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INTRODUCTION
Nanophotonics is an actively developing field of modern optics that

investigates the interaction of light with matter at the nanoscale. Studies
of this field of photonics open up promising opportunities for controlling,
amplifying, transforming and generating light with proper analysis of
the propagation of electromagnetic waves through such structures, and
also demonstrate new physical phenomena arising from the interaction of
optical radiation with nano and micro-objects. The control of light by all-
optical means has always been a fundamental and most studied problem
in nanophotonics, since this process can become a key effect in optical
switching and logic.

So, in this work, we investigate the effect of thermo-optical bistability
from the theoretical point of view and apply the developed model to the
experimentally observed hysteresis behavior of structure heating, which
occurs in resonant all-dielectric metasurface membranes and is enhanced
by bound states in the continuum (BIC) with high quality factor.

Optical bistability
Bistability is the property of a system to possess two stable states

under the same conditions. In the optical case, this means that, depending
on the intensity of the incident light and the initial state, the system can
be in two various states of its output signal, which can be the key to the
creation of logical devices such as optical adapters, switchers, and optical
memory elements [1].

Optical bistability could be observed in case of light interaction with
optically nonlinear systems. At the same time, optical nonlinearity manifests
itself in the nonlinear dependence of the output intensity on the input
parameters and arises due to the fact that some properties of the structure
are influenced by the excitation intensity. For certain settings, such systems
switch from the strong nonlinearity state to the bistability mode. In this
case, an optically bistable structure is called absorptive or dispersive [2],
depending on whether the feedback in the system causing the bistability is
associated with an intensity-dependent absorption α(I) (or simply k(I)) (for
example, saturable absorption) or with an intensity-dependent refractive
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index n(I) (nonlinear dispersion). In the early works, which will be discussed
below, these types of the effect were mainly investigated separately from
each other. However, in general, these mechanisms should be taken into
account simultaneously, since in many structures both dispersive and
absorptive changes make a crucial contribution to bistability.

Hystorical background
Here we would like to mention some historical information about the

study of optical bistability in early works. The first proposal to observe
this effect in an interferometer containing a saturable absorbing medium
was made by Szöke et al. in 1969 [3]. Moreover, in this paper, the authors
also derived the bistability condition necessary for its observation. This
article has been followed by a series of theoretical papers analyzing optical
bistability with an absorptive mechanism [4], as well as the application of
this approach to various saturating absorbers, such as organic dyes [5]. For
some time, the experimental demonstration of the theoretically described
effect was not successful, until in 1976 McCall and Gibbs observed the
optical bistability in sodium vapor [6]. However, the main bistability
mechanism in this work was dispersive rather than absorptive. A little later,
the dispersive mechanism of bistability was also demonstrated in a system
with Kerr nonlinearity n(I) = n0 + n2I [7]. Finally, the first observation
of optical bistability in semiconductors was obtained in 1979 by Gibbs due
to the dispersion mechanism [8]. In this work, the optical bistability of the
GaAs structure arose from the nonlinear refractive index near the excited
exciton resonance of the system.

Now, let’s consider the simplest model of optical bistability caused
by the passage of light through an optical cavity filled with an absorbing
medium, which is well described in extensive books on optical bistability
[2, 9].

In above books, the authors describe the optical bistability, which
reveals as a function of the transmission signal for Fabry-Perot resonantor,
shown in the Figure 1 a), on the incident light intensity in the stationary
regime due to the presence of mirrors and an absorbing medium in the
optical cavity.
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Figure 1 — a) Fabry-Perot resonator. Denoted II is the intensity of the
incident radiation, and IR and IT are the intensities of the reflected and
transmitted radiation, respectively. (b-d) Dependences of the transmitted
intensity on the incident radiation intensity. b) Linear regime for an empty
resonator. (c) Optical transistor (nonlinear) regime for the nonzero value
of the nonlinearity parameter C. (d) Bistability regime for the large value

of the nonlinearity parameter C [9]
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Its occurrence is determined by the nonlinearity parameter C = αL
2T ,

where α is the absorption coefficient of the medium filling the resonator,
L is the length of the resonator and T is the transmissivity of the mirrors.
Thus, the operating regimes of the system, depending on the value of this
parameter, are illustrated in the Figure 1 b-d).

When we are dealing with an empty resonator, the parameter C equals
to zero, so one can only see the linear dependence of the transmitted light
on the incident intensity (Figure 1 b). After adding an absorbing medium
and, accordingly, increasing the value of C, we begin to observe a nonlinear
curve of the transmitted signal depending on the incident radiation in the
stationary regime, which is shown in the Figure 1 c). This case corresponds
to the optical transistor mode of the system.

Finally, after increasing the parameter C even more, we get an s-curve
with a negative slope in the middle. However, the solution, demonstrated
by dashed line, is unstable, so the system is describe by the bistable regime
(Figure 1 d)). It manifests itself as follows. When we adiabatically increase
the intensity of the incident radiation, the system remains in a lower state,
and only when the incident intensity reaches the value Iup, the transmitted
signal undergoes an abrupt transition to a higher branch. In the opposite
case, when the value of the incident power decreases, starting to move along
the upper branch, the system eventually enters the lower branch after the
falling intensity achieves Idown. Thus, we see a single cycling of the output
signal with an increase and subsequent decrease in the intensity of the
incident laser, which leads to a hysteretic behavior of the system.

Moreover, the authors also demonstrate how the fascinating effect of
optical bistability can be applied to make the photonic system work as an
optical memory element. In fact, the lower and upper states in the input
intensity region corresponding to the bistability mode can be used as ”0”
and ”1” units in the optical logic. Namely, by changing the intensity of the
incident field, one can pass from one state to another.

Indeed, let us consider a system under continuous irradiation with an
incident intensity I0. If this structure is initially in the ”0” state, then an
incoming pulse, illustrated in the Figure 2 b), with a peak intensity above
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Figure 2 — a) Optical bistability manifested in the dependence of the
transmitted signal on the input intensity. b) Switching up the system,
constantly irradiated with CW radiation with intensity I0 and initially

occupying the state on the lower branch of the output signal (”0” state) by
the pulse with peak intensity I > Iup. c) Switching down the system,
constantly irradiated with CW radiation with intensity I0 and initially
occupying the state on the upper branch of the output signal (”1” state)

by the pulse with peak intensity I > Idown [9]

I > Iup initiates switching to the upper branch and, by the end of the pulse,
the system will stay in the upper state, but at the same intensity I0 (state
”1”). At the same time, if the next pulse would come with an intensity below
I < Idown then the system will switch back to the ”0” state (Figure 2 c). Thus,
the described process corresponds to the operation of an optical memory
based on the optical bistability structure.

Overview of bistable platforms
However, one of the crucial problems preventing the use of such

bistable optical systems in real technical applications is their size.
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Figure 3 — Various nanophotonic resonance structures exhibiting optical
bistability (a) microdisc WGM resonator [10], b) microring resonator [11],
c) porous superlattice [12], d) photonic crystal cavity [13], e) photonic

crystal laser [14], f) photonic crystal nanobeam cavity [15])

Therefore, following the constant demand for miniaturization of such
devices, bistability was sought and observed in various photonic systems,
such as microdisk cavities [10], microring resonators [11, 16], photonic
crystal cavities [13, 17, 18], photonic crystal waveguides [14] and photonic
crystal nanobeam cavities [15]. So, the Figure 3 shows a variety of different
microscale resonance platforms in which optical bistability was observed.

For example, in [10] the authors studied the optical bistability
in microdisk resonators based on silicon nanocrystals coupled to silicon
oxynitride (SiON) waveguides (Figure 4 b)).
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Figure 4 — a) Dependence of transmitted power depending on the incident
laser power. The arrow in the inset indicates the position of the pump
wavelength relative to the resonant mode. b) Scheme of the microdisk
resonator based on silicon nanocrystals with temperature distribution
inside this structure. The inset shows the electromagnetic energy density

for such calculations [10]

Indeed, the hysteresis behavior of the transmitted incident power as
a function of the incident power, obtained in this paper, is shown in the
Figure 4 a). In this case, as well as in our work and many other articles
[19–21], the optical bistability arises due to the thermooptical modulation
of the refractive index for dielectric materials and the subsequent change in
the spectral position of the resonator mode. So, it means that the optical
nonlinearity and bistability is related to the dependence of the refractive
index on temperature n(∆T ), which is modulated by the incident laser
intensity ∆T (I). Thus, we are dealing with an intensity-dependent change
of the refractive index ∆n(I) caused by an increase in temperature due
to the absorption of radiation. This type of optical bistability is called
thermooptical bistability, since it is caused precisely by the heating
of the structure.

