into account the electric and
magnetic fields created by all other particles in the system:

Eloc (r′) = Einc (r′) + EED (r′) + EMD (r′)

Hloc (r′) = Hinc (r′) +HED (r′) +HMD (r′) ,
(13)

where EED,EMD are the electric fields calculated at the point of the dipole created
by other electric and magnetic dipoles in the chain respectively, HED,HMD are
the magnetic fields calculated at the point of the dipole created by other electric
and magnetic dipoles. To describe the interaction between dipoles in any system
suspended in a homogeneous nonmagnetic medium, one can use Green’s dyadic
tensor (see section 1.1), which represents the electric and magnetic fields created
due to a localized source distribution in a medium, such as a dipole. This way,
the electric fields produced by a chain of the magnetic and electric dipoles at the
position of the j-th nanoresonator are equal to [10]:

EED (rj) =
k20
ε0

∑
l ̸=j

Ĝ (rj, rl) pl, (14)

EMD (rj) =
ik0
cε0

∑
l ̸=j

ĜHE (rj, rl)ml, (15)
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HMD (rj) = k20
∑
l ̸=j

Ĝ (rj, rl)ml, (16)

HED (rj) = −ik0c
∑
l ̸=j

ĜHE (rj, rl) pl. (17)

In our case, we assume the chain is oriented along the x-axis, magnetic
dipoles – along the z-axis, and electric dipoles – along the y-axis as illustrated
in Fig. 2.

z

y
x

Figure 2 – Schematic depiction of the system in consideration

Therefore, the fields produced at the location of the nanoresonator at the
origin:

EEDy =
k20
ε0

∑
l ̸=0

Gyy (0, la) p
l, (18)

EMDy =
ik0
cε0

∑
l ̸=0

GHE
yz (0, la)ml, (19)

HMDz = k20
∑
l ̸=0

Gzz (0, la)m
l, (20)

HEDz = −ik0c
∑
l ̸=0

GHE
zy (0, la) pl, (21)

where a is the period of the chain. To calculate Green’s tensor components, we first
need to evaluate tensors that are incorporated into the expressions in equations (3)
and (8) (see section 1.1). In (3), the tensor product is equal to:

R⊗ R =

 x2 0 0

0 0 0

0 0 0

 . (22)
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And the tensor product in (8) is equal to

R× Î =

 0 0 0

0 0 −x

0 x 0

 (23)

Therefore, from equation (3) in section 1.1, the components of Green’s tensor con-
necting the electric and magnetic dipoles to the fields of the same kind are equal
to

k20Gyy(0,la) = k20Gzz(0,la) = k20
eik0R

4πR2

(
1 +

ik0R− 1

k20R
2

)
R=al
=

R=dl
=

k30e
ikl

4π

(
1

kl
+

i

k2l
− 1

k3l

)
,

(24)

where kl = k0a|l|. From equation (8), we can derive the expression of the Green’s
tensor connecting dipoles with the fields of the opposite nature:

k0G
HE
yz (0,la) = −k0G

HE
zy (0,la) = −k0

eik0R

4πR
(ik0R− 1)sgn(l) =

= −ik30e
ikl

4π

(
1

kl
+

i

k2l

)
sgn(l),

(25)

where sng(l) =
l

|l|
. It is crucial to mention that in infinite systems, all dipole

moments of the same nature are assumed to have the same absolute value, but
different phases, which can be found using Bloch’s theorem [45, 46, 47]:

pl = p0e
iβla, (26)

ml = m0e
iβla (27)

where p0,m0 are the absolute values of the magnetic and electric dipoles in the
chain, β is Bloch’s vector, which is defined by the properties of the system. For
convenience, from this point on, we will denote βl = βla.

Using the above discussion and notations, we can now rewrite the equations
(12) taking into account that our aim is to solve the eigenproblem so that incident
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fields are equal to zero [48, 49]:

p0
αE

= EEDy + EMDy =
k20
ε0

∑
l ̸=0

Gyy (0, la) p
l +

ik0
cε0

∑
l ̸=0

GHE
yz (0, la)ml =

=
1

ε0

k30
4π

∑
l ̸=0

eikleiβl

(
1

kl
+

i

k2l
− 1

k3l

)
p0 +

1

c

∑
l ̸=0

eikleiβl

(
1

kl
+

i

k2l

)
sgn(l)m0

 =

=
1

ε0

(
Σ1p0 +

1

c
Σ2m0

)
, where

(28)
6π

k30
Σ1 =

3

2

∑
l ̸=0

eikleiβl

(
1

kl
+

i

k2l
− 1

k3l

)
, (29)

6π

k30
Σ2 =

3

2

∑
l ̸=0

eikleiβl

(
1

kl
+

i

k2l

)
sgn(l), (30)

One can do the same for the magnetic dipole equation:

m0

αH
= HEDz +HMDz = k20

∑
l ̸=0

Gzz (0, la)m
l − ik0c

∑
l ̸=0

GHE
zy (0, la) pl =

= Σ1m0 + cΣ2p0

(31)

For the sake of simplicity of expressions, in equations (28), (31) the following
notation are used αE ≡ αE

yy, αH ≡ αH
zz. With all the necessary ingredients, we can

now compose the system of equations, which describes the properties of the chain
of nanoresonators with both electric and magnetic dipole responses:

(p0c)
( ε0
αE

− Σ1

)
− Σ2m0 = 0

m0

(
1

αH
− Σ1

)
− Σ2(p0c) = 0.

(32)

From the Rouché–Capelli theorem we know, that in order for this system to have a
nontrivial solution, the determinant of the matrix representing this system should
be equal to zero: ∣∣∣∣∣∣∣∣

(
ε0
αE

− Σ1

)
−Σ2

−Σ2

(
1

αH
− Σ1

)
∣∣∣∣∣∣∣∣ = 0, (33)
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which means that the dispersion of the infinite chain is as follows:(
1

αm
− Σ1

)
·
(
ε0
αe

− Σ1

)
− Σ2

2 = 0. (34)

For convenience, we rewrite our equation:(
6π

k30

1

αm
− 6π

k30
Σ1

)
·
(
6π

k30

ε0
αe

− 6π

k30
Σ1

)
−
(
6π

k30

)2

Σ2
2 = 0. (35)

In equation (35), we now have the expressions from equations (29), (30), which
were calculated before [48, 49]. The imaginary part of the dipole sum is

Im
(
6π

k30
Σ1

)
= −i, while the real part reads as follows:

Σ̃1 = −Re
(
6π

k30
Σ1

)
= −3Re

( ∞∑
j=1

eikj cos(βj)

(
1

kj
+

i

k2j
− 1

k3j

))
=

=
3

2

∞∑
j=1

(
cos(βj + kj) + cos(βj − kj)

k3j
+

sin(βj + kj)− sin(βj − kj)

k2j

)

+
3

2

ln[2(cos(k0a)− cos(βa))]
k0a

.

(36)

Let us also assign a new variable to the dispersion equation component containing
(30), which represents the coupling between electric and magnetic dipoles in the
chain, in the same way, that is done for Σ1. Note that the imaginary part of the Σ2

is zero, and the real part is [48]:

Σ̃2 = Re
(
6π

k30
Σ2

)
= −3

2

∞∑
j=1

(
sin(βj + kj) + sin(βj − kj)

k2j

)
−

− 3

2

1

k0a

(
ln
∣∣∣∣sin(βa+ k0a)

2

∣∣∣∣− ln
∣∣∣∣sin(βa− k0a)

2

∣∣∣∣) .

(37)

Note that since dipole sums Σ1 and Σ2 depend on the wave number k0, they are
functions of frequency Σ1 = Σ1 (ω) ,Σ2 = Σ2 (ω). Now, to solve the equation
(35) and find eigenfrequencies of the chain of nanoparticles with magnetic and
electric dipole responses, we need to define the frequency dependence of the po-
larizabilities αE and αH .
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1.3 Magnetic and electric polarizabilities
In this section, the choice of the functions representing electromagnetic po-

larizabilities αE and αH will be discussed.
Obviously, the most straightforward way to obtain the dependence of polar-

izabilities on frequency is to extract them from numerical full-wave simulations. In
the following sections, we will compare the results of the dipole model to the full-
wave simulation for cylindrical nanoparticles, which makes the following exam-
ple relevant. For instance, one can consider plane-wave irradiation of a particle of
interest in COMSOL Multiphysics. In Fig. 3, one can find the multipolar decom-
position of the scattering cross section of the dielectric cylinder under irradiation
of a plane wave incident along the z-axis with the polarization of the electric field
along the x-axis. Multipole moments of the cylinder along with their contributions
to the scattering cross section are calculated using formulas from [11, 50, 51]. It is
important to choose the spectral range where the nanoresonator has only magnetic
and electric dipolar responses. One can see that at the values of angular frequency
in the interval ≈ [3.8 · 1010, 6.5 · 1010] rad/s, only electric and magnetic dipoles
contribute to the total scattering cross-section, since the sum of their contributions
in this range is equal to the total cross-section. This also means that there are no
higher-order multipoles contributing to the scattering for the considered spectral
range. Thus, this frequency range is suitable for the model that we are building.
The dipole polarizabilities can be extracted from the complex values of the dipoles
also calculated in COMSOL by dividing the dipole moments on the corresponding
incident fields (see equation (12)) [50].

