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INTRODUCTION

Over the past decades interaction of light with sub-wavelength structures

still excites the minds of many scientists all around the world. A particular

interest is attracted to resonant particles that posses relatively strong electric and

magnetic response in the range of visible light spectrum. Generally speaking, these

particles have unique properties to resonantly scatter incident light at a particular

wavelength, as a result, becoming a prospective platform for various applications

in nanophotonics [1; 2]. It is not surprising at all that there is side by side ongoing

theoretical research in this area, mostly motivated by the breakthrough theory

developed by Gustav Mie at the beginning of last century [3]. That being said, he

proposed an approach to describe electromagnetic fields via the multipole series,

as a result, explicitly connecting incident and scattered EMwaves. Even more, one

can directly implement this theory to compute optical forces and torques acting on

a particle, as a result, motivating to investigate different optomechanical effects

emerged for resonant nanoparticles. Therefore, the following thesis is devoted to

the applications of resonant nanoparticles in optical trapping [4] and in non-linear

optics [5; 6].

The fascinating story of optical trapping experienced a huge boost around

fifty years ago starting from the pioneer works by Arthur Ashkin [7––9] that

allowed him to get the Nobel Prize in 2018. One of his breakthrough results defined

a condition for a nanoparticle to be trapped by a highly-focused single Gaussian

beam [10]. As illustrated in Fig. 1, a particle experiences two forces coming from

the laser radiation focused by the microscope objective. The scattering force Fscat

represents the radiative pressure force that takes the particle out of the trap and

competes with the gradient force Fgrad that emerges due to the laser intensity

profile close to the beam focus center. Therefore, when the ratio of the backward-

gradient force to the forward-scattering force is greater than 1, the stable trapping
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at zeq = πw2
0√

3λ
by single Gaussian beam with w0 waist and wavelength λ was

successfully demonstrated [10].

Figure 1 –– a) Schematic optical tweezer setup to trap a particle close to the beam
focus center. Laser light focused by a microscope objective creates an intensity
profile leading to the emergence of the gradient force. At equilibrium position, the
gradient and scattering forces cancel out. The Fig. is reproduced from the Nobel

Prize Lecture given by A. Ashkin in 2018 [11]

Today it is almost impossible to imagine any experimental setup for studying

and manipulating single nanoparticles or molecules without optical trapping

techniques. These days optical tweezers are actively used in biology [12; 13], for

instance, addressing the nature of interactions between DNA and proteins as well

as their mechanical properties [14]. Even more, optical traps are well-integrated

with commercially available microscopes, as a result, providing a platform for

efficient and robust cell-sorting methods [15; 16]. At the same time, optical

tweezers can be implemented to create arbitrary three-dimensional traps to localise

structured arrays of nanoparticles and perform dynamical computer control [18].

This approach is actively used in quantum computing [17] opening new directions

to study many-body physics as well as to use Rydberg atoms as single-qubits [19],
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a) b)

Figure 2 –– a) DNA molecule trapped by an optical tweezer and a micropipette
allows to measure mechanical extension associated with dsDNA and ssDNA [14].
b) Ultracold atoms trapped in tweezer system can form different optical lattice

configurations to simulate quantum many-body systems [17]

therefore, being one of the most crucial parts for prospective trapped-ion quantum

computers [20; 21].

Moreover, over the past years optical levitation has been actively developing

both theoretically and experimentally. For instance, the feedback cooling technique

was presented for optically levitated silica nanoparticle by measuring its position

via a SiNmembrane, therefore, resulting in newmethods to investigate short-range

interactions [22]. In addition, cooling of a levitated nanoparticle to its motional

quantum ground state was recently demonstrated [23], therefore, providing new

methods for sensing as well as for exploring fundamental questions in physics.

At the same time, conventional trapping at the Gaussian beam focus center has

several disadvantages that become extremely crucial for optical levitation. That

being said, high laser intensity can generate external noise, as a result, leading to

errors in delicate measurements, sensing and motional ground state cooling. Even

more, strong laser fields might damage or overheat living cells or nanoparticles.