It should be noted that the change in the refractive index required
to observe dispersive optical bistability can be caused by various physical
mechanisms. For example, in the work [11] the refractive index decreases
due to the free carriers generation based on the two-photon absorption
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effect, while in the article [14] optical bistability is observed due to the
optical injection locking. Moreover, in [12] the refractive index modulation
is associated with capillary condensation, causing the formation of the liquid
phase in the porous material.

Finally, along with the thermooptical mechanism mentioned above, a
rather important cause of optical bistability is the Kerr nonlinearity of the
medium [13, 17]. However, in most materials, the Kerr effect n = n0 + n2I

is very small due to the extremely low non-linearity coefficient n2, so
really high pump powers are required to modulate the refractive index.
At the same time, for most semiconductor materials, there is a pronounced
temperature dependence of the refractive index. The latter leads to a strong
intensity-dependent thermooptical modulation of material parameters and
may be the crucial mechanism of optical bistability in semiconductor
structures. Thus, in [18] authors demonstrate that for silicon structures
the thermooptical mechanism of optical bistability dominates over the Kerr
nonlinearity impact due to the very low n2 ≈ 2.2 × 10−20 m2/W [10] and
high dn/dT ≈ 3× 10−5 K−1 [22] in this optical material.

Thermooptical effects
Here we would like to deviate a bit from the bistability effect and also

recall the importance of various thermonanophotonics phenomenas that
have been actively studied in recent years. Thermal effects in nanophotonics
are associated with the ability of nano- and microstructures to absorb
electromagnetic radiation incident on them and release heat, which, without
clear control and management, can lead to the destruction of nanophotonic
structures, but, on the other hand, has many important applications.

Until recently, the field of thermal nanooptics was completely
associated with nanoplasmonics. The presence of free electrons in plasmonic
structures leads to the appearance of localized surface plasmon resonances
[23]. The excitation of these resonances, which significantly enhance optical
absorption due to the localization of light near the metal surface, has
become the main approach for achieving high efficiency of optical heating
in thermonoplasmonics [24–26].
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However, the all-dielectric thermonanophotonics has been actively
developed recently [27, 28]. Absorption on free carriers, along with single-
and multiphoton interband absorption, causes heating of dielectric and
semiconductor nano- and microstructures with ohmic losses. The high
efficiency of such a process in all-dielectric nanophotonics is connected
with the resonant enhancement of light absorption due to the excitation
of high-quality optical modes, such as Mie-resonances of a magnetic and
electrical nature nanoparticles [29–34] and bound states in the continuum
(BIC) or quasi-BIC modes in various nano- and microsystems (single
nanocavities [35,36], one- and two-dimensional arrays of resonant structures
or metasurfaces [37–40]).

Moreover, the strong thermooptical response associated with the
temperature dependence of the refractive index of the material [41, 42]
has already demonstrated its promise in controlling the linear properties
of the radiation for dielectric metasurfaces [43], in modulating nonlinear
scattering [44, 45], as well as in tuning such nonlinear processes as second
harmonic generation (SHG) [46–49].

However, both in the work mentioned above and in our study, the
presence of the temperature-dependent refractive index of the structure
material not only allows one to modify and control various properties of
the output radiation, but also leads to the appearance of thermooptical
bistability, so that we can observe the output optical signal of different
intensities depending on the excitation prehistory at the same conditions.

The aim of work
Finally, due to the rapid development of so-called flat optics, in

which classical optical elements are gradually replaced by wavelength-thick
metasurfaces and metagratings, optical bistability was also sought in this
type of structures [50].

However, this effect has previously been demonstrated only
numerically on metal metasurfaces, so the main goal of this work was
to study thermooptical bistability in the all-dielectric metasurface structure
and develop a theoretical model that would describe such behavior and
predict its characteristics.
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Our assumption was that the resonant optical heating of the system,
enhanced by the high-Q bound state in continuum (BIC) modes, causes a
temperature change in the refractive index of the material, resulting in the
appearence of spectral resonant shift.

This strong thermo-optical response leads to a self-consistent heating
problem and a cubic non-linear equation for the resonator mode energy.
Since electromagnetic energy is directly proportional to heating efficiency
for quite a broad temperature range [51], then the output thermal state also
follows nonlinear dependence. The latter deduction reveals the existence of
three possible solutions and, finally, underlies the bistability behavior of
optical heating.

In our work, we also investigate various parameters of such
thermooptical hysteresis and derive the conditions for the occurrence of
bistability and its observation in experimental setups. In addition, we
propose a non-linear critical coupling mechanism that establishes the loss
conditions for the maximum hysteresis width.

The reason and advantage of applying the described model
specifically to all-dielectric metasurfaces is the ability of such systems to
maintain pronounced BIC resonances, leading to strong optical heating
and enhancement of thermooptical nonlinearity, ultimately reaching the
bistability regime.

In addition, this structure provides an opportunity to control the
parameters of the observed hysteresis loop and switch to the bistability
mode by finely controlling the radiative losses during changing the incidence
angle of the exciting radiation.

Finally, below we present a comparative table of existing microscale
resonant photonic structures in which optical bistability has been observed
experimentally. Table 0.1 lists the mechanisms for the appearance of optical
bistability, as well as the main resonance and hysteresis characteristics of
the structures.

16



Table 0.1 — Comparison of various resonant photonic microstructures with
experimentally observed optical bistability.

Type Mat. Mech.
λres,
nm

Q -
factor

Size,
µm2

∆Pmax

/Pup
Pup,
mW

Ref.

Microdisc
WGM
resonator

Si Thermo 1552 12500
50×
50

0.5 60 [10]

Ring
resonator

Si
Free-
carriers
generation

1533 14000
10×
10

0.42 9.5 [11]

Ring
resonator

Si Thermo 1562 14200
10×
10

0.39 1.3 [20]

Ring
resonator

Si Thermo 1551 25400
480×
65

0.31 0.097 [19]

Point-
defect
2D PhC
cavity

Graphene
/Si

Kerr 1563 7500
≈

5× 5
0.41 0.78 [13]

Hetero-
structure
PhC
laser

InGaAsP
/InP

Optical
injection
locking

1542 100000
≈

16×
20

0.33 0.023 [14]

Super-
lattice

Porous
Si

Capillary
conden-
sation

973 -
200×
200

0.73 12 [12]

BIC
Meta-
surface

Si Thermo
950
-

1000
500

50×
50

0.3 89
This
work

So, from left to right, the columns indicate the type of bistable
device, its material, the mechanism of optical bistability, the wavelength
λres and quality factor of the resonant mode, the foot-print size of device,
the normalized maximum observed hysteresis width ∆Pmax/Pup, threshold
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switching power Pup corresponding to the maximum observed hysteresis
width and the reference. It includes the articles mentioned earlier and
demonstrates the variety and breadth of optical bistability platforms, which
can be very promising for various technical applications.
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1. MODEL OF OPTICAL HEATING
In this chapter, we would introduce a simplified analytical model for

an optical heating based on a single mode resonator approach. By applying
coupled mode theory we reveal the principles for nonlinear system response
and describe the possible strategies for heating efficiency optimization.

1.1. Single mode resonator model
In general case, optical resonators provide a number of modes which

could have overlaps in the spectral region. Moreover, there are a lot of
effects based on modes interaction, where transfer of energy from one state
to another could occur. However, in most of the cases this interaction is
relatively weak and could not be taken into account for heating problems.
Besides that, different experimental mechanisms exist which allow to
discriminate modes by applying incident radiation with a predefined
symmetry profile, like azimuthal vector beams [35] and other higher-order
excitation methods. Consequently, we use single mode resonator model
which is a good approximation for both describing nonlinear optical heating
effect and as an application for bistability in metasurfaces characterization.