However, one might take a more analytical approach to define the polar-
izabilities so that our model will be more general and applicable to different ge-
ometries and sizes of the particles forming the chain. We want to be able to solve
the dispersion equation for the particles with different resonant properties, which
means that we need to incorporate the resonant frequencies into the polarizabilities
as parameters. Let us first consider the electromagnetic response of the spherical
nanoparticle on the incident plane wave. The polarization and direction of inci-
dence are irrelevant for our purposes. The exact solution of Maxwell’s equation
for the sphere is well known from Mie theory [7, 8] and is presented in Fig.4.
In this picture, we observe two first dipole resonances in the range, where other
higher-order multipoles are negligible. One can notice that compared to the case
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Figure 3 – Normalized scattering cross-section σsc/(πR2) and its multipole
decomposition into electric dipole (ED), magnetic dipole (MD), electric
quadrupole (EQ), and magnetic quadrupole (MQ) terms normalized on the

surface of the base of the cylinder-shaped nanoparticle. The incident plane wave
is x-polarized and propagates along the z-axis. The parameters of the cylinder:
diameter of the base of the cylinder d = 10 mm, the height of the cylinder h = 7

mm, the relative permittivity of the material ε = 15.4

of the cylinder in Fig. 3, the sphere has pronounced magnetic quadrupole reso-
nance in the vicinity of the “dipole range”. However, we will not account for this
resonance in our further considerations, and later it will be shown that the model
still works well and results are in agreement with full-wave simulations. Note that
electromagnetic polarizabilities of a sphere are known from Mie theory as a func-
tion of the scattering Mie coefficients with a quite complicated dependence on the
frequency [26]. However, since our aim is to construct a function of frequency,
which may also help to describe the polarizabilities of different shapes of nanopar-
ticles, we will not use this expression. Instead of this, we construct the analytical
polarizabilities with simpler dependence on the frequency.

1.3.1 Analytical expression for magnetic polarizability
In this section, we will derive the expression for the magnetic polarizability,

and more specifically for the reversed polarizability 1/αH . From Fig.4, one can
see that the real magnetic dipole contribution near resonance can be fitted with a
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Figure 4 – Normalized scattering cross-section σsc/(πR2) and its multipole
decomposition into electric dipole (ED), magnetic dipole (MD), electric
quadrupole (EQ), and magnetic quadrupole (MQ) terms for the spherical
nanoparticle. The parameters of the sphere: diameter d = 10 mm, relative

permittivity of the material ε = 15.4

Lorentzian function of the following form:

1

αH
(r)

=
ωm − iγm − ω

Γm
, (38)

where αH
r is the dipole polarizability near magnetic dipole resonance,

γm
Γm

=
k30
6π

so that the imaginary part of the reversed polarizability is defined solely by the
radiative losses [50], γm is defined via the half width at the half maximum of the
magnetic resonance, and ωm is the resonant frequency of magnetic dipole. All the
parameters can be derived from fitting the magnetic dipole cross-section with the
Lorentzian profile or from the eigenmodes calculation in COMSOLMultiphysics,
γm = ωm/2/Qm, where Qm is the quality factor of this mode. The calculated
parameters are as follows: ωm ≈ 4.8 · 1010 rad/s, Qm = 13.2.

Now, we can compare the approximated analytical expression for polariz-
ability with the magnetic dipole contribution to the cross-section from Mie theory
in Fig. 4 using the following expression [50]:

σsca ≃
k40

6πε20 |Einc|2
|p|2 + k40µ0

6πε0 |Einc|2
|m|2 = k40

6π

∣∣∣∣αE

ε0

∣∣∣∣2 + k40
6π

|αH |2, (39)
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where we used equation (12), and the fact that for the free space, the re-
lation between magnetic and electric fields is equal to the wave impedance
E

H
= Z0 =

√
µ0

ε0
. The results of the comparison are presented in Fig. 5(a). One

can see that the approximation for αH
r works well close to the magnetic dipole

resonance. However, at frequencies slightly below and above the resonance, the
difference between the approximation and Mie theory becomes non-negligible.
Note that this difference with an exact solution can become crucial when we solve
the dispersion equation (34) near the light line. To overcome the disagreement
with the theory, one can introduce the power factor (ωm/ω)

n to the real part of the
polarizabilities. For the frequencies ω > ωm this factor will decrease the approx-
imated values of the cross-section, and increase for the frequencies ω < ωm, and
at the same time would not affect the region near resonance much. The power n
can differ for different geometries. For instance, for the sphere n should be equal
to 4, as can be seen from Fig. 5(b) and Fig. 5(c). The final expression for the
approximated reversed magnetic polarizability is as follows:

1

αH
=

ωm − ω

Γm

ωn
m

ωn
− i

γm
Γm

=
ωm − ω

γm

k30
6π

ωn
m

ωn
− i

k30
6π

. (40)

a) b) c)

Figure 5 – Comparison of the normalized scattering cross-section σsc/(πR2) of
the magnetic dipole of the sphere calculated using Mie theory and a) Lorentz
approximation of the curve, b) Lorentz approximation corrected by the factor

(ωm/ω)
n, n = 2, c) Lorentz approximation corrected by the factor

(ωm/ω)
n, n = 4. The parameters of the sphere are: diameter d = 10 mm, relative

permittivity of the material ε = 15.4

One can also compare the cross-section using the analytical form of αH and
COMSOL Multiphysics for a cylindrical nanoparticle. Parameters for the approx-
imation of the magnetic dipole resonance of a cylinder can be also extracted from
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the eigensolver in COMSOL, and are as follows, ωm ≈ 4.84 ·1010 rad/s,Qm = 13.
The results of the approximation for n equal to 2,3, and 4 are presented in Fig.6(a),
Fig.6(b), Fig.6(c). One can notice that for all three of the cases, the resonances of
the numerically calculated dipole moment and approximated one does not exactly
coincide. This is because the solution extracted fromCOMSOL is an approximated
one. In this particular case, the resonant is quite narrow, so the step of the calcula-
tion was not small enough and the preciseness of the mesh was not good enough.
These problems with finding the numerical solution with the appropriate level of
preciseness are the reason why we choose the spherical nanoparticle for the search
of the approximated analytical expressions of α. Nevertheless, we can conclude
that the model of the magnetic polarizability presented in equation (40) works well
for the cylinder-shaped nanoparticles. Moreover, the most suitable power of the
correctional factor n is also equal to 4.