Therefore, one could try to avoid high laser intensity and trap a nanoparticle

at low-intensity spot in order to decrease its internal temperature. Due to the

resonant behaviour of the Mie-particle polarizabilities, one can use a standing

wave trap and locate a particle at the node of the electric field [4]. However, since

at the same time, the magnetic field reaches its maximum value, external noise

9



and overheating still remain to be a problem. For these reasons, in our work we

address recently proposed bottle-beam trap formed by two destructively interfering

Gaussian beams, where there is a spot with no electric and magnetic fields at all

[24].

Figure 3 –– a) Optically levitated silica nanoparticle at a distance of 380 nm
from a SiN membrane provides a platform to achieve feedback cooling as well
as to characterize the particle’s position via the interferometric technique [22].
b) Spherical silica nanoparticle trapped by an optical tweezer. Stokes scattering
processes (heating) are suppressed, while Anti-Stokes (cooling) are enhanced, as
a result, cooling to the quantum motional ground state was demonstrated [23]

At the same time, resonant nanoparticles open novel opportunities for optical

rotation as well rather than just for trapping. That being said, conventionally it is

impossible to rotate a perfect spherical nanoparticle without any losses due to the

angular momentum conservation between the incident and scattered light. In order

to overcome this problem, one can either break the rotational symmetry [25; 26]

or introduce the Ohmic losses [27; 28] for the particle. In other words, both these

approaches violate the conservation of total angularmomentum, as a result, making

it possible to rotate a particle. Resonant nanoparticles allows us to propose a novel

approach to transfer angular momentum to a non-absorbing particle via the second-

harmonic generation. In other words, it is possible to induce rotation on a perfectly

spherical nanoparticle by exploiting its crystal structure symmetry leading to the

emergence of the second harmonic scattered field.

Finally, the main tasks we address in this thesis are the following:
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1. Investigate a standing wave trap as the simplest platform to achieve

trapping of a resonant nanoparticle at minimum intensity spot.

2. Compute the total force acting on the nanoparticle trapped at the node

of the electing field in the standing wave, analyse the contribution of the

different multipole terms, define the condition for the nanoparticle to be

stably trapped.

3. Study the formation of the bottle-beam trap created by two Gaussian

beams, identify the position area where low-intensity trapping is desired.

4. Calculate the total axial and transverse forces acting on the nanoparticle

at minimum intensity spot, distinguish the main multipole terms that

provide stable trapping.

5. Investigate the emergence of optical torque acting on a resonant spherical

nanoparticle with negligible losses induced by the second harmonic

generation.
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1. OPTICAL TRAPPING. OVERVIEW

The following chapter is devoted to the review on the basic principles of

optical trapping. Namely, one can define a dimensionless parameter as a ratio

of a particle radius a and the wavelength of a trapping beam λ. That being said,

when a/λ≫ 1 one can use the principles of geometrical optics to explain optical

trapping as will be discussed below in Section 1.1. For a/λ ≫ 1, the Rayleigh

approximation provides a powerful tool to calculate the gradient and scattered

forces acting on a nanoparticle, as a result, defining the position of stable trapping.

Finally, to address the last missing case, in other words, a/λ ≈ 1, we discuss the

generalized Lorentz-Mie theory and the T-matrx approach as a quite robust method

to calculate an optical force beyond the geometrical and Rayleigh approximations.

1.1 Geometrical optics

The first approach to explain the effect of optical trapping is based on simple

geometrical optics principles. As was mentioned above, this method is particularly

useful when the particle radius a is much larger compared to the wavelength λ of a

trapping Gaussian beam. For instance, if we assume λ to lie in the range of visible

light, the size of a nanoparticle in this case should be around several microns to

fulfil the basic assumptions of ray optics. To be more precise, Fig. 1.1 shows a

nanoparticle placed close to the focus center of a single Gaussian beam. Naturally,

in order to achieve stable trapping in all directions, we can take into account the

axial symmetry of the beam and divide this question into two subparts, namely, in

horizontal and vertical trappings.

Both horizontal and vertical trappings can be explained in the limit of

geometrical optics based on the total momentum conservation. As schematically

illustrated in Fig.1.1 a), a particle shifted to the left (horizontally) from the

beam focus experiences recoil momentum transferred from the difference between

incident and scattered light rays. The direction of recoil momentum points towards

the beam focus center, as a result, returning the particle back to the trapping
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Figure 1.1 –– a) Horizontally and b) vertically shifted particle experiences the recoil
force to the beam focus center coming from the difference in incident and scattered
light momenta. Dashed red lines represent the beam rays, green solid arrows stand

for the recoil force direction

position. At the same time, if one shifts the particle horizontally to the right, the

corresponding recoil force coming from transferred momentum acts in an opposite

way, that being said, pointing to the left. As a result, the particle returns back to

the beam focus and horizontal trapping is fulfilled.