1.1.1. Linear resonator model
We started this work from considering the model of a single-mode

resonator with a resonant frequency ω0 and losses γ, which are comprised
of radiative γr and non-radiative γnr contributions.

This model can be considered as the simplest analytical model of any
high-quality resonant nanostructure, in which, due to the high Q-factor,
only one resonant mode can be taken into account [51]. Moreover, it can
be well described by the following expression in accordance with the the
coupled-mode theory [52]

dã

dt
= (−iω0 − γ)ã+ i

√
γrf̃ , (1)

where ã - the amplitude of the excited mode in the considered resonator,
f̃ - the amplitude of the excitation pump, ω0 - the eigenfrequency of the
resonator, γ and γr are the total and radiative losses rates, correspondingly.

In the spectral representation, assuming harmonic excitation and
substituting the time dependencies of amplitudes in harmonic form f̃ =
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f exp(−iωt) and ã = a exp(−iωt), we obtain from Equation 1 the following
expression for the total energy of the excited mode

|a|2 = γr|f |2

γ2 + (ω0 − ω)2
=

γr|f |2

γ2 +∆ω2
, (2)

where ∆ω = ω0 − ω is the detuning between the mode eigen-frequency and
the frequency of the incident wave.

We introduced here the pump and mode amplitudes so that the total
energy excited inside the resonator would be defined as W = |a|2, and the
pump power would correspond to P = |f |2.

So, it can be seen that according to the Equation 2, the energy of the
mode stored in resonator under continious wave excitation demonstrates a
Lorentzian profile (Figure 1 a)).

1.1.2. Nonlinear resonator model
Now let’s introduce a nonlinearity into our system relating to the

thermorefractive effect, which takes into account the dependence of the
complex refractive index of the material on temperature of the structure
n(∆T ) + ik(∆T ). A change in the real part of the refractive index
n(∆T ) within the first order of perturbation theory for the single-mode
approximation can be considered as an energy dependent shift in the
spectral position of the eigenfrequency ω0 → ω0−α|a|2, while a temperature
dependent change in the imaginary refractive index k(∆T ) entails changes
in nonradiative losses γnr → γnr + β|a|2. This connection will be explained
in more detail and derived later in the Subsection 1.1.4.

Thus, in our model, we assume that both loss and resonant
frequency vary linearly with mode energy |a|2, and that nonlinear thermo-
optical coupling coefficients α and β are positive, which is true for
most semiconductor and all-dielectric materials, where both the real and
imaginary parts of the refractive index increase with heating [53]. The
latter also follows from the exact derivation of the coupling coefficient
formulas in Subsection 1.1.4 and means that with increasing temperature,
the eigenfrequency of the system shifts to the red region and the ohmic
losses increase with the temperature increase. From Figure 1 b) one could
see that, as expected, excitation at the so-called ’cold’ eigenfrequency ω0
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is no longer optimal which is a consequence of resonance broadening and
evolution towards the ’hot’ state in spectral range.

Figure 1 — a) Energy of the mode excited in the single-mode resonator
with resonant frequency ω0 and total losses γ. b) Redshift and resonance
broadening of the single-mode resonator due to temperature increase,

based on the thermorefractive effect

In order to analyze the perturbed system, we modify the equation
for the mode energy. By implementing introduced changes of resonator
parameters into initial Equation 2 we obtain the following expression for
mode amplitude a:

|a|2 = γr|f |2

(γ + β|a|2)2 + (∆ω − α|a|2)2
. (3)

1.1.3. Introduction of dimensionless quantities
In order to analyze the Equation 3, we should introduce dimensionless

quantities.
Indeed, let the quantity y = α|a|2/γ be responsible for the mode

energy, the pump power will be related to the dimensionless quantity y0 =

αγr|f |2/γ3, which is the ratio of the mode shift α|a|2 for the zero frequency
detuning ∆ω = 0 in the linear case (Equation 2 ) to the total losses γ.
Moreover, we will also deal with the dimensionless nonlinear thermooptical
coefficient b = β/α and the dimensionless frequency detuning ∆ω̃ = ∆ω/γ.

Taking into account this introduced quantities, the Equation for the
energy of the excited mode 2, obtained in the previous Subsection, turns
into the following
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|a|2 = γr|f |2

(γ + β|a|2)2 + (∆ω − α|a|2)2
→

y =
y0

(1 + by)2 + (∆ω̃ − y)2
. (4)

Thus, the mode energy y in the system depends only on three
independent parameters: the dimensionless pumping power y0, the relative
nonlinear coefficient b and the dimensionless detuning frequency ∆ω̃.

In addition, it can also be noted that for the nonlinear resonator, we
obtain a third-degree equation for the mode energy y inside the resonator,
leading, under certain parameter settings, to such an interesting effect as
thermo-optical bistability, described later in Section 2.

1.1.4. Nonlinear coefficients
In this subsection, we will obtain the exact expressions for the

nonlinear coefficients α and β responsible for thermo-optical modulation of
the eigenfrequency ω0 and non-radiative losses γnr under laser excitation of
the system and concequent mode energy |a|2 increase. As it turns out, these
coefficients are completely determined by the material parameters of the
system (temperature-dependent complex refractive index n(∆T )+ ik(∆T ))
and the properties of the resonant mode.

Indeed, let’s start by considering the previously mentioned
thermorefractive effect. With increasing temperature, the refractive index
is modified and in the linear approximation can be represented as follows:

n(∆T ) = n0 + n1∆T, k(∆T ) = k0 + k1∆T, (5)

where n0 and k0 - the real and imaginary parts of complex refractive
index at room temperature T = 298K, when n1 = dn/dT |T=298K and
k1 = dk/dT |T=298K - the linear coefficients corresponding to the temperature
dependencies of the material.

Therefore, based on this description, we can also express the complex
permittivity ε(∆T ) = ε′(∆T ) + iε′′(∆T ) as a function of temperature for
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both real and imaginary part:

ε′(∆T ) = ε′0 + ε′1∆T ≈ n2
0 − k20 + 2(n0n1 − k0k1)∆T,

ε′′(∆T ) = ε′′0 + ε′′1∆T ≈ 2n0k0 + 2(n0k1 + k0n1)∆T, (6)

where we neglected higher terms with respect to temperature increase ∆T

in the first order approximation.
On the other hand, optical heating is associated with the conversion of

the electromagnetic energy of the incident laser radiation into the thermal
energy of the nanostructure. Therefore, the temperature increase ∆T is
proportional to the power absorbed by the system:

∆T = κPabs,

where κ is the proportionality coefficient, which depends on the specific
geometry of the system and can be found, for example, using accurate
numerical modeling.

The absorbed electromagnetic power is defined as

Pabs =
1

2
Re

∫
V

J∗(r)E(r)dV,

where J(r) = σE(r) - the complex amplitude of the electric current density.
Now we should take into account that the real part of the electrical
conductivity σ = ε0ε

′′ω, where ε0 is the vacuum permittivity, ε′′ is the
imaginary part of the complex permittivity ε = ε′ + iε′′, ω is the frequency
of the incident radiation, E(r) is the complex amplitude of the electric field
and the integral is calculated over the entire volume of the nanostructure.
Thus we get

Pabs =
ω

2
ε0ε

′′
∫
V

|E(r)|2dV.

At the same time, the amplitude of the electric field can be expressed
through the introduced earlier excited mode amplitude a as follows

E(r) = aM(r)
√
2/
√
ε0, (7)

where M(r) is the normalized distribution of the eigenmode field [54]. In
general case normalization condition includes integration of the energy over
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resonator volume and calculation of corresponding radiative part. However,
for high-quality modes, which we are dealing with, radiative losses are
significantly suppressed and we can leave only highly confined part for
normalization: ∫

V

ε′0|M(r)|2dV = 1,

where ε′0 is the real part of the complex permittivity at room temperature.
In addition, one can verify that in this case the total energy excited

inside the resonator is indeed defined as W = |a|2 after substituting the
Equation 7 into the following

W =
1

2
Re

∫
V

D∗(r)E(r)dV =
1

2
ε0ε

′
0

∫
V

|E(r)|2dV.