Despite the fact that, for both spherical and cylindrical nanoresonators, the
most suitable n = 4, later on, it will be shown that in some cases n = 2 is better
suited.

a) b) c)

Figure 6 – Comparison of the normalized scattering cross-section σsc/(πR2) of
the magnetic dipole of the sphere calculated using COMSOL Multiphysics and
Lorentz approximation corrected by the factor (ωm/ω)

n, a) n = 2, b) n = 3, c)
n = 4. The parameters of the cylinder are: diameter of the cylinder base d = 10
mm, the cylinder height h = 7 mm, the relative permittivity of the material

ε = 15.4

1.3.2 Analytical expression for electric polarizability
As soon as we try to approximate the electric dipole polarizability αE, we

can notice that the Lorentzian would not fit the form of the electric dipole contri-
bution to the cross-section. As it can be seen from Fig. 4, the shape of the curve
resembles the Fano resonance profile. It is easier to define the reversed electric
dipole polarizability since the pole of its real part correspond to zero of the elec-
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tric dipole contribution to the total cross-section, while zero of the real part of the
reversed polarizability indicates the local maximum of the cross-section [52]. One
can assume that the real part of the reversed electric polarizability is as follows:

Re
( ε0
αE

)
=

G

F
, (41)

where G,F are the functions of frequency. Then, using the knowledge that at the
resonant frequency the reversed polarizability should be equal to zero, we under-
stand that the function G should be proportional to (ωe − ω), where ωe is the elec-
tric dipole resonant frequency. When the value of the electric dipole cross-section
reaches zero instead, the reversed polarizability should gravitate towards infinity
in this region. Thus, it makes sense to assume that the functionF should be propor-
tional to (ωe2−ω), whereωe2 is the frequency at which the electric dipole scattering
turns zero. Another important point is that in the region of small frequencies, the
electric dipole polarizability should become equal to the electrostatic polarizability
[8]:

1

α0
=

ε+ 2

3V (ε− 1)
, (42)

where V is the volume of a sphere, and ε is its relative permittivity. Hence, the
final expression for electric polarizability, including the imaginary part, which is
again determined by dipole radiative losses, is:

ε0
αE

=
1

α0

1− ω/ωe

1− ω/ωe2
− i

k30
6π

, (43)

One can notice that for small frequencies, both ω/ωe and ω/ωe2 go to zero, and
the real part of the electric polarizability indeed becomes equal to the electrostatic
one. For convenience, let us modify the expression in the equation 43:

ε0
αE

= C0
1− ω/ωe

1− ω/ωe2

k30
6π

− i
k30
6π

, (44)

where C0 =
2π(ε+ 2)

(ε− 1)k30V
.

Let us now compare the results of the electric dipole cross-section calcu-
lated with the approximated electric polarizability (44) using equation (39) and
the exact solution for the spherical nanoparticle. The parameters necessary for the
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approximation and extracted from the Mie theory are as follows: ωe = 6.2 rad/s,
ωe2 = 7.1 rad/s. The results of the comparison are presented in Fig. 7a). One
can see that for a spherical nanoparticle, the model works almost perfectly. How-
ever, for a cylindrical nanoresonator, the cross-section calculated within the built
model differs from the one calculated in COMSOL as it is shown in Fig.7b). The
parameters of the cylinder extracted from COMSOL Multiphysics are as follows:
ωe = 5.8 rad/s, ωe2 = 6.4 rad/s. However, we will still use this model, later on, to
describe the polarizability of a cylinder in the chain, and the results will still show
good agreement with full-wave simulations. Note the values of the approximated
dipole cross-section for the sphere and cylinder differ from each other since elec-
trostatic polarizability α0 contains the volume of the nanoresonator V , which is
not the same in these two cases.

It is important to understand that the derived rough approximations of polar-
izabilities while not being comprehensive, can still highlight the primary factors
that influence the overall behaviour of the dispersion of the chain that will be con-
sidered below.

a) b)

Figure 7 – Comparison of the normalized scattering cross-section σsc/(πR2)
calculated with the approximated value of the electric polarizability (43) with the
cross-section of the electric dipole of the a) spherical nanoparticle calculated
using Mie’s theory, and b) cylindrical nanoparticle calculated using COMSOL
Multiphysics. The parameters of the sphere in a) are: diameter d = 10 mm, the
relative permittivity of the material ε = 15.4. The parameters of the cylinder in
b) are: diameter of the cylinder base d = 10 mm, the cylinder height h = 7 mm,

the relative permittivity of the material ε = 15.4
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1.4 Chain of magnetic dipoles
In this section, we will solve the dispersion equation for the chain of the

solely magnetic dipolar resonators with magnetic polarizability introduced in sec-
tion 1.3. This step is essential for analyzing the behaviour of the chain with two
types of resonances. Note that the dipole model itself, in our case, is the set of
equations representing the chain of interacting dipoles. This means that the shape
of the nanoresonators, which properties are represented by the polarizabilities of
a single nanoresonator αH or αE, does not matter. Especially considering the fact
that the analytical function for the polarizability αH introduced in equation (40)
does not directly depend on the shape of the nanoresonator, but only on its reso-
nant properties.

From equation (34), excluding all the parts related to the electric dipoles, we
obtain the following equation: (

1

αH
− Σ1

)
= 0. (45)

Hence, using the obtained approximation for the magnetic polarizability (40), we
get the following equation:

ωm − ω

γm

k30
6π

ωn
m

ωn
− i

k30
6π

− Σ1 = 0, (46)

If we now multiply both parts by γm
6π

k30

ωn

ωn
m

, we will obtain:

(ωm − ω)− iγm
ωn

ωn
m

− γm
ωn

ωn
m

6π

k30
Σ1 = 0. (47)

As mentioned before,
6π

k30
Σ1 = −i. Hence:

ω = ωm − ωn

ωn
m

γmRe
(
6π

k30
Σ1

)
. (48)

Since Σ1 is a function of frequency, the equation in (48) is transcendental. Using

that Re
(
6π

k30
Σ1

)
= −Σ̃1 [see equation (36)], we obtain the eigenproblem for the
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chain of magnetic dipole resonators:

ωMD = ωm +
ωn

ωn
m

γmΣ̃1. (49)

The obtained equation is solved numerically in MATLAB using the fzero func-
tion. The results of the simulation are presented in Fig. 8. One can notice that for
the normalized periods a/λm approaching 0.3, the dispersion becomes monotonic.
Here λm is the wavelength of the magnetic dipole resonance of the single nanores-
onator. However, for periods around a/λm ≈ 0.2 and lower, the dispersion has an
inflection point. The presence of the inflection point in the dispersion results in a
huge increase of the Q-factors in the finite chains with the same parameters as in
the infinite chain as will be shown later for the simulations for the finite chains.
One can also calculate numerically the maximal period acrit, for which dispersion is
still nonmonotonic. For the chain of the nanoresonators with pure magnеtic dipolе
responsе, acrit ≈ 0.24 · λm.

Figure 8 – Solution of dispersion equation (49) for the chain of interacting
magnetic dipoles with different periods of the chain a = 6, 8.5, 11 mm

normalized on the wavelength of the magnetic dipole resonance of a single
resonator λm ≈ 39.2 mm. The parameters of the cylindrical resonator are
incorporated into the dipole model. The horizontal axis corresponds to the

Bloch-vector multiplied by the factor a/π, and the vertical axis corresponds to
the frequency ω multiplied by the factor a/πc
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1.5 Chain of electric dipoles
In this section, we will solve the dispersion equation for the chain of the

solely electric dipolar resonators with the electric polarizability (43). We empha-
size again that the shape of the nanoresonators does not matter when considering
the dipole model since the only component of the dispersion equation, in which the
properties of the nanoresonator are encoded, is the polarizability α. However, one
might notice that, in terms of our model, polarizabilities in equations (43), (40),
the only difference for different geometries is the volume V of the nanoresonator,
incorporated into the expressions for αE.

From equation (34), excluding all the parts related to the magnetic dipoles,
we obtain the following equation:( ε0

αE
− Σ1

)
= 0. (50)

using the expression for the electric polarizability αE in equation (44), we get the
equation in the following form:

C0
1− ω/ωe

1− ω/ωe2

k30
6π

− i
k30
6π

− Σ1 = 0. (51)

As mentioned before, Im
(
6π

k30
Σ1

)
= −i, and Re

(
6π

k30
Σ1

)
= −Σ̃1 (equation

(36)), thus:

C0
1− ω/ωe

1− ω/ωe2
+ Σ̃1 = 0. (52)

We can now transform this equation to a more convenient form:

C0(1− ω/ωe) + Σ̃1(1− ω/ωe2) = 0, (53)

C0 + Σ1 = ω

(
C0

ωe
+

Σ1

ωe2

)
. (54)

After that, we obtain the eigenproblem for the chain of electric dipole resonators:

ωED =
C0 + Σ̃1

C0/ωe + Σ̃1/ωe2

. (55)
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The obtained equation can now be solved numerically with the help of MATLAB.
The results of the simulations are presented in Fig. 9. One can notice that for
the normalized periods a/λe, where λe is the resonant wavelength of the electric
dipole resonance of the single constituent of the chain, approaching 0.3λe, the dis-
persion becomes monotonic. However, for periods around 0.2λe and lower, the
dispersion has an inflection point. Using numerical methods, one can calculate the
maximal period acrit, for which dispersion is still nonmonotonic. For the chain of
the nanoresonators with single electric dipolе responsе, acrit ≈ 0.24 · λe, which is
the same as the magnetic dipoles chain maximal period with nonmonotonic dis-
persion.