Almost the same argument holds for vertical trapping as demonstrated

in Fig.1.1 b), where the particle is shifted above/below the beam focus center.

Therefore, one can easily check that the recoil force in this particular case coming

from transferred momentum will return the particle back to the focus spot. To be

more precise, two green arrows in Fig.1.1 b) represent the recoil force components

that, as in the horizontal trapping analysis discussed above, appear due to the

momenta difference. Combining these recoil forces together leads to the vertical

force pointing up/down for a shift below/up the focus spot, thus, providing vertical

trapping.

The reader might have a strong feeling that geometrical optics doesn’t sound

like a valid and solid way to explain the effect ot optical trapping. Even though

ray optics don’t contain any information regarding the spin or a phase of light,

we would like to reveal this concern. Despite of the restrictions coming from the

basic assumptions in geometrical optics, one can use this approach to confirm the
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existence of negative optical forces [29], forces acting on absorbing particles [30]

as well as on Janus particles [31]. Therefore, this approach allows to obtain not

only qualitative, but also quantitative results.

1.2 Rayleigh approximation

When the size of a trapping particle is much smaller compared to the

wavelength λ of a Gaussian beam that forms an optical trap, one can use the

Rayleigh approximation, in other words, the single dipole approximation. In this

case, the total force acting on the particle is formed by the gradient force as well

as by the scattering force as was demonstrated by A. Ashkin in his works [9; 10].

The gradient force is directly proportional to the particle’s polarizability and acts

like a recoil force that returns the particle back to the focus center of the beam.

At the same time, the scattering force associated with the imaginary part of the

polarizability acts in the opposite way, namely, taking the particle out of the beam

focus and competing with the gradient force. As a result, the equilibrium position

for the particle being trapped corresponds to the configuration when both these

forces cancel out and the total force is zero.

To proceed further, Fig. 1.2 shows a particle trapped in a single Gaussian

beam as well as the gradient Fgrad and scattering forces Fscat. Since the optical

forces are strongly related to the electric and magnetic fields, one can use the

paraxial approximation to represent EM-fields in the following way:E(r,z) = E0 êx
w0

w(z) exp
(
− r2

w(z)2

)
exp

(
−i
(
kz + k r2

2R(z) −ψ(z)
))

B(r,z) = B0 êy
w0

w(z) exp
(
− r2

w(z)2

)
exp

(
−i
(
kz + k r2

2R(z) −ψ(z)
)) , (1.1)

where k = 2π
λ
is the wavevector, r and z are radial and axial distances to the beam

focus center, respectively, w0 corresponds to the beam waist at the focus center,

R(z) = z

(
1 +

(zR
z

)2)
(1.2)

is the curvature radius of the Gaussian beam wavefront,

w(z) = w0

√
1 +

(
z

zR

)2

(1.3)
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Figure 1.2 –– Gaussian beam oriented along z-axis and focused at z = 0. The beam
waist at the focus center is equal to w0 and changes along z direction as w(z). A
particle trapped by the beam experience competing gradient Fgrad and scattering

Fscat forces, that should have the same amplitude at zeq particle’s position

is the beam waist when the field amplitude decreases by e times at z = zR = πw2
0n
λ

distance along z-direction called the Rayleigh range. Here n is the refractive index

of the medium around, that for simplicity can be set to 1 (vacuum), while

ψ(z) = arctan z/zR (1.4)

is the Gouy phase at z-position.