As a result, we can relate the absorbed electromagnetic power Pabs or
the temperature increase ∆T with the energy of the excited mode |a|2

Pabs = ω
ε′′

ε′0
|a|2,

∆T = κω
ε′′

ε′0
|a|2. (8)

Since in these equations the imaginary part of the permittivity ε′′

also depends on the temperature, from the Equation 6 one can obtain the
nonlinear relation between the temperature increase and the mode energy:

∆T = κω
ε′′0
ε′0
|a|2 + κω

ε′′1
ε′0
∆T |a|2.

However, for rather small temperature increases, when ∆T ≪ ε′′0/ε
′′
1,

the nonlinearity can be neglected, supposing ε′′ ≈ ε′′0. We will use this
assumption in our derivations.

Moreover, for simplicity of the coefficients expressions we will also
assume that the frequency of the incident excitation is in the vicinity of the
unperturbed position of the eigenfrequency ω ≈ ω0.

The eigenfrequency shift is associated with the change in the real
refractive index in accordance with the expression:

∆ω0/ω0 = −∆n/n,
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where from the introduced mode spectral shift ∆ω0 = −α|a|2 and from
Equation 5 ∆n = n1∆T , we can substitute our latter derivation in this
expression and get the nonlinear coefficient α

α =
ω0n1∆T

n0|a|2
≈ κω2

0n1ε
′′
0

n0ε′0
=

2κω2
0n1k0

n2
0 − k20

,

where all material parameters correspond to the eigenfrequency ω0 due to
the assumption ω ≈ ω0.

On the other hand, from the definition of the amplitude nonradiative
losses and the Equation 8

γnr =
Pabs
2|a|2

=
ω

2

ε′′0
ε′0

+
ω

2

ε′′1
ε′0
∆T. (9)

Therefore, recalling the introduced change of non-radiative losses ∆γnr =

β|a|2, we finally can obtain the nonlinear coefficient β

β =
ωε′′1∆T

2ε′0|a|2
≈ κω2

0ε
′′
1ε

′′
0

4ε′0
2

=
κω2

0n0k0(n0k1 + n1k0)

(n2
0 − k20)

2
.

Finally, we can express the dimensionless nonlinear thermo-optical
parameter b and note that it is determined only by the characteristics of
the material and does not depend on the resonant properties of the system:

b =
β

α
=

n0 (n0k1 + n1k0)

2n1(n2
0 − k20)

. (10)

1.2. Optimal heating condition
The optimization problem of the nanostructure heating is one of the

interesting problems that can be solved on the basis of the described single-
mode resonator model. In the linear regime, the solution maximizing the
temperature increase of the nanostructure is well known and is called critical
coupling condition [55].

In this section, we present a simple derivation of this expression in
the linear case, and also generalize it to the nonlinear regime, when the
thermorefractive effect is taken into account in the system.

1.2.1. Linear critical coupling
Indeed, returning to the Equations 2, 9, we find that the temperature

rise proportional to the absorbed electromagnetic power and in the linear
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case can be described by the simple Lorentzian profile:

∆T ∼ Pabs =
2γnrγr|f |2

(γnr + γr)2 +∆ω2
,

where ∆ω = ω0 −ω. The maximum of this frequency function is reached at
the point ω = ω0. In addition, having fixed the value of radiative losses, we
find that the optimal coupling is achieved when radiative and ohmic losses
are balanced with each other γnr = γr. The last expression identifies the
critical coupling condition for optimal heating in the linear regime.

1.2.2. Nonlinear critical coupling
When we are dealing with a non-linear case and assume the presence

of a non-zero nonlinear coefficients α and β, it is quite useful to move from
the Equation 4 to a more compact normalized form

y =
ymax

1 + (y − ysh)2/Γ2
, where

ymax =
y0(b

2 + 1)

(b∆ω̃ + 1)2
, ysh =

∆ω̃ − b

1 + b2
, Γ =

1 + b∆ω̃

1 + b2
.

This expression implies the assertion that the excited energy inside
the resonator cannot exceed the value of ymax. Moreover, it reaches this
maximum when the condition y = ysh is fulfilled. By combining these two
conclusions we come to the following expression on electromagnetic energy
maximization, which we refer to as critical coupling line in parametric space
of detuning and incident intensity ∆ω̃ − y0:

(∆ω̃ − b)(b∆ω̃ + 1)2 = y0(b
2 + 1)2. (11)

One could see from this equation, that in contrast to the linear case, the
optimal detuning ∆ω = ∆ω̃ · γ is now defined by incoming power y0. This
conclusion is logical in a sense that the more incident excitation we apply
to our system, the bigger the shift of the resonant peak occurs and the
larger incident detuning between laser and resonant mode should be used
for heating optimization.

One important case corresponds to the situation of zero thermooptical
parameter b, when losses do not change with increasing temperature. This
case could correspond to near-IR excitation when change of the bandgap is
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still not sufficient to increase absorption rate. From Equation 11 we obtain
then that

∆ω̃ = y0,

or, by introducing initial definitions

∆ω =
αγr
γ2

|f |2,

which means that the maximum possible value of optical heating is achieved
when frequency detuning is directly proportional to the pump power.

Furthermore, we recall the definition of introduced dimensionless
quantities which are y0 = αγr|f |2/γ3 and y = α|a|2/γ. Therefore, we can
also rewrite expression on mode energy maximization

y = ymax =
y0(b

2 + 1)

(b∆ω̃ + 1)2
,

as follows

|a|2 = γr|f |2(b2 + 1)

γ2(b∆ω̃ + 1)2
=

γr|f |2(b2 + 1)

(b∆ω + γ)2
.

As a result, substituting the energy of the excited mode into the
Equation 9, we see that heating in the optimized mode y = ymax has an
expression similar to the linear case, but not the same

∆T ∼ Pabs =
2γnrγr|f |2(1 + b2)

(γr + γnr + b∆ω)2
. (12)

Therefore, with thermooptical nonlinearity, the maximum heating
efficiency is achieved under conditions different from the linear case. Having
fixed the value of radiative losses, it can be obtained from the Equation 12
that the non-radiative losses in the system must be detuned from radiative
losses:

γr = γnr + b∆ω.

Finally, the last equation is the generalization of the critical coupling
condition for optimal heating in the nonlinear case.
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2. THERMO-OPTICAL BISTABILITY
2.1. Bistability effect
Let us consider in more detail the equation for the excited mode

energy, obtained in the nonlinear case of the thermo-refractive effect in
terms of dimensionless quantities:

y =
ymax

1 + (y − ysh)2/Γ2
, where

ymax =
y0(b

2 + 1)

(b∆ω̃ + 1)2
, ysh =

∆ω̃ − b

1 + b2
, Γ =

1 + b∆ω̃

1 + b2
.

As mentioned in the subsection 1.1.3, this expression is a nonlinear
cubic equation for the mode energy inside the resonator y.

So, depending on the initial parameters, this expression can have one,
two or three solutions. The latter case corresponds to the appearance of
bistability. The region of pump parameters corresponding to this effect is
called the hysteresis region, where the solution of the equation is described
by an s-shaped curve (Figure 1).

However, in real physical systems, the solution in the middle, indicated
by the dotted line, is unstable, and the system falls into one of two stable
states, upper (hot) or lower (cold), depending on the excitation pre-history.

Since from the Equation 8 the temperature increase ∆T in the system
is proportional to the mode energy |a|2, we can also claim that the hysteresis
behavior manifests itself not only in the mode energy accumulated in the
system |a|2 (or y), but also in its temperature T .

In experiment, as it was mentioned in the Introduction , the described
effect is usually observed in the following way. With a gradual increases
in the falling pumping power, the mode energy, and consequently the
temperature, gradually increase, following along the lower branch up to
the edge point B of the hysteresis region. With a further increase in laser
power, the only possible solution turns out to be on the upper branch, so
there is a sharp jump in temperature. During the reverse pass in pumping
power, when the resonator is already in a hot state, the system begins
to move along the upper branch in the opposite direction until it reaches
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the leftmost point of hysteresis A and again falls onto the lower branch.
Thus, it turns out that the system behaves differently when increasing and
decreasing the falling pumping power.