Figure 9 – Solution of the eigenproblem in equation (50) in the dipole model of
the chain of interacting electric dipoles for different periods of the chain

a = 6, 8.5, 11 mm normalized on the resonant wavelength of the magnetic dipole
λe ≈ 30.4 mm for the single resonator, parameters of which are incorporated into
the dipole model. The horizontal axis corresponds to the Bloch-vector multiplied
by the factor a/π, and the vertical axis corresponds to the frequency ω multiplied

by the factor a/πc

1.6 Chain of coupled electric and magnetic dipoles
In this section, we will analyze the behavior of the chain of the coupled

magnetic and electric dipoles, and compare the results with results for the single
dipole models discussed in previous sections. The equation on eigenfrequencies
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for this problem was derived in section 1.2:(
6π

k30

1

αH
− 6π

k30
Σ1

)
·
(
6π

k30

ε0
αE

− 6π

k30
Σ1

)
−
(
6π

k30

)2

Σ2
2 = 0.

We can rewrite this equation using equation (48) and equation (52):(
(ωm − ω)

ωn
m

ωn
+ γmΣ̃1

)(
C0

1− ω/ωe

1− ω/ωe2
+ Σ̃1

)
− γmΣ̃2

2
= 0. (56)

If we multiply this equation by
ωn

ωn
m

· (1− ω/ωe2), we will receive:

(
(ωm − ω) + γmΣ̃1

ωn

ωn
m

)(
C0 (1− ω/ωe) + Σ̃1 (1− ω/ωe2)

)
−

− ωn

ωn
m

(1− ω/ωe2) γmΣ̃2

2
= 0.

(57)

We can simplify this expression using equation (49) and further altering the right
bracket:

(−ω + ωMD)
((

C0 + Σ̃1

)
− ω

(
C0/ωe + Σ̃1/ωe2

))
−

− ωn

ωn
m

(1− ω/ωe2) γmΣ̃2

2
= 0.

. (58)

The last step is to divide everything by
(
C0/ωe + Σ̃1/ωe2

)
:

(−ω + ωMD)

(
C0 + Σ̃1

C0/ωe + Σ̃1/ωe2

− ω

)
− ωn

ωn
m

1− ω/ωe2

C0/ωe + Σ̃1/ωe2

γmΣ̃2

2
= 0. (59)

Using the equation (55), we finalize the dispersion equation for the chain of cou-
pled dipoles:

(ω − ωMD) (ω − ωED) +
Ce

ωe2
ω − Ce = 0, (60)

where Ce =
γmΣ̃2

2

C0/ωe + Σ̃1/ωe2

ωn

ωn
m

.

From the last equation, we see that all the coupling effects are embedded
into Ce. While resembling the quadratic equation, the eigenproblem in (60) has
a more complicated dependence on frequency due to the fact that dipole sums Σ̃1
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and Σ̃2 also depend on frequency. However, this equation still has 2 solutions,
which we obtain using MATLAB. We will show the results for n = 2 and n = 4 in
the magnetic polarizability αH in equation (40). Parameters of the simulation are
ωm = 4.8·1010 rad/s, ωe = 5.8·1010 rad/s,Qm = 13, ωe2 = 6.4·1010 rad/s, a = 10.3

mm (the period of the chain), the relative permittivity of the resonator, which prop-
erties are incorporated into polarizabilities ε = 15.4, the volume V ≈ 549 mm3.
The results of the simulations are presented in Fig. 10. In this picture, 2 solutions
of the equation (60) are presented, as well as the solutions for the single dipole
chains. The eigenvalues of the chain of coupled dipoles are coloured according to
the values of the ratio |pc/m| for each value of the Bloch wave vector. The ratio
was calculated using the first equation in the system (32):

(pc)

(
6πε0
k30α

E
− 6π

k30
Σ1

)
− 6π

k30
Σ2m = 0. (61)

From this, using equation (43), we can obtain the relation between magnetic and
electric dipoles for the dispersion solution:

∣∣∣pc
m

∣∣∣ =
∣∣∣∣∣∣∣∣
6πε0
k30

Re
[
1

αE

]
+ Σ̃1

Σ̃2

∣∣∣∣∣∣∣∣ . (62)

Note that this relation is calculated after obtaining the eigenfrequencies by sub-
stituting them into the dipole sums Σ̃1, Σ̃2 and the polarizability αE. It is also
important to mention that frequencies along the y-axis in Fig. 10 are normalized
differently compared to the previous sections. For illustrative purposes, we nor-
malize all the y-axis values by ωe to make a visual distinction between “EDmodes”
and “MDmodes”. One can notice that the upper branch of the coupled chain eigen-
frequencies is close to 1 when approaching the edge of the Brillouin zone, which is
the indicator that this mode belongs to the “ED modes”. Moreover, it can be seen
that the log10

∣∣∣pc
m

∣∣∣ ratio for this branch is indicated by the red colour, meaning that
the electric dipole is the main contributing dipole to the eigenvector corresponding
to this mode. In contrast, the lower branch solution of the dispersion equation is
mostly blue, indicating that this the ratio log10

∣∣∣pc
m

∣∣∣ is small, so this mode corre-
sponds to the “MD modes”.
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Figure 10 – Solution of the dispersion equation (60) in the dipole model for the
chain of coupled magnetic and electric dipoles. The period of the chain is
a/λe = 0.32 normalized by the resonant wavelength of the electric dipole

λe ≈ 30.4 mm for the single resonator, parameters of which are incorporated into
the dipole model. The horizontal axis corresponds to the Bloch wave number

multiplied by the factor a/π, and the vertical axis corresponds to the frequency ω
divided by the resonant frequency of the electric dipole of a single resonator ωe.
The colorbar represents the ratio |pc/m| of the eigenvectors for two coupled
dipole branches. The blue dashed line corresponds to the solution of the
eigenproblem given by equation (49) in the dipole model for the chain of

interacting magnetic dipoles, the red one – to the solution of the eigenproblem
given by equation (50) in the dipole model of the chain of interacting electric

dipoles. The gray area corresponds to the states above the light line. Parameters
of the simulation are ωm = 4.8 · 1010 rad/s, ωe = 5.8 · 1010 rad/s, Qm = 13,
ωe2 = 6.4 · 1010 rad/s, a = 10.3 mm (the period of the chain), the relative

permittivity of the resonator, which properties are incorporated into
polarizabilities ε = 15.4, the volume V ≈ 549 mm3, n = 2 in equation (40)

In Fig. 10, one can notice that the solutions of the coupled dipole chain co-
incide with the solutions for the chains of single dipoles at the Brillouin zone edge
because the dipole sum Σ̃2, which is responsible for the interaction of magnetic
and electric dipoles, turns zero. The solutions for the chains of single dipoles are
the dashed lines in Fig. 10. The “ED mode” of the coupled dipole model tends to
ωED curve [equation (55)], when “MD mode” to ωMD one [equation (49)]. As we
move away from the edge towards the centre of the Brillouin zone, the value of Σ̃2

increases, causing a repulsion between the dispersion branches. This results in an

34



increase in the group velocity of the first branch (“MD mode”), and the dispersion
curve remains monotonic. However, unlike the first dispersion branch, the group
velocity of the second branch (“EDmode”) decreases and, as we will demonstrate,
can even become negative, leading to a transition to a non-monotonic dispersion,
even for the critical periods acrit larger than 0.24λe for the single dipole chains.