Therefore, one can consider a lossless particle with radius a ≪ λ and the

refractive index np placed into the Gaussian beam with peak intensity at z = 0

focus spot being equal to I0. In this case, the scattering force Fscat acting on the

nanoparticle takes the following form [10]:

Fscat =
npPscat

c
=

I0
c

128π5a6

3λ4

(
m2 − 1

m2 + 2

)2

np ·
k

k
, (1.5)

where m = np/n being the relative refractive index between the particle

and surrounding medium, k represents the trapping beam wavevector. Next, as

was mentioned above, the gradient force Fgrad can be written via the particle’s
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polarizability α in the dipole approximation as:

Fgrad = −np

2
α∇E2 = −

n3
pa

3

2

(
m2 − 1

m2 + 2

)
∇E2. (1.6)

As a result, in order to achieve the axial trapping (along z-direction), the forces

acting on the particle at the equilibrium spot zeq must follow:

0 = F total
z (0,zeq) = F scat

z (0,zeq) + F grad
z (0,zeq). (1.7)

Finally, one can show that at the equilibrium position zeq along z-axis the ratio

between axial scattering and gradient forces takes the following form:

F scat
z

F grad
z

=
64π5

3
√
3
· m

2 − 1

m2 + 2

w2
0a

3

n2
pλ

5
, (1.8)

therefore, recalling the limit a ≪ λ we are working with in this subsection, it

is clearly seen that the scattering force can be sufficiently suppressed. As a result,

due to the dominating contribution of the gradient force, the particle can be trapped

along z-direction. Almost the same arguments hold for radial trapping as well [10].

1.3 T-matrix approach

Up to the moment we have discussed two limits: a ≫ λ that corresponds to

the geometrical optics approach as well as a ≪ λ that can be resolved via the dipole

approximation following the Rayleigh formalism. Therefore, the last case we are

missing out is a ≈ λ. One of the ways to describe the effect of optical trapping in

this particular case is the generalized Lorenz–Mie theory (GLMT) [32]. While the

well-known Mie-Lorenz scattering theory [3] addresses scattering phenomena of

a spherical particle illuminated by an incident plane wave, the GLMT extends this

approach to an arbitrary incident wave, and, for instance, can be implemented for

a Gaussian beam one usually deals with for an optical trap. It is worth mentioning

that one can obtain the corrections for the paraxial approximation [33]we discussed

above, therefore, naturally connecting the dipole approximation with the a ≈ λ

case.
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While the GLMT itself is rather analytical approach, its natural extension to

a direct numerical method that allows to investigate trapping at a ≈ λ is based on

the T-matrix formalism, generally speaking, by addressing the scattered EM fields.

Namely, one can decompose the incident and scattered electric fields into vector

spherical harmonics (VSH) [34] in the following way:
Einc =

∞∑
n=1

n∑
m=−n

anmM
(2)
nm + bnmN

(2)
nm

Escat =
∞∑
n=1

n∑
m=−n

pnmM
(1)
nm + qnmN

(1)
nm,

(1.9)

whereM(1,2)
nm ,N

(1,2)
nm are complex spherical vector harmonics based on the Hankel

spherical functions of the first and second kinds that correspond to the magnetic

and electric multipoles, respectively. Then, the T-matrix connects expansion

coefficients anm, bnm of an incident wave with the scattered ones pnm, qnm in the

following way: 

...

pmn

...

qnm

...


= T ·



...

amn

...

bnm

...


. (1.10)

The key idea here is that the T-matrix itself depends only on the properties of

an object that scatters the light (such as, for instance, its shape, size, refractive

index) as well as on the wavelength of incident light. Therefore, if one manages to

compute ones the T-matrix elements, then it can be used for an arbitrary incident

field by defining anm, bnm expansion coefficients and computing pnm, qnm for the

scattered field just by simple matrix multiplication. Since we are mostly interested

in spherical particles for this thesis, then, following the GLMT the T-matrix will be

just diagonal and formed by the corresponding Mie-coefficients that can be easily

calculated numerically [34].
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Figure 1.3 –– a) Transverse and b) axial trapping stiffnesses as a radius of an
optically active particle. β states for the chirality of the incident light polarization
and distinguish between left-hand circular polarization (blue curve), right-hand
circular polarization (red curve) and linear polarization (yellow curve). The Fig. is

reproduced from [35]

Finally, given the T-matrix one can express the total axial force acting on a

particle in the following way [36]:

Fz = F 1
z + F 2

z , (1.11)

where

F 1
z =

2n

c

∞∑
n=1

n∑
m=−n

m

n(n+ 1)
ℜ (a∗nmbnm − p∗nmqnm) (1.12)

and

F 2
z =

2n

c

∞∑
n=1

n∑
m=−n

βnm
m

n(n+ 1)
× (1.13)