Figure 1 — Hysteresis loop in the dimensionless axes (pump power y0 -
mode energy y). The blue line corresponds to the increasing sequence of
falling laser power, and the red line to the decreasing sequence. Black

points A and B are the turning points of the hysteresis curve. The dotted
line marks the unstable solution

Thus, thermo-optical bistability is a temperature-induced regime
of an optical system, manifested by a hysteresis response, when the system
is able to be in a ”hot” and ”cold” state under the same excitation conditions
determined by the prehistory of excitation.

2.2. Bistability condition
As mentioned earlier, achieving a bistability regime in a system is not

always possible and depends on the parameters of the system and excitation.
So, in this section, based on a detailed analysis of the positions of the
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edge (turning) points A and B, we derive the bistability condition for the
nonlinear system.

To begin with, let’s rewrite the third-degree nonlinear equation for
the dimensionless excited mode energy in the function form

f = y ·
[
Γ2 + (y − ysh)

2
]
,

f(y) =
y0

1 + b2
.

(1)

Introduced function f is cubic with respect to energy y and we need
to find the conditions for which the equation f(y) = const has exactly
two solutions. This case corresponds to the edges of hysteresis area, as one
could see from Figure 1. Thus, by taking the derivative of this function with
respect to y and equating it to 0, one can obtain the values of the excited
mode energy corresponding to the turning hysteresis points

yA =
1

3

(
2ysh +

√
D
)
,

yB =
1

3

(
2ysh −

√
D
)
,

D = y2sh − 3Γ2.

(2)

From this expression it becomes clear that the bistability effect occurs
only when the value of the parameter D is greater than zero, since the
existence of turning points is possible in this case.

Substituting the values of the excited mode energy from the
Equation 2 into the function f(y) in the Equation 1, we also obtain the
dimensionless pump power corresponding to the edge points A and B

y0(A) = f (yA) ·
(
1 + b2

)
=

2

27

(
ysh ·

[
y2sh + 9Γ2

]
+D3/2

)
·
(
1 + b2

)
,

y0(B) = f (yB) ·
(
1 + b2

)
=

2

27

(
ysh ·

[
y2sh + 9Γ2

]
−D3/2

)
·
(
1 + b2

)
.

(3)

Now recalling the expressions for ysh and Γ, we can also derive the
bistability condition in terms of the dimensionless frequency detuning ∆ω̃

and the nonlinear thermooptical parameter b

D > 0,

(∆ω̃ − b)2 > 3(b∆ω̃ + 1)2.
(4)
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When analyzing the bistability condition and taking into account that
the incident dimensionless power y0 from the Equation 3, which corresponds
to the two branches of the hysteresis, must be positive, there is some
restriction on the non-linear coefficient β. It turns out that this parameter
cannot exceed a certain critical value b < bcr = 1/

√
3, so that the bistability

is implemented in the system. This is due to the fact that the bistability
condition for b > 1/

√
3 is satisfied only for negative, and hence non-physical

values of the incident power y0. In fact, one could interpret this condition in
following way: since relative coefficient b is defined by the ratio of losses β
versus eigenmode frequency α thermooptical shift factors, then for the large
values of losses shifts, meanwhile β > α/

√
3, width of the resonance grows

faster with increasing temperature than the eigenmode position changes.
This behaviour limits the possibility of the system to noncontiniuously
change its state.

Moreover, by considering the positiveness of y0, one can also obtain
that for systems in which the resonance broadening with increasing
temperature is much less than the resonance frequency shift, i.e. b = β/α ≈
0, the bistability condition 4 is greatly simplified and takes the following
form

∆ω̃ >
√
3. (5)

Indeed, for a zero dimensionless nonlinear coefficient b, Figure 2 b) shows
that in the case of a dimensionless frequency detuning less than

√
3, only

a strong nonlinear response of the system can be observed (blue line).
Otherwise, when ∆ω/γ = 3 >

√
3, the bistability mode is achievable, which

is indicated in red.
2.3. Hysteresis parameters
So, in the previous section we deduced the condition when bistability

is realized in our nonlinear system. In this section, we will introduce and
analyze such crucial from an experimental point of view characteristics of
our hysteresis loop as its heightHh and widthWh (Figure 2 a)). The width of
the hysteresis Wh or the distance between the turning points A and B along
the pump power axis characterizes the sensitivity of switching the excited
mode energy or temperature during changing the incident pumping. At the
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same time, the height Hh or the distance between A and B points relative
to the y axis shows the temperature change between the two states (warm
and cold, respectively).

Figure 2 — a) Hysteresis loop in dimensionless axes (pump power y0 -
mode energy y) with the mark of its main characteristics (height Hh and
width Wh). b) Solution modes for the excited mode energy depending on
the dimensionless frequency detuning. The blue line shows the case when
the bistability condition is not satisfied ∆ω/γ = 1 <

√
3 and the system

has only a strong nonlinearity, while in the second case (red loop) the
system possesses bistability ∆ω/γ = 3 >

√
3

Hysteresis width Wh is an important parameter to be optimized
since nonlinear elements of optical logic should be resistant to incoming
noise while still be achievable within the incoming signal modulation. If
the width of bistability area is comparable to the noise level than signal
fluctuations could switch the system from one state to another and produce
data misinterpretation. On the other hand, for large width of hysteresis loop
one should apply high amplitude of signals modulation which slows down
the overall speed of device operation and leads to higher energy consuming.

Using the Equation 2, one can immediately find the dimensionless
height of the hysteresis region

Hh = yA − yB =
2
√
D

3
.

32



In addition, by subtracting one expression of the Equations 3 from
another, we also simply determine the width of the hysteresis region:

Wh = y0(B)− y0(A) =
4D3/2

27
·
(
1 + b2

)
= H3

h
1 + b2

2
.

Here it is worth noting that from the form of obtained formulas for the
height and width of the hysteresis, the condition for the bistability existence
D > 0 becomes obvious. Indeed, if it is not fulfilled or when D → 0, the
hysteresis collapses and the height and width are reset to zero.

Figure 3 — Hysteresis parameters depending on the dimensionless
frequency detuning. The red line refers to the width of the hysteresis, the

blue line corresponds to the height of the hysteresis loop

In the previously mentioned case, when the non-linear thermo-optical
coefficient b is approximately equal to 0, the expressions for the hysteresis
parameters take an even simpler form and depend only on the dimensionless
frequency detuning ∆ω̃:

Hh =
2

3

√
∆ω̃2 − 3,

Wh =
H3
h
2
.
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The Figure 3 depicts the dependence of the dimensionless hysteresis
width Wh and height Hh on the dimensionless frequency detuning ∆ω̃ for
zero thermooptical non-linear coefficient b.

Figure 4 — Hysteresis loop in dimensional axes (pump power |f |2 - mode
energy |a|2) with the mark of its main characteristics (height Hh, width Wh

and the switching power from the cold to the hot state of the system Pup)

It can be noted that for sufficiently large detunings, the height of the
hysteresis is proportional to the frequency detuning Hh ∼ ∆ω̃, while the
hysteresis width is related to the latter in a cubic way Wh ∼ ∆ω̃3. If the
frequency of the incident pumping is in close proximity to the boundary of
bistability condition 5, which means that ∆ω̃ =

√
3 + ∆̃, then the height

will depend on this small value ∆̃ in a root way Hh ∼ ∆̃1/2, and the width
as Wh ∼ ∆̃3/2.

In experimental problems, we often deal with the dimensional values
of the excited mode energy and the incident power. Therefore, it is also
necessary to express the dimensional parameters of the hysteresis. In order
to do this, we should recall the relationship between dimensional and
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dimensionless characteristics from the Subsection 1.1.3 and finally obtain
the following expressions (Figure 4)

H =
γHh

α
=

2

3

γ

α

(
∆ω2

γ2
− 3

)1/2

,

W =
γ3Wh

αγr
=

4

27

γ3

αγr

(
∆ω2

γ2
− 3

)3/2

.

(6)
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3. BISTABILITY EXISTENCE AREA AND CRITICAL
COUPLING CONDITION

In this section we will focus on more detailed description of
thermooptical hysteresis appearance in real physical systems. We would
discuss constrains applied for the experimental realisation of bistability
behaviour and provide discussion on the case of limited excitation
power. Moreover, we provide analytical description for hysteresis width
maximization and the ways for its experimental realisation.