From Fig. 10, it can be observed that both dispersion branches approach
the resonant frequencies ωm and ωe of a single nanoresonator at the Brillouin zone
edge. As a result, the intensity of the repulsion between these branches can be
easily manipulated by controlling the relative positions of ωm and ωe. That is why
it is interesting to analyze the behaviour of the dispersion branches for different
ωm and ωe. For example, we can fix the frequency ωe and vary the frequency ωm.
The results of the simulation with such parameters are presented in Fig. 11a). In
this picture, we observe three pairs of branches corresponding to three values of
ratios r ≡ ωm/ωe = 0.62, 0.83, 0.95. Other parameters of the simulation stay the
same. Fig. 11 b) depicts the cross-section of the electric dipole using the model
polarizability in equation (43) with the resonant frequency mentioned above and
cross-sections of themagnetic dipole for 3 differentωm calculated using an approx-
imation in equation (40). One can notice that the bigger the ratio r, the closer the
resonant frequencies to each other, and the bigger the overlap between magnetic
and electric dipole cross-sections. Moreover, the maximum value of the magnetic
cross-section is decreasing when frequencies become closer, indicating the energy
transfer between magnetic and electric dipole modes. This means that the closer
ωm and ωe to each other, the stronger will be the interaction between “ED modes”
and “MD modes”. Indeed, in Fig. 11 a) the pair of two branches corresponding
to the frequency ratio 0.62, when the frequencies are quite far from each other,
are monotonic and their behaviour is similar to the behaviour of two separated
chains of magnetic and electric resonators (see Fig. 8 and Fig. 9). However, if we
bring frequencies closer to one another, we notice that the branches change their
behaviour. For r = 0.83, the dispersion curves come closer to each other at the
edge of the Brillouin zone, which can be explained by the convergence of their
frequencies. However, at the center of the Brillouin zone, the branches start to
repulse, and the group velocity of the “ED mode” changes. In Fig. 11 c), a closer
look at the upper branch for the ratio r = 0.83 is presented. One can notice that
the dispersion became nonmonotonic. This result is particularly interesting since,
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b)

a)

c)

Figure 11 – a) Solution of the eigenproblem in equation (60) in the dipole model
for the chain of coupled magnetic and electric dipoles. Parameters of the

simulation are ωe = 5.8 · 1010 rad/s, Qm = 13, ωe2 = 6.4 · 1010 rad/s, a = 10.3
mm (the period of the chain), the relative permittivity of the resonator, which
properties are incorporated into polarizabilities ε = 15.4, the volume V ≈ 549
mm3. The ratios between resonant magnetic and electric dipole frequencies,
ωm/ωe ≡ r equal to 0.62, 0.83, 0.95. The horizontal axis corresponds to the
Bloch wave number multiplied by the factor a/π, and the vertical axis

corresponds to the frequency ω divided by the resonant frequency of the electric
dipole of a single resonator ωe. The gray area corresponds to the states above the
light line. The colorbar represents the ratio |pc/m| of the eigenvectors for three
pairs of the dispersion branches. c) The nonmonotonic dispersion branch for the
“ED mode” with r = 0.83. b) Cross-sections calculated using the approximations
of αH [equation (40)] and αE [equation (43)]. The blue curve corresponds to the
electric dipole, and the 3 red curves correspond to the magnetic dipole with 3

different ωm listed in the legend of the plot. n = 2 in equation (40)

for the chains of single dipoles, we obtained that the maximal period for which the
dispersion can be nonmonotonic is 0.24λ, however, here the period of the chain
is equal to 0.32λe. If we now make the frequencies almost equal to each other,
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ωm ≈ ωe (r = 0.95), we observe further repulsion of two branches. Furthermore,
one could notice that the bigger the ratio, the closer the values of log10

∣∣∣pc
m

∣∣∣ to zero
or pc ≈ m for both branches, which means that both magnetic and electric dipole
moment contribute equally to the eigenstate vector when ωm ≈ ωe. Hence, we can
conclude that changing the ratio between resonant frequencies can greatly alter the
behaviour of the dispersion curves.

Figure 12 – Solution of the eigenproblem in equation (60) in the dipole model for
the chain of coupled magnetic and electric dipoles. Parameters of the simulation
are ωe = 5.8 · 1010 rad/s, Qm = 13, ωe2 = 6.4 · 1010 rad/s, a = 10.3 mm (the
period of the chain), the relative permittivity of the resonator, which properties
are incorporated into polarizabilities ε = 15.4, the volume V ≈ 549 mm3. The
ratios between resonant magnetic and electric dipole frequencies, ωm/ωe ≡ r
equal to 0.62, 0.83, 0.95. The horizontal axis corresponds to the Bloch wave

number multiplied by the factor a/π, and the y-axis corresponds to the frequency
ω divided by the resonant frequency of the electric dipole of a single resonator
ωe. The gray area corresponds to the states above the light line. The colorbar
represents the ratio |pc/m| of the eigenvectors for three pairs of dispersion

branches. n = 4 in equation (40)

It is important to note that in all previous considerations in this section,
n = 2 in the expression for the inversed magnetic dipole polarizability (40):
6π

k30α
H = ωm−ω

γm

(
ωm

ω

)n − i. Let us now analyze the behaviour of two dispersion
branches for the same parameters but for n = 4. The simulation results are pre-
sented in Fig. 12. One can notice that the dispersion branches for r = 0.62 and
r = 0.83 are now very close to each other, and almost indistinguishable. More-
over, in this case, the dispersion curve of the “ED mode” is already nonmonotonic
for rather a small ratio of frequencies r = 0.62, whereas this dispersion branch was
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monotonic for the case considered in Fig. 11. At the same time, the “MD dipole”
branches did not change compared to the case in Fig. 11. This phenomenon could
be explained with Fig. 13. In this picture, it is shown that, for ωm ≪ ωe, the over-
lap between the cross-sections is getting bigger instead of getting smaller. This
happens because the cross-section of the magnetic dipole starts to grow too fast
at frequencies bigger than the resonant one due to the fourth power of the factor
ωm/ω in the reversed polarizability. Moreover, in reality, for such a small ratio
as ωm/ωe = 0.4, higher-order dipole resonances as well as resonances of higher-
order multipoles are definitely going to appear. This means that for the smaller
ratios of frequencies, the first two dipole resonances would not interact with each
other. This makes the model of magnetic dipole polarizability with n = 4 applica-
ble in a small frequency range when magnetic and electric dipole resonances are
relatively close to each other. Hence, despite the fact that the approximation with
n = 4 works better than for n = 2 near the resonance (see section 1.3), overall,
the n = 2 is better. In comparison with the model with n = 2, we saw that the
smaller the ratio, the smaller the overlap.

Figure 13 – Cross-sections for a single resonator calculated using the
approximations of αH [equation (40)] and αE [equation (43)]. The blue curve
corresponds to the electric dipole, and the two red curves correspond to the
magnetic dipole with 2 different ωm listed in the legend of the plot. n = 4 in

equation (40)

We could also compare the dependence of maximal periods, when the dis-
persion is still nonmonotonic, acrit/λe, for the cases of n = 2 and n = 4. In Fig.
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14, one can see that, for n = 2, the critical period is increasing with the growth
of the ratio between frequencies, while for n = 4 the dependence has a minimum.
The results for n = 2 make more physical sense, since the smaller the ratios, the
closer the values of the period to the case of only electric dipoles in the chain. This
is logical since the further the frequencies, the less impact should their interac-
tion have on the dispersion behaviour. In contrast, in the model of the magnetic
polarizability with n = 4, the interaction is the strongest for the greatly detuned
frequencies (ωm/ωe = 0.4). However, for the ratios between 0.75 and 0.9, the
critical periods in the two cases are almost the same, which means that the model
with n = 4 works well in that region. However, in our further considerations, we
will rely on the model with n = 2.

a) b)

Figure 14 – The dependence of the maximal period (acrit), for which the “ED
mode” is still nonmonotonic on the ratio of the resonant magnetic and electric
dipole frequencies ωm/ωe for n in equation (40) equal to a) 2, b) 4 compared to

the critical period of the chain with only electric dipole response

Another important conclusion can be drawn from Fig. 14 a). As was dis-
cussed in previous sections for the chains with only one type of dipole, the criti-
cal period is around 0.24λ, which cannot be achieved for realistic nanoresonators.
However, when considering the interactions of two dipoles, the critical period
starts to grow and reaches 0.3λe around ωm/ωe = 0.75. This means that for the
ratios higher than 0.75, the model can predict the properties of the chains of realis-
tic nanoresonators. Although the ratio of frequencies of dipole resonances is fixed
for spherical nanoresonators, we have more degrees of freedom with cylindrical,
cubic and other shaped nanoresonators. For example, by changing the aspect ratio
of the cylinder, we can achieve the desired shift of the resonant frequencies. That
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is why it was very important to evaluate the applicability of the model for spherical
particle polarizabilities in the case of a cylinder.

1.7 Comparison with COMSOL Multiphysics
In this section, we will compare the results of the dispersion calculation ob-

tained using the dipole model and using full-wave simulation software COMSOL
Multiphysics.