×ℜ
(
anma

∗
n+1,m + bnmb

∗
n+1,m − pnmp

∗
n+1,m − qnmq

∗
n+1,m

)
, (1.14)

with the factor βnm defined as:

βnm =
1

n+ 1

√
n(n+ 2)(n−m+ 1)(n+m+ 1)

(2n+ 1)(2n+ 3)
. (1.15)

That being said, the forceF 1
z is associatedwith interferingmultipoles with the same

n,m numbers, while F 2
z represents the terms with the same m and different n. To
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obtain the Fx and Fy components of the total force, one can rotate the coordinate

system by 90◦ such that x- or y-axis coincide with z-axis, use the expression

presented above and rotate the coordinate system back.

In order to provide a concrete example how the T-matrix approach can

be implemented in order to calculate the forces acting on a particle, we suggest

the following work [35]. To be more precise, the authors performed modelling

of optical tweezers based on the chiral incident beams to trap optically active

particles [37]. As a main result, they were able to develop the chiral T-matrix

method to compute transverse and axial trapping stiffnesses (we will discuss the

stiffness definition in Section 1.5) as illustrated in Fig. 1.3 for circularly and

linearly polarized incident light. It is worth mentioning that the proposed approach

can be extended to the modelling of optical forces acting on the optically active

living cells [35].

1.4 Multipole-based force calculation

In the following section we discuss the approach to calculate an optical force

based on the multipole decomposition. To start with, the time-averaged optical

force can be expressed in the following way:

⟨F⟩ = 1

2
ℜ
˛
S

T̂ · ndS, (1.16)

where the integration is performed over a surface S, and T is the Maxwell’s stress

tensor defined as:

T̂ =
1

2
ℜ
(
εε0E

∗ ⊗ E+ µµ0H
∗ ⊗H− 1

2

(
εε0|E|2 + µµ0|H|2

)
Î
)
, (1.17)

where E = Einc + Escat and H = Hinc +Hscat are the total electric and magnetic

fields, respectively, formed by incident and scattered light. Next, using the far-field

multipolar decomposition [38] one can represent the total force ⟨F⟩ as a sum of the

extinction force ⟨Fext⟩ and the recoil force ⟨Fext⟩ [39], namely:

⟨F⟩ = ⟨Fext⟩+ ⟨Frec⟩. (1.18)
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Performing the integration over theMaxwell’s stress tensor presented above results

in the following expression for the extinction force, where incident and scattered

fields are mixed:

⟨Fext⟩ = −1

2
lim
r→∞

˛
S

(ε0Einc · E∗
scat + µ0Hinc ·H∗

scat) dS, (1.19)

at the same time, following the same steps leads to the expression for the recoil

force where only scattered fields are involved:

⟨Frec⟩ = −1

4
lim
r→∞

˛
S

ℜ ((ε0Escat · E∗
scat + µ0Hscat ·H∗

scat) · n) dS. (1.20)

To proceed further, one can decompose the forces presented above into

different multipoles. That being said, the extinction force Fext can be represented

as a sum of electric dipole (ED), magnetic dipole (MD), electric quadrupole (EQ)

and magnetic quadrupole(MQ) forces as follows:

⟨F ext
i ⟩ = ⟨FED

i ⟩+ ⟨FMD
i ⟩+ ⟨FEQ

i ⟩+ ⟨FMQ
i ⟩, (1.21)

where the expressions for each multipole force are presented below:

⟨FED
i ⟩ = 1

2ℜ
(
pj∇iE

∗
j

)
⟨FMD

i ⟩ = 1
2ℜ
(
mj∇iB

∗
j

)
⟨FEQ

i ⟩ = 1
4ℜ
(
Qe

jk∇i∇kE
∗
j

)
⟨FMQ

i ⟩ = 1
4ℜ
(
Qm

jk∇i∇kB
∗
j

)
.