3.1. Bistability existence area
In section 2.2 we derived conditions for the dimensionless frequency

detuning ∆ω̃ and the nonlinear thermooptical parameter b to implement
thermo-optical bistability in the system.

Hence, it can be assumed that, in principle, any nonlinear resonator
with b < bcr = 1/

√
3 can be transferred to the bistable regime by adjusting

frequency detuning. However, this is correct only in an ideal theoretical
study, when we are able to arbitrarily tune the excitation parameters so
as to achieve bistability appearance condition and turn the system to the
hysteretic output mode, whereas in experimental applications we always
deal with some limitations.

One of such limitations is limited pumping power, which underlies the
power restriction in our model

P < Pmax,

where Pmax is the maximum possible excitation power available in the
experimental setup.

Indeed, let’s consider the laser power that should be set for the
experimental observation of bistability in the structure. It corresponds to
the switching power from the cold to the hot state of the system Pup and
refers to the boundary point B for hysteresis loop in dimensional axes
(Figure 4).

The equation for this quantity can be expressed by adding the
dimension factor in the dimensionless Equations 3 as follows
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Pup =
2

27

γ3

αγr

(
∆ω

γ

[
∆ω2

γ2
+ 9

])
+

W

2
=

=
2

27

γ3

αγr

(
∆ω

γ

[
∆ω2

γ2
+ 9

])
+

2

27

γ3

αγr

(
∆ω2

γ2
− 3

)3/2

.

(1)

Thus, in the Figure 1 one can see the region of bistability realization,
demоnstrated by black lines. It turns out that under laser power limitation
the hysteresis region is confined not only from below by the condition for the
bistability occurrence ∆ω/γ >

√
3 (red dashed line), but also from above

by the power restriction line Pup < Pmax (blue solid line).

Figure 1 — Area of hysteresis existence depending on radiative losses and
frequency detuning for the case of fixed non-radiative losses. The upper
boundary red line corresponds to the power restriction, and the lower one

refers to the bistability condition

3.2. Efficient reaching of bistability regime
In this section, we analyze and present the critical coupling condition

for the balance between radiative and nonradiative losses of the system,
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which provides the lowest necessary pump power to achieve the bistability
regime.

We will work under the assumption that the non-linear thermo-optical
parameter is approximately zero and use the simple form of the bistability
condition (Equation 5) ∆ω/γ >

√
3.

Let us return to the switching power Pup and substitute the boundary
of bistability condition into the Equation 1

Pup(∆ω/γ =
√
3) =

8
√
3

9

γ3

αγr
= Pcr.

Thus, it turns out that even if we managed to tune the system
parameters in such a way that the bistability regime could be achieved,
we also always have to set Pmax not lower than the critical value Pcr in
order to observe the bistability of the system in the experiment.

Let us consider in more detail the obtained critical value of the pump
power for achieving the bistability regime

Pcr =
8
√
3

9

γ3

αγr

By taking the derivative of Pcr, one can see that for fixed nonradiative
losses, the loss function reaches a minimum when the radiative losses are
half the nonradiative:

γnr = 2γr.

Thus, this loss condition refers to the most efficient way of reaching
bistability when we are dealing with limited pumping, since it minimizes
the critical power required to observe the hysteretic behavior of the system.

Finally, it is worth noting that the minimization of laser power
required for bistability is so important because of the reduction in power
consumption, which is the most overspread problem in many experimental
applications.

3.3. Maximization of hysteresis width
From another point of view, in order to apply thermo-optical

bistability to optical elements and ensure their resistance to the noise of
incoming signals and careful switching between upper and lower states, we
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are interested in maximizing the width of the hysteresis loop, which cannot
grow infinitely in the case of power limitation P < Pmax.

Let’s go back to the dimensional Equation 6 of this hysteresis
parameter

W =
4

27

γ3

αγr

(
∆ω2

γ2
− 3

)3/2

. (2)

First of all, it can be noted that as the detuning frequency increases,
the width of the dimensional hysteresis, as well as the switching power
Pup, limited from above by the maximum allowable laser power Pmax,
simultaneously rise.

Therefore, we have to impose the condition Pup = Pmax and solve
the conditional maximum problem on the width of the hysteresis loop.
We need to notice that as soon as power restriction condition is applied
to our system, frequency detuning ∆ωmax is no longer an independent
parameter and should be derived from Pup = Pmax equation for every value
of the losses rate. By applying given above considerations and recalling
the definition of the switch power in dimensional parameters we come to
following optimization problem:

2

27α

γ3

γr

(
∆ωmax

γ

[
∆ω2

max

γ2
+ 9

])
︸ ︷︷ ︸

term to minimize

=

(
Pmax −

Wh

2

)
, (3)

where term on the left side should be minimized with respect to radiative
losses γr (we fix nonradiative part γnr) for width maximization and ∆ωmax

is an implicit function of losses defined by maximum power condition. Thus,
one can simply take the derivative of the left optimization term, for example,
with respect to radiation losses γr, and set it to zero.

However, the most tricky part of optimization is defining the
derivative of the maximum detuning d∆ωmax/dγr. For this purpose we
utilize the following equation:

1

γr

[
∆ω3

max + 9γ2∆ωmax +
(
∆ω2

max − 3γ2
)3/2]− C = 0, (4)

which is a direct transform of Equation 1 with Pup = Pmax condition and
where C = 27αPmax/2. Taking the derivative of this equation over radiative
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losses and taking into account that d/dγ = d/dγr, since γ = γr + γnr

and nonradiative losses are fixed we come to following expression for the
derivative we are intrested in:

d∆ωmax

dγr
=

C − 18γ∆ωmax + 9γ
(
∆ω2

max − 3γ2
)1/2

3
(
∆ω2

max + 3γ2 +∆ωmax (∆ω2
max − 3γ2)1/2

) . (5)

So, finally, by substituting this derivative into the total derivative of
the optimization term mentioned above and equating the latter to zero,
we finally can solve the conditional maximum problem and find that the
maximum hysteresis widthW is reached at nonradiative losses twice as large
as radiative ones (Figure 2), which is the same losses ratio condition as for
the effective achievement of the bistability regime, obtained in Section 3.2.

Figure 2 — Map of the calculated hysteresis width depending on the
radiative and nonradiative losses under the condition Pup = Pmax. The
white line indicates the critical coupling condition for the loss that

maximizes the width of the hysteresis loop

As a result, we called γnr = 2γr the nonlinear critical coupling
condition and claim that it characterizes the maximum possible hysteresis
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width at a fixed threshold laser power Pmax and corresponds to the most
efficient reaching of the bistability in the system.

As stated above, given ratio is exactly the same as was discussed for
the critical power minimization. That is a logical conclusion in a sense that
for fixed maximum pump value the lowest power for bistability appearance
provides the broadest range for detuning variations. Therefore, these two
approaches give us exactly the same answer.
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4. BISTABILITY IN METASURFACES
In this section we apply our analytical analysis towards experiamental

data on bistability acquisition in two-dimensional semiconductor
membrane. The experiment was carried out by Alexander Barulin and
Alexander Chernov at the Moscow Institute of Physics and Technology.
We prove the correspondence between theoretical dependence of hysteresis
width on losses rate with real physical system behaviour. Moreover, we
emphasize critical coupling condition realized for a quasi-BIC mode in a
membrane and determine incident values required for its achievement.

4.1. Quasi-BIC mode
Finally, in this work we apply our developed theoretical model of

nonlinear resonator for the description of optical bistability experimentally
observed by colleagues on the perforated silicon metasurface membrane,
demonstrated on the Figure 1 a). The described system has a size of
50 µm2 × 50 µm2 and consists of periodically spaced slightly conical holes
with an upper diameter of about 310 nm. The square lattice period is
approximately 355 nm. The height of the perforated membrane is about
340 nm.

This system supports high-Q symmetry-protected bound states in the
continuum (BIС) at the Г-point with zero radiative losses due to symmetry
mismatch and consequently zero overlap between the even mode profile
inside this structure and external electromagnetic propagating modes [36,
56,57].

This resonant mode is visible in the wavelength range from 900 to 1000
nm in the experimental reflection spectra, which is in good agreement with
the analytical calculations obtained by our colleagues using the COMSOL
Multiphysics package, as well as the Fourier modal method (Figure 1 b)).