Let us first compare the results for the chain of spherical particles. In Fig.
15a), we can observe two dispersion branches, and both of them are monotonic.
Note that for this case, the period of the chain is equal to 12 mm, which makes it
around 0.5λe. In Fig. 14, we saw that for the frequencies’ ratio equal to 0.75 like
for the sphere in our case, themaximal period, for which the dispersion of the upper
branch in still nonmonotonic is around 0.3λe explaining the dispersion behaviour.
Note that another disadvantage of using spherical particles instead of cylindrical
ones is that for the chain of spherical particles, the periods will be always larger
than the sphere diameter 2R. At the same time, for the chain of cylinders with
the configuration presented in the inset of Fig. 15, we have more degrees of free-
dom being able to adjust the aspect ratio of the cylinder while keeping the initial
positions of the resonances. If we now compare the analytical results with the re-
sults obtained from full-wave simulation in Fig. 15b), we notice that the magnetic
dispersion branch is in good agreement with analytical results in the range of nor-
malized Bloch vectors from 1 to 0.75. Note that, in the type of structures that we
are considering at low frequencies, the fundamental mode coincides with the plane
wave, which means that the fundamental mode of the structure (or more specifi-
cally the “MD mode”) should converge to the plane wave at low frequencies. For
the smaller wavelength, the “MD mode” from dipole model faster converges to its
asymptotics, namely the light line. This arguably happens because in the model of
magnetic dipole polarizability in equation (40), we implemented a power factor,
which made the magnetic dipole cross-section die down fast at low frequencies.
Moreover, it is important to understand that we used a rough approximation of
the polarizability because our goal is not to calculate the dispersion exactly but to
predict the properties of the systems of nanoresonators easily varying their param-
eters, which would take a much longer time with the full-wave simulation. This
means that such dissimilarities in the results do not interfere with our goal, and
overall we admit the model describes the behaviour of the dispersion well.
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Figure 15 – a), c) Solution of the eigenproblem in equation (60) in the dipole
model for the chain of coupled magnetic and electric dipoles. Parameters of the
simulation are a) ωe = 6.4 · 1010 rad/s, Qm = 13, ωe2 = 7.1 · 1010 rad/s, a = 12
mm (the period of the chain), ωm/ωe = 0.75, b) ωe = 5.8 · 1010 rad/s, Qm = 13,
ωe2 = 6.4 · 1010 rad/s, a = 10.5 mm (the period of the chain), ωm/ωe = 0.83. The
relative permittivity of the resonators (spheres or cylinders), which properties are
incorporated into polarizabilities, is ε = 15.4, the geometrical parameters are a)
d = 10 mm, b) d = 10 mm, h = 7 mm. The colorbar represents the ratio |pc/m|
of the eigenvectors for the dispersion branches. n = 2 in equation (40) . b), d)

The dispersion calculated in COMSOL Multiphysics with the same parameters as
in the dipole model for the chain of spherical (b) and cylindrical nanoresonators
(d). The insets show the distribution of the modulus of the electric field for the
upper branch, and of the modulus of the magnetic field for the lower branch at
the edge of the Brillouin zone. The horizontal axis corresponds to the Bloch

wave number multiplied by the factor a/π, and the vertical axis corresponds to
the frequency ω divided by the resonant frequency of the electric dipole of a

single resonator ωe. The gray area corresponds to the states above the light line

As for the upper branch, we see that the values of the frequencies are big-
ger in the dipole model for each value of the Bloch vector, but, in general, the
behaviour is similar. This could potentially be explained by the presence of the
strong quadrupole response near electric dipole resonance, which was shown in
Fig. 4. The electric quadrupole contribution is not included in the model, how-
ever, it affects the “ED mode” dispersion.
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If we now consider the chain of cylindrical particles with the period 10.5

mm, we observe that the “ED” branch is nonmonotonic for both COMSOL and
dipole model calculations. For the “MD mode”, the discussion is the same as for
the case of spheres. However, here, for both branches, behaviour and frequencies’
values in COMSOL and in the dipole model coincide, which makes us assume that
the dipole model works better for the case of the cylinder due to the absence of the
high-Q resonances of the magnetic quadrupole in the “dipole” frequency range.

One could also look at the insets in Fig. 15 with the field distributions sim-
ulated using COMSOL Multiphysics. The field distributions are calculated for
the Bloch vector at the edge of the Brillouin zone. The distribution of the elec-
tric field magnitude for the upper branch shows that this mode corresponds to the
electric dipole along y, while the magnetic field magnitude for the lower branch
corresponds to the field distribution of the magnetic dipole along z. This is further
proof of the applicability of our model to the considered systems. Indeed within
our model, we can solve the dispersion equation constructed assuming that the
magnetic dipole for each resonator is oriented along z and the electric dipole is
oriented along y.
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2 Theoretical description of the finite chain of nanoresonators with
simultaneous magnetic and electric dipolar responses
2.1 System of equations describing the properties of the finite chain
In this section, we will analyze the behaviour of the finite chains of dielec-

tric nanoresonators with magnetic and electric dipole responses. In particular, this
analysis is important, since in practice, we can work only with finite-sized systems.
The analysis of the electromagnetic properties of the infinite chain can only serve
as a basis for the prediction of the properties of the finite chains.

As it was already mentioned above, we consider the chain of dielectric
nanoresonators placed along the x-axis, with the magnetic dipole along the z-axis
and the electric dipole along the y-axis. The interaction between dipoles can be
expressed using Green’s function [see section 1.1]. In contrast to the case of the
infinite chain, the dipole sums for the finite chain in equation (28) and equation
(31) are finite. Moreover, the Bloch theorem is not applicable to the electric and
magnetic dipole moments of nanoresonators due to the lack of translational sym-
metry.

Using equation (28) and equation (31), let us construct the system of equa-
tions that will be solved below in order to find the eigenmodes and their energies
for the finite chain:

m1

αH
− k20

N∑
l=2

Gzz (0, |1− l|a)ml + ik0c

N∑
l=2

GHE
zy (0, (1− l)a) pl = 0

(p1c)ε0
αE

− k20

N∑
l=2

Gyy (0, |1− l|a) (plc)− ik0

N∑
l=2

GHE
yz (0, (1− l)a)ml = 0

...

mj

αH
− k20

N∑
l=1, ̸=j

Gzz (0, |j − l|a)ml + ik0c
N∑

l=1, ̸=j

GHE
zy (0, (j − l)a) pl = 0

(pjc)ε0
αE

− k20

N∑
l=1, ̸=j

Gyy (0, |j − l|a) (plc)− ik0

N∑
l=1, ̸=j

GHE
yz (0, (j − l)a)ml = 0

... ,

(63)
where a is the period of the chain,N is the number of nanoresonators in the chain,
mj, pj are the values of magnetic and electric dipoles of the j-th nanoresonator,

43



respectively, c is the speed of light, k0 is the wave number in free space. We also
used that Ĝ (ja, la) = Ĝ (0, |l − j|a). Let us now rewrite this equation in a matrix
form:

Mdem = 0, (64)

where dem = (m1,m2, . . . ,mN ,p1c, p2c, . . . ,pNc)T is the vector of 2N dipole mo-
ments, , and M is 2N × 2N interaction matrix. For convenience, we enumerate
magnetic dipoles from 1 to N and electric dipoles from N + 1 to 2N . For bet-
ter understanding, firstly, we draw a sketch of the matrix that we are considering,
which is presented in Fig. 16. Now, we can define the components of the matrix

Figure 16 – The eigenvalue equation for the chain of N coupled magnetic and
electric dipoles in matrix form

M starting from the diagonal components of the “MD-MD” domain of the matrix.
Note that all the diagonal components of the matrix contain only the term with
polarizability. For convenience, let us also multiply all the equations by

6π

k30
, then:

Mjj =
6π

αHk30
=

ωm − ω

γm

ωn
m

ωn
− i, j ⩽ N. (65)

Using the same considerations, we can also define the diagonal elements in the
“ED-ED” block:

Mjj =
6πε0
αEk30

= C0
1− ω/ωe

1− ω/ωe2
− i, j ⩾ N + 1. (66)
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The non-diagonal terms in the “MD-MD” block connect the magnetic dipole with
the field of another magnetic dipole, hence:

Mjl = −k20
6π

k30
Gzz (0, |j − l|a) =

= −3

2
eikjn

(
1

kjn
+

i

k2jl
− 1

k3jl

)
≡ Cjl, j ⩽ N, l ⩽ N,

(67)

where kjn = k0d|j − n|. The non-diagonal components of the “ED-ED” block of
M, which connect the electric dipole with the field of another electric dipole are:

Mjl = −k20
6π

k30
Gyy (0, |j − l|a) =

= −3

2
eikjn

(
1

kjn
+

i

k2jl
− 1

k3jl

)
= Cjl, N + 1 ⩽ j ⩽ 2N,N + 1 ⩽ l ⩽ 2N.