(1.22)

Here we use the induced electric p and magnetic m dipole moments defined via

the corresponding Mie-polarizablities αED and αMD, respectively, as:p = ε0αEDEinc

m = αMD/µ0Binc

, (1.23)

while the quadrupole moments for the electric and magnetic multipoles are the

following: Qe = ε0αEQ
∇Einc+Einc∇

2

Qm = αMQ/µ0
∇Binc+Binc∇

2

. (1.24)
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According to [34], the Mie-polarizabilities are directly related to the Mie-

coefficients {a1,a2,b1,b2} as: 

αED = i6πk3 a1

αMD = i6πk3 b1

αEQ = i40πk5 a2

αMQ = i40πk5 b2

(1.25)

A similar idea holds for the recoil force, namely, one can represent the total

force as a sum of electric dipole - magnetic dipole force (ED-MD), electric dipole

- electric quadrupole force (ED-EQ), magnetic dipole - magnetic quadrupole force

(MD-MQ) as well as electric quadrupole - magnetic quadrupole force (EQ-MQ):

F rec
i = FED−MD

i + FED−EQ
i + FMD−MQ

i + FEQ−MQ
i . (1.26)

The expressions for these interference forces are listed below and their names are

strongly connected with the corresponding dipole/quadrupole moments that are

involved in each particular force term:

⟨FED−MD
i ⟩ = − k4

12πε0c
ℜ (εijkpjm

∗
k)

⟨FED−EQ
i ⟩ = − k5

40πε0
ℑ
(
Qe

ijp
∗
j

)
⟨FMD−MQ

i ⟩ = − k5

40πε0c2
ℑ
(
Qm

ijm
∗
j

)
⟨FEQ−MQ

i ⟩ = − k6

240πε0c
ℜ (εijkpjm

∗
k)

. (1.27)

Therefore, now we are able to compute the total force acting on a particle as

well as to perform analysis on what multipole force dominates in each particular

case. One can clearly notice that all the forces presented above strongly depends

on the corresponding Mie-polarizabilities.

1.5 Trap stiffness

In the previous sections we discussed several approaches how to calculate

the total optical force acting on a particle. Next, a quite natural question arises:
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how to define whether our particle is indeed trapped by an optical tweezer. The

first intuitive condition is that the total force must be equal to 0 at the trapping

spot. However, if we consider more realistic cases where positioning a particle

precisely at one desired spot is almost impossible, particular behaviour of the total

force at the trapping position seems to be a necessary requirement to achieve stable

trapping. In other words, if one focuses for the moment on the axial trapping at

z = 0, then for the particle’s position at z > 0 the total force should be negative,

while at z < 0 the force is required to be positive. As a result, in both cases the

total force returns the particle back to the trapping spot in the optical tweezers.

To generalize this statement and characterize the trapping stability as well

as its strength, one can use axial and radial trap stiffnesses κz and κr, respectively,

defined in the following way:

κz = −∂zFz, κr = −∂rFr, (1.28)

where Fz and Fr represent for the axial and radial force components. In other

words, we have:

Fz

∣∣
z=0

≈ −κz · z, Fr

∣∣
r=0

≈ −κr · r. (1.29)

Finally, taking into account the argument on the total force sign at z > 0 and z < 0,

we obtain stable trapping for positive stiffness κ > 0, while for κ < 0 trapping is

unstable even though the total force might be equal to zero.
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2. STANDINGWAVE TRAP

The main purpose of the following chapter is to investigate an optical

trap formed by a standing wave. As was stated before, we want to trap a Mie-

resonant nanoparticle in minimum intensity spot, and, without loss of generality,

we consider trapping at the node of the electric field. By the end of this chapter we

want to answer the following question: what wavelength λ of the standing wave

and particle’s radiusR one could use to trap aMie-resonant particle by the standing

wave. The corresponding condition to obtain stable trapping, as was presented in

Section 1.5, is defined via the trap stiffness κ, namely, whether its value is positive

or negative.