As can be seen from the reflection map, as the angle of incidence
increases, the radiative losses in such a system rise and, consequently, the
resonant mode broadens, while in the vicinity to normal incidence, where
the symmetry-protected mode exists, the radiative losses of the system are
close to zero, and the spectral dip vanishes.
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Figure 1 — a) Scheme of the studied perforated silicon membrane with
slightly conical holes illuminated by continuous laser radiation at different
angles of incidence. b)Reflection map obtained experimentally (on the
left) and numerically (on the right) of the membrane under study for
various angles of incidence (wave vector projections) and wavelengths.

The upper mode corresponds to the symmetrically protected bound states
in the continuum. The lower green region shows the mode, the

thermo-optical shift of which was used in Section 4.2 to determine the
structure temperature

Excitation of such a resonant Q-BIC mode at different angles of
incidence makes it possible, first of all, to realize high efficiency of optical
heating inside this structure. Moreover, by changing the angle of the incident
pump and the laser wavelength, one can also control the frequency detuning
∆ω, the total γ and the radiation losses γr in such a system, which is
necessary to switch the resonant mode to bistability regime.

Besides that, it is important to note that, due to the membrane
configuration, this structure provides not only a high quality factor of
the excited optical modes, but also eliminates the problem of heat outflow
through the substrate. These two factors undoubtedly increase the efficiency
of optical heating, which indicates the promise of using membrane structures
for various applications.
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4.2. Temperature estimation
One of the objectives of our theoretical study was the processing of

experimental data from thermometry methods in order to obtain the real
temperature evolution of the structure at various laser powers.

The temperature increase caused by the laser was determined by the
experimenters in two ways: Raman thermometry and observation of a red
spectral shift for another optical mode in the membrane at about 815 nm
(Figure 1 b)).

Figure 2 — a) Temperature-induced Raman shift measured under the
action of laser radiation of various incident powers at wavelength of 958
nm on described membrane at 4 degrees (k||/k0 = 0.07). The inset

corresponds to the estimated temperature distribution in metasurface
membrane under laser heating. b) Temperature-induced spectral shift of
the optical mode λ0 = 815 nm, shown as the reflectivity evolution for

metasurface heated by CW laser at different powers at wavelength of 960
nm and 8 degrees (k||/k0 = 0.14) angle of incidence

We convert the data obtaned by these approaches using the underlying
theoretical basis.

First of all, we extract the temperature from the spectral shift of the
Raman peak shown in Figure 2 a), using the following expressions [58]

Ω(T ) = Ω0 + A

(
1 +

2

ex − 1

)
+B

(
1 +

3

ey − 1
+

3

(ey − 1)2

)
,
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where Ω0 = 528 cm−1, A = −2.96 cm−1, B = −0.174 cm−1, x = h̄Ω0/2kT ,
y = h̄Ω0/3kT for crystalline silicon.

On the other hand, we also convert the spectral shift towards higher
wavelengths for the 815 nm optical mode (Figure 2 b)), caused by the
temperature-dependent increase in the refractive index of silicon, into a
heating value.

Indeed, due to the temperature rise inside the metasurface, induced
by the laser radiation at wavelength of 960 nm and angle of incidence about
8 degrees (k||/k0 = 0.14), the refractive index of the material for another
optical mode about 815 nm also increases, as we mentioned earlier

n(∆T ) = n0 + n1∆T

where n0 = 3.6822 [59], n1 = 3.315 · 10−4 K−1 [22] for crystalline silicon at
815 nm wavelength.

Therefore, the temperature rise in the system can be found by
substituting the values of the resonant wavelength shift and the above
material properties of Si from this expression

∆λ

λ0
=

∆n

n0
=

n1∆T

n0
,

∆T =
∆λ · n0

λ0 · n1
,

where ∆λ - redshift of the optical mode during heating.
4.3. Temperature evolution of metasurfaces
We use methods described in Section 4.2 in order to estimate the

membrane temperature under laser irradiation. So, the Figure 3 shows
the comparison of data obtained from Raman thermometry and from
the observation of the mode redshift at a wavelength of 815 nm (green
and black curves respectively), which confirms the fairly good agreement
between these two described methods. The small difference in the hysteresis
boundaries can be caused by slight variations in the excitation conditions.

Since the two approaches give similar temperature dependences, the
main experimental results were obtained using spectral shift thermometry,
since this method is much more convenient in the utilized experimental
geometry.
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Figure 3 — The temperature hysteresis loop observed in the experiment at
λ = 958 nm and k||/k0 = 0.07 and measured using Raman thermometry
(green line) or based on the temperature-induced spectral shift of the

reflectance (black line)

So, in the Figure 4 one can see the temperature evolution during
laser power cycling in ascending and then descending sequence for various
detunings between laser line and BIC mode and different angles of incidence.

The points corresponding to the excitation conditions, in which the
temperature evolutions were experimentally measured, are marked on the
reflection map, which is shown in the Figure 4 a).

As can be seen from the Figure 4 b), the shape of the curves for this
heating evolution during the passage in the forward and reverse directions
with respect to the power increase strongly depends on the frequency
detuning, as well as on the incidence angle.

Hetaing curves modifications with incident angle variation is
associated mainly with varying radiation losses as the longitudinal
projection of the wave vector k|| increases. Indeed, as mentioned earlier in
a qualitative sense and will be shown in the next section in a quantitative
sense, the radiative loss of the optical mode for our membrane depends
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Figure 4 — Reflectivity map depending on incident wavevector projection
and frequency. The excitation parameters marked in green correspond to
the bistability regime, while the orange ones refer to highly non-linear
response of the system. The membrane temperature evolution as a
function of the laser power for increasing (red) and decreasing (blue)

sequence for bistability regime (b) and strongly nonlinear regime (c). The
temperature were extracted by the spectral shift of reflectivity, which is
the second method of temperature estimation described in Section. The
green curve for point 3 corresponds to the temperature obtained from

Raman thermometry measurements

strongly on the k|| excitation vector due to the presence of a symmetrically
protected BIC at the Γ−point.

Moreover, various curves of temperature dependence on the incident
power, illustrated in the Figure 4 b-c) are in good agreement with the
theory. Actually, in accordance with the model of a single-mode resonator,
in order to observe the hysteresis nature of the temperature evolution, the
bistability condition must be satisfied.

Here we consider the bistability condition 5 for the nonlinear
thermooptical coefficient b = 0, since for the wavelengths at which we work,
the losses shift is negligibly small, that can be obtained by substituting the
silicon material parameters into Equation 10.
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Therefore, at small angles of incidence k||/k0 = 0.07 due to small
losses, thermal bistability exists (Figure 4 b)), since the bistability condition
∆ω/γ >

√
3 is fullfiled for all frequency detunings.

At the same time, at large angles k||/k0 = 0.45 and the same detunings,
the bistability mode is not observed (Figure 4 c)) due to the losses growth
with increasing angle of incidence and, consequently, tuning out from the
bistability condition. So, for such excitation conditions, we can only see a
highly non-linear response of the system and a sharp temperature jump as
the hysteresis loop collapses.

In addition, one can note that the reached temperatures, extracted
from the experimental data, are in the same range as the optically-excited
heating, simulated in COMSOL Multiphysics package with the optical
heating module, demonstrated in the inset of the Figure 2 a).

4.4. Fitting metasurface parameters
This section describes the fitting methods by which we find the

parameters of the resonant mode of the membrane in order to theoretically
estimate the parameters of hysteresis at various settings of frequency
detuning and loss.

First of all, we extracted the mode parameters such as total loss
and resonant wavelength (or frequency) for considered BIC mode from the
reflection map using Fano formula [60]:

σ =
(ϵ+ q)2

ϵ2 + 1
(1)

where ϵ = (ω − ω0)/γ is the reduced frequency, ω0 is the resonance
mode frequency, γ is the linewidth (total loss) of the mode, q is the
phenomenological line shape asymmetry parameter.

The Figure 5 depicts the experimental reflectance data and its fitting
basing on the formula for Fano resonance profile.