(68)

The components of the “MD-ED” block ofM, which connect the magnetic dipole
with the field of an electric dipole are:

Mjl
r=l−N
= ik0G

HE
zy (0, (j − r)a) = −3

2
eikrj

(
1

krj
+

i

k2rj

)
sgn(j − r)

≡ Djr
r − j

|r − j|
, j ⩽ N,N + 1 ⩽ l ⩽ 2N,

(69)

where Djr ≡ 3

2
eikrj

(
1

krj
+

i

k2rj

)
. We define the components of the “ED-MD”

block of the matrixM in the same manner:

Mjl
r=j−N
= −ik0G

HE
yz (0, (r − l)a) = −3

2
eikrl

(
1

krl
+

i

k2rl

)
sgn(r − l)

= Drl
l − r

|l − r|
, l ⩽ N,N + 1 ⩽ j ⩽ 2N.

(70)
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In the end, we obtain the following matrix:

Mjl =



ωm − ω

γm

ωn
m

ωn
− i, if l = j ⩽ N

C0
1− ω/ωe

1− ω/ωe2
− i, if l = j > N

Cjl, if l ̸= j, j,l ⩽ N or j,l > N

Drl
l − r

|l − r|
, if l ̸= r, r,l ⩽ N, r = j −N

Djr
r − j

|r − j|
, if r ̸= j, r,j ⩽ N, r = l −N

(71)

We now need to rewrite the equation (64) to obtain the eigenvalue problem of the
following form:

Xdem = ωYdem, (72)

where X,Y are 2N × 2N matrices. Note that for the case of the finite chain, the
eigenfrequencies ω are complex-valued.

We will solve our problem in quasi-resonant approximation around the reso-
nant frequency of either magnetic or electric dipole. In this way, only the polariz-
abilities αH and αE depend on frequency. In the previous chapter, we discovered
that the electric dipole dispersion branch has an inflection point for a certain pa-
rameter set, therefore, we will take ωe for the resonant frequency and evaluate the
elements of matrices X,Y at this frequency.

To obtain the eigenproblem in a form in equation (72), we multiply the lower
half of the matrixM by the factor 1− ω/ωe2, and obtain the following equation:

Î⊗

ωm

γm

ωn
m

ωn
e

− i 0

0 C0 − i

+Â =
ω

γm

Î⊗

ωn
m

ωn
e

0

0
C0γm
ωe

− iγm
ωe2

+ B̂

 , (73)
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where Î is the N ×N identity matrix, and

Ajl =



Cjl, if l ̸= j, j,l ⩽ N

Cjl, if l ̸= j, j,l > N

Drl
l − r

|l − r|
, if l ̸= r, r,l ⩽ N, r = j −N

Djr
r − j

|r − j|
, if r ̸= j, r,j ⩽ N, r = l −N,

0, otherwise

(74)

Bjl =



γm
ωe2

Cjl, if l ̸= j, j,l > N

γm
ωe2

Drl
l − r

|l − r|
, if l ̸= r, r,l ⩽ N, r = j −N

0, otherwise.

(75)

One can see that all the matrix equation components are dimensionless, which is
necessary for numerical simulations. Moreover, note that we will search for the
normalized eigenvalues ω/γm, hence, we will need to multiply the result by γm to
find the actual frequency. All the following considerations are made assuming the
power n = 2 in the magnetic dipole polarizability model in equation (40).

2.2 Numerical simulations
In this section, we will solve equation (73) for different N and different

frequencies’ ratios. We are going to analyze the Q-factors of the modes for each
N . As was already discussed in the introduction, theQ-factors of the finite chains
with the parameters, for which in the infinite chain the dispersion is nonmonotonic,
is scaling as Nα, α ≈ 7. Thus, in our case, at frequencies around ωe, we expect
high values of the quality factor. The Q-factor can be obtained using the following
formula:

Q = − Re(f0)
2Im(f0)

, (76)

where f0 is the eigenmode frequency related to the angular eigenfrequency ω as
f0 = ω/2π. For eachN , there are 2×N modes where half of them has frequencies
around ωe and another half has around ωm. Thus, in the finite chain, we also have
the splitting of all modes into “MD modes” and “ED modes”.
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a) b)

c)

Figure 17 – Dependence of the Q-factor on the chain period a normalized by the
resonant wavelength λe of the electric dipole. The “ED modes” and “MD modes”
are divided by colour. Parameters of the simulation are ωe = 5.8 · 1010 rad/s,

Qm = 13, ωe2 = 6.4 · 1010 rad/s, the relative permittivity of the resonator, which
properties are incorporated into polarizabilities ε = 15.4, the volume V ≈ 549

mm3. The ratio between magnetic and electric frequencies and the number of the
nanoresonators N are as follows a) ωm/ωe = 0.62, N = 4, b)

ωm/ωe = 0.62, N = 8, c) ωm/ωe = 0.62, N = 8

The results of the simulations for the ratiosωm/ωe = 0.62, 0.83 are presented
in Fig. 17. Other parameters of the simulation are listed in the caption. In this
figure, we observe the dependence of Q-factors for all modes on the chain period
a. For the ratio ωm/ωe = 0.62, the separation into “MD modes” and “ED modes”
can be conducted easily since ωe and ωm have large detuning. However, in Fig.
17c), for the ratio ωm/ωe = 0.83, the modes with the low Q-factors are mixed up
since ωe is relatively close to ωm. Nevertheless, we observe that, for all three cases,
the modes with the highest Q-factors are “ED modes”. This happens due to two
factors: 1) the ED dispersion branch is nonmonotonic in the infinite chain with
the same parameters; 2) we are solving the dispersion equation in quasi-resonant
approximation around the electric dipole frequency.
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Now, if we compare the results in Fig. 17a) and in Fig. 17b) for the same ratio
ωm/ωe, but different N , we notice that the maximal Q-factor and the period amax,
for which it occurs, is larger for the larger N . This is a good sign since we want
to receive the scaling of the Q-factor as Nα, α ≈ 7. To analyze the dependence of
the Q-factors on the number of resonators, for each N , we will find the maximal
Q-factor and the corresponding period amax, as it is demonstrated in Fig. 17. If one
compares the results in Fig. 17b) and in Fig. 17c), one can notice that the period
amax is bigger in the case when the frequencies are closer to each other, however,
the maximal Q-factor is smaller for the ratio 0.83 than for 0.62.

The dependence of the maximal Q-factor and amax for different ωm/ωe on
the number of particlesN is presented in Fig. 18. One can notice that the power of
N , which theQ-factor is scaling as is around α ≈ 6.8 for the cases in Fig. 18a), b),
c) as it was predicted in Ref. [36] in the dipole model with only electric dipoles.
Moreover, we see that the values of the periods amax tend to be a certain asymptotic
for all three cases. Since the bigger the number of particles, the closer the finite
chain properties are to the properties of the infinite chain, one could compare this
asymptotics with the critical periods received for every frequencies’ ratios for the
infinite chain in Fig. 14a). We see that, for instance, for ωm/ωe = 0.62, the critical
period is around 0.27λe, when in the finite chain we see that the periods with max-
imal Q-factor tend to 0.3λe. Recall that the bent dispersion in the infinite chain
serves as the basis for the formations of “high-Q” modes in the finite chains due
to the destructive interference of two collective modes. This difference could be
explained by the following fact. In order to solve the dispersion equation for the
finite chain, we used quasi-resonant approximation in addition to the approxima-
tion of the polarizabilities used also for the infinite chain. One could notice that, as
shown for the infinite chain, the periods are larger for the bigger ratios between the
resonant frequencies. Moreover, for ωm/ωe = 0.62, it is shown that the dispersion
is monotonic for the periods equal to 0.32λe (see Fig. 11). This means that for this
value of the periods, there will not be any destructive interference of the collec-
tive modes and, hence, the Q scaling as N 7 is not attainable. And for the case of
the finite chain, the asymptotic value for the periods for ωm/ωe = 0.62 is equal
to 0.3λe. The same considerations could be done for other ratios of frequencies
presented in Figs. 18a), 18b), and 18c).
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a)

b)

c)

d)

e)

Figure 18 – Left panel: the dependence of the maximal Q-factor on the number of
particles in the chain N for different frequencies ratios a), ωm/ωe = 0.4, b), e)
ωm/ωe = 0.62,c) ωm/ωe = 0.83,d) ωm/ωe = 0.95; and the asymptotic Nα for
each case. Right panel: the dependence of the period, for which the Q-factor is

maximal, on the number of particles in the chain N
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In Fig. 18d) for ωm/ωe = 0.95, we observe the drop of the power of N to
α ≈ 2.5, and the periods amax are smaller than for the smaller ratios. This could
be explained by the fact that the quasi-resonant approximation may not work that
well when the resonant frequencies are almost equal to each other. Moreover, in
Fig. 11, we saw that the upper dispersion branch for r = 0.95 goes up and does
not have an inflection point close to the Brillouin zone edge, which is the reason
for the huge increase of the Q-factors.

If we now consider again the ratio of ωm and ωe equal to 0.62 but increase the
periods to the values larger than 0.3λe, we will see that the Q-factors are scaling
as N 3, and the periods are staying at values around 0.4λe [see Fig. 18e)]. This is
because, for such values of the periods, the dispersion branch for ωm/ωe = 0.62 in
the infinite chain would be monotonic, which corresponds to the regular band-edge
modes.

2.3 Comparison with COMSOL Multiphysics
In this section, we will compare the results of the finite chain analysis per-

formed in the dipole model with the results obtained in COMSOL Multiphysics.
To obtain the maximal value of the Q-factor for each value of N , one should cal-
culate theQ-factors of all the modes of interest in a certain range of periods, which
can be chosen using the dipole model. The results of the calculation of theQ-factor
dependence on the chain period a for N = 8 and ωm/ωe = 0.83 are presented in
Fig. 19. This figure presents the dependence of theQ-factors for three eigenmodes
with the largest Q around frequency ωe = 5.6 rad/s. One can notice that the max-
imal value of the Q-factor is around 104, which is a lot for such a small number
of particles. The period, at which such Q is obtained is 0.33λe, which means, as
already discussed, that a ≈ 0.24λe is not enough to describe the properties of the
realistic resonators. If we compare the results for the same parameters in the dipole
model in Fig. 17c), we see that the behaviour of theQ-factor curves as well as the
values are similar to the dependence in Fig. 19.

In the inset of Fig. 19, one can see the distribution of the electric field modu-
lus for the mode with the highestQ-factor. We note that the field is concentrated in
the middle of the structure whereas it is almost zero at the edges. This behaviour is
explained by the fact that this mode frequency is the closest one to the frequency at
the band edge in the infinite structure, where the group velocity turns zero. Then,
in the finite structure, the field is distributed like in a standing wave.
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Figure 19 – The Q-factor dependence on the period of the dielectric cylinders
chain a normalized by the resonant wavelength λe of the electric dipole. The axis
of the chain coincides with the rotational axis of the cylinder. Parameters of the
simulation are R = 5 mm, h = 7 mm, the relative permittivity ε = 15.4, N = 8
(number of the cylinders), ωm/ωe = 0.83. The inset shows the distribution of the

electric field norm for the mode with the highest quality factor

Figure 20 – Normalized scattering cross-section σsc/(πR2) and its multipole
decomposition into electric dipole (ED), magnetic dipole (MD) terms normalized
on the surface of the base of the cylinder-shaped nanoparticle. The incident plane

wave is x-polarized and propagates along the z-axis. The parameters of the
cylinder: a) diameter of the cylinder base d = 10 mm, the cylinder height h = 6
mm, b) d = 10 mm, the cylinder height h = 9 mm. The relative permittivity of

the material is ε = 15.4

If we now want to compare the Q-factor dependence on the number of par-
ticles N for different ratios of frequencies, we should find the parameters of the
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appropriate particles. Fig. 20 presents the multipole decomposition of scatter-
ing cross section for two cylinders with different heights. One can see that by
changing the cylinder height, we can change the positions of the resonances, and,
hence, the ratio ωm/ωe. Including the cylinder that we were considering previ-
ously, we now know the parameters of the cylinders with the following ratios:
ωm/ωe = 0.78, 0.83, 0.88. For convenience, we create a table with all the parame-
ters necessary for the dipole model calculations in table 1 for three different cylin-
ders with different ratios of frequencies. The Q-factors of the single resonators
were obtained using eigenmode calculation in COMSOL Multiphysics, and fre-
quencies were obtained from cross-sections. We can now calculate the Q-factor
dependence for all three cases in both the dipole model and COMSOL. The results
of the simulations are presented in Fig. 21. In Fig. 21b) and Fig. 21c), one can see
that for both COMSOL and the dipole model, the values of the Q-factors as well
as the power of N are bigger for the smaller ratios. However, as we saw before in
the dipole model, the Q-factors are scaling as N 6.8 for the same ωm/ωe. Here, the
number of considered resonators is not enough to see the asymptotic behaviour.
However, the calculations for the chains of more than 20 resonators in COMSOL
are very time-consuming. We can assume that, in COMSOL, the power of N of
the asymptotic will also grow to become Nα with α ≈ 7 similar to the dipole
model. If we compare the periods, at which the maximal Q-factor is obtained, we
observe that the periods in COMSOL are larger. Moreover, amax are bigger for the
ratio 0.78 than for the ratio 0.83, whereas, in the dipole model, the bigger the ratio,
the larger the periods. However, in contrast to the dipole model, in COMSOL we
calculate the dispersion of the realistic chain of nanoresonators, and their geomet-
rical sizes matter. One can assume that because the height of the cylinder is larger
for the ratio 0.78 than for 0.83, the periods of the structure for which we obtain
modes with high Q are bigger. Moreover, for the calculations in the dipole model,
we used the quasi-resonant approximation, which can also affect the results. In
summary, we can conclude that the dipole model works well for predicting the
formation of “high-Q” states in the chains of realistic resonators.
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Table 1 – Table with the parameters of cylindrical nanoresonators with different
frequency ratios ωm/ωe. R is the radius of the cylinder base, h is the cylinder
height, ωe is the frequency of the electric dipole resonance, ωe2 is the frequency of
zero of electric dipole scattering

ωm

ωe
= 0.78

ωm

ωe
= 0.83

ωm

ωe
= 0.88

h [mm] 9 7 6
R [mm] 5 5 5

ωe [rad/s]·1010 5.52 5.79 5.95
ωe2 [rad/s]·1010 6.48 6.34 6.63

Qm 12.8 13.6 14.3

a) b)

с) d)

Figure 21 – The dependence of the maximal Q-factor on the number of cylinders
in the chain N for different frequency ratios and the sizes of a nanoresonator:
ωm/ωe = 0.78, h = 9 mm, R = 5 mm; ωm/ωe = 0.63, h = 7 mm, R = 5 mm;
ωm/ωe = 0.88, h = 6 mm, R = 5 mm; and the asymptotic Nα for each case.
Right panel: the dependence of the chain period, for which the Q-factor is

maximal, on the number of particles in the chain N for different frequency ratios.
The relative permittivity of the cylinder is 15.4. Results are obtained a), b) from

COMSOL multiphysics and c), d) using the dipole model
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CONCLUSION
In this work, we investigated theoretically and numerically the formation of

“high-Q” band-edgemodes in the chains of dielectric resonators with simultaneous
magnetic and electric dipole responses. The mechanism of appearance of such
modes lies in destructive interference of two collective modes in the finite chains
of particles which becomes possible due to the bending of the dispersion in the
infinite chains with the same parameters.

We formulated the system of equations for the chain of coupled electric and
magnetic dipoles. To solve this equation, we first approximatedmagnetic and elec-
tric polarizabilities with simple analytical functions, which do not depend on the
shape of the nanoresonator. Then, we solved the dispersion equation, and showed
that the coupling between the electric and magnetic dipole modes in the infinite
chains of particles leads to the repulsion of the dispersion branches. Moreover, by
changing the ratio between resonant electric andmagnetic frequencies of the single
resonator of the structure, we can achieve the negative group velocity of the “ED
mode”, the frequency of which at the band edge is close to the one resonant of the
electric dipole of the single resonator. Furthermore, the periods, for which such an
effect occurs, are larger than 0.3λ for ratios between the magnetic and electric fre-
quencies ωm/ωe ⩾ 0.75. The appearance of the nonmonotonic dispersion branch
in the infinite systems leads to the dramatic increase of the Q-factors in the finite
system, which, as we showed, scaling as N 7.

The dipole model with two types of dipole responses can easily predict the
behaviour of the realistic systems, which was shown by a comparison of the results
with the full-wave simulation software. We believe that our research findings have
the potential to significantly enhance the existing approaches for designing high-
Q compact resonators, which have already proven to have numerous applications
such as lasing, sensing, and more.
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