Fano fitting is used because we are dealing with an asymmetric Fano
resonance profile corresponding to the interference of two resonances with
different damping coefficients supported by the developed system - the BIC
mode and the Fabry-Perot mode between the membrane and the substrate.
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Figure 5 — Experimental (black line) and Fano fitting (red line) data of
the reflection coefficient obtained from the membrane excited by external

pumping at angle of incidence of about 0.32. The resonant mode
parameters extracted by this method are as follows: ω0 ≈ 1.96 · 1015 rad/s,

γ ≈ 10.87 · 1012 rad/s

The extracted frequency and loss parameters are indicated in the
Figure 6 by black solid lines. It can be noted that, near the Γ-point, the
extraction of parameters becomes impossible due to very low radiation losses
in the vicinity of the symmetry-protected BIC mode. In addition, the Fano
fit does not allow distinguishing of the radiative and non-radiative losses in
the system.

Therefore, we also use another method of approximation the mode
characteristics and select the mode parameters depending on the angle of
incidence so that the theoretical hysteresis width calculated numerically
from the Equation 6 coincides with the experimentally obtained one. The
values found by this method are displayed as red hollow circles in the
Figure 6.
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Figure 6 — BIC parameters. a) Resonance wavelength depending on the
projection of the wave vector (angle of incidence). The parameters
extracted from the experimental reflictivity measurements using Fano
formula are indicated by a black solid curve, and the fitted values are
shown by red circles connected by a red dotted curve. The excitation
wavelength used in experiment is also shown in this graph in crossed
cycles. b) Total and nonradiative optical losses as a function of the
projection of the wave vector (angle of incidence). The experimental

parameters are shown with a black solid curve. The fitted non-radiative
loss and their interpolation are in blue, while the total loss are in red

After that, we interpolate the obtained data over the entire range of
incidence angles, and near zero we extrapolate frequency curve ω0(k) by a
quadratic dependence.

It is worth mentioning that not only the total losses and frequencies of
the resonant mode are selected by this method, but also the corresponding
non-radiative losses, shown by the blue curve. The obtained nonradiative
losses of the resonant optical mode are practically independent of the angle
of incidence, which is well described by theory.

Finally, as can be seen from these plots, the mode dispersion obtained
by two different methods is in good agreement with each other. Therefore,
for further analysis, we work with hysteresis-based approach of experimental
parameters. With this method we use data on frequencies and total losses,
extrapolated at small angles of incidence, as well as calibrated via hysteresis
width correspondence non-radiative losses.
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Using the above data, one can, first of all, reconstruct the hysteresis
loop analytically and make sure that it describes the experimental
observation well (Figure 7).

Figure 7 — Dependence of the metasurface temperature on the excitation
intensity in the bistability regime for incident excitation at k||/k0 = 0.25

and λ = 965 nm. The results provided by the theoretical model are shown
as a solid blue line, and the experimental hysteresis is marked in red

In addition, based on the described data for resonant wavelength and
loss, we also estimate the hysteresis width for various angles of incidence
(k||/k0) and detuning ∆γ using the theoretical Equation 6 for Wh obtained
in the 2.3 section. Thus, the calculated map is shown in the Figure 9.

As mentioned earlier, since in the experiment we are dealing with
limited pumping, in this case Pmax = 100 mW, the switching power Pup to
the upper state must not exceed the threshold power Pmax to maintain the
hysteresis.

Therefore, the real width of the hysteresis shown in the Figure 8 is
restricted from below by the condition for the occurrence of bistability,
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Figure 8 — Estimated map of the width of the hysteresis loop for various
detunings and angles of incidence. The white lines indicate the region

where bistability is expected to be observed in the experiment, according
to the theoretical map 1. The experimentally obtained values are
indicated by white circles, the color of which shows the measured

hysteresis width. The maximum of the calculated map is shown by the red
circle and corresponds to the same projection of the wave vector, which is

indicated in Figure 9

and from above by the line corresponding to the threshold power Pmax =

100 mW, similarly to how it was predicted previously in the Section 3.1
from the theoretical point of view.

The experimental values of the hysteresis width are shown in this map
with red circles and in the same color bar as the theoretically predicted
data underlying this map. Some discrepancy between them can be caused
by not accurate extraction of the mode parameters due to the impossibility
of fitting the mode lineshape according to the Fano formula in this range of
incidence angles, as mentioned earlier. In addition, it can also be connected
with the increase in the excitation power for smaller angles of incidence due
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to better focusing and lower losses in the objective. This fact may eventually
lead to hysteresis loops observed at higher detuning values.

4.5. Critical coupling in metasurfaces
Finally, we verify our derived in Section 3.3 critical coupling condition

2γr = γnr that determines the maximum possible width of the bistability
region for fixed threshold power Pmax for our membrane as follows.

Figure 9 — Map of the hysteresis as a function of radiative and
non-radiative losses, demonstrating the non-linear critical coupling

condition (white dot-dash line). The white dashed curve corresponds to
the ratio between radiative and nonradiative loss in our membrane as the
angle of incidence increases. Its intersection with the critical coupling line
is highlighted in red and denotes the wave vector projection k∗||, relating to

the maximum possible hysteresis width that can be obtained in the
membrane

The dotted line in the Figure 9, which shows the hysteresis width as
a function of losses, marks the dispersion of losses in the structure under
study with increasing angle of incidence. Its intersection with the critical
coupling line determines the condition for the maximum hysteresis width
in our membrane and corresponds to the optimal angle of incidence k∗||
highlighted in red.
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And it can be seen from the Figure 8 that this angle of incidence,
marked with a red circle, really corresponds to the maximum of the
calculated hysteresis width map.

Therefore, our theoretical model predicts not only the boundaries of
the existence of hysteresis, its width, and also determines the condition for
maximizing W under the limitation of the power P < Pmax that arises in
experimental applications.
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CONCLUSION
In conclusion, we would like to emphasize that this work, based

on the developed theoretical model, identifies the path to achieve the
bistability regime in real experimental systems, which can be used in many
different applications. So, to obtain the bistability regime in the system, it
is necessary:

— to satisfy the bistability condition
— to adjust laser power range to such Pmax, that Pup ⩽ Pmax

In addition, this study also found a way to achieve the maximum
width of the bistability loop and put forward a non-linear critical coupling
condition γnr = 2γr.

Moreover, using the developed model, we verify the experimental
results measured by our MPTI colleagues and note that since thermooptical
bistability regime is based on a delicate balance between radiative and
ohmic losses of the system, BIC metasurfaces offer a unique platform for
controlling optical bistability.

The strong dependence of the optical mode linewidth on the projection
of the wave vector in the vicinity of BIC allows to control the nature of
the nonlinear response and makes it possible to switch the system from a
strongly nonlinear response to the hysteresis regime.

In addition, hysteresis loop parameters such as hysteresis width and
threshold power can be modified by balance the ratio between radiative and
non-radiative loss, which is a unique attribute of BIC in metasurfaces.

Finally, this approach makes it possible to optimize the width of the
hysteresis loop, which corresponds to the obtained mode of the nonlinear
critical coupling condition.

Thus, summing up this work, we can state that the main steps and
results of this study are the following:

— creation of the theoretical model of a single-mode resonator to describe
the thermooptical heating of a nanostructure in linear and non-linear
(taking into account the thermorefractive effect) cases;
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— derivation of the critical coupling condition for the connection between
radiative and nonradiative losses, which maximizes heating in the linear and
non-linear cases;
— explanation of thermooptical non-linearity and bistability in terms of

the single-mode resonator model;
— derivation of the hysteresis parameters and the critical coupling

condition for the connection between radiative and nonradiative losses,
which maximize the hysteresis width and underlie the effective achievement
of the bistability regime;
— application of non-linear resonator model to describe temperature

evolution inside the dielectric membrane;
— processing of experimental temperature data obtained by two methods

of thermometry;
— extraction of resonant mode parameters from the reflection map based

on the Fano formula and analytical fitting of resonant frequencies and losses
to match the theoretical and experimental hysteresis widths;
— construction of map for hysteresis width in wide range of different

angles of incidence and wavelength detuning from the Q-BIC mode for
experimentally studied metasurface;
— definition of the maximum value of the hysteresis width that can be

achieved in our membrane system and the corresponding optimal angle of
incidence.
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