2.1 Trap formation

To begin with, we consider a standing wave oriented along z-axis with

wavevector k = 2π
λ
. For our further convenience, we assume the electric field

E to be polarized along x-axis, while the magnetic fieldB is oriented along y-axis

(as illustrated in Fig. 2.1). Next, since one can represent the E-components of the

forward (f) and backward (b) propagating waves in the following way:

Ef
x(z,t) =

E0

2
· cos (kz −ωt) and Eb

x(z,t) = −E0

2
· cos (−kz −ωt), (2.1)

then, the total electric field can be written as:

Ex(z,t) = Ef
x(z,t) + Eb

x(z,t) = E0 sin kz sinωt. (2.2)

At the same time, the magnetic field components along y-direction for (f) and (b)

waves are equal to :

Bf
y (z,t) =

B0

2
· cos (kz −ωt) and Bb

y(z,t) =
B0

2
· cos (−kz −ωt), (2.3)

as a result, the total magnetic field takes the following form:

By(z,t) = Bf
y (z,t) + Bb

y(z,t) = B0 cos kz cosωt, (2.4)

and, as expected, experiences a π/2 shift with respect to the electric fieldEx(z,t).
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Figure 2.1 –– The standing wave formed along z-axis, electric and magnetic fields
are polarized along x- and y- axes, respectively, and posses a relative π/2 shift.
Mie-nanoparticle (green circle) is trapped in the node of the electric field, z = 0

Next, we take into account the fact that in a standing wave the scattering

forces acting on a nanoparticle from the forward and backward propagating waves

just cancel out. Therefore, there is no recoil components of the total force acting

on the nanoparticle. As a result, the expression of the total force simplifies into:

⟨F total
i ⟩ = ⟨FED

i ⟩+ ⟨FMD
i ⟩+ ⟨FEQ

i ⟩+ ⟨FMQ
i ⟩, (2.5)

where we consider the contribution of electric dipole (ED), magnetic dipole (MD),

electric quadrupole (EQ) as well as magnetic quadrupole (MQ). Overall, we need

to calculate explicitly the following terms:

⟨FED
i ⟩ = 1

2⟨ℜ
(
pj∇iE

∗
j

)
⟩

⟨FMD
i ⟩ = 1

2⟨ℜ
(
mj∇iB

∗
j

)
⟩

⟨FEQ
i ⟩ = 1

4⟨ℜ
(
Qe

jk∇i∇kE
∗
j

)
⟩

⟨FMQ
i ⟩ = 1

4⟨ℜ
(
Qm

jk∇i∇kB
∗
j

)
⟩.

(2.6)
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2.2 Dipole forces

At first, we discuss the electric and magnetic dipole forces. Since only x-

component of the total electric field is non-zero (see Fig. 2.1 ) while its derivative

is only non-zero with respect to z (according to 2.2), the electric dipole force

⟨FED⟩ = ⟨FED
z ⟩ · ez in 2.6 can be written as:

FED
z =

1

2
⟨ℜ (px∇zE

∗
x)⟩. (2.7)

Substituting into 2.7 the expression for the electric dipole moment equals px =

ε0αEDE0 sin kx sinωt (defined via the corresponding Mie-polarizability αED),

we have:

FED
z =

1

2
⟨ℜ (ε0αEDE0 sin kz sinωt · k · E0coskz sinωt)⟩ =

=
1

8
ε0ℜ(αED)kE

2
0 sin 2kz. (2.8)

Next, we compute the magnetic dipole force in a similar way, recalling

two facts: 1) only y-component of the total magnetic field is non-zero and 2)

its derivatives with respect to x and y vanish. As a result, we get the following

expression for the magnetic dipole force ⟨FMD⟩ = ⟨FMD
z ⟩ · ez:

⟨FMD
z ⟩ = 1

2
⟨ℜ (my∇zE

∗
x)⟩ = −1

8

ℜ(αMD)

µ0
kB2

0 sin 2kz, (2.9)

where we substitute the magnetic dipole moment as my = αMD

µ0
E0 sin kx sinωt.

Finally, the total force generated by the electric andmagnetic dipoles can be written

as:

⟨FD
z ⟩ = ⟨FED

z ⟩+ ⟨FMD
z ⟩ = 1

8
ε0ℜ(αED)kE

2
0 sin 2kz −

1

8

ℜ(αMD)

µ0
kB2

0 sin 2kz.

(2.10)

2.3 Quadrupole forces

Now we want to compute the forces coming from the electric and magnetic

quadrupoles. Recalling the expressions presented in 2.6, only z-component of the
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electric quadrupole force is nonzero and equals:

⟨FEQ
z ⟩ = 1

4
⟨ℜ (Qe

xz∇z∇zE
∗
x)⟩, (2.11)

where (since Ez = 0):

Qe
xz = ε0αEQ

∇zE
∗
x +∇xE

∗
z

2
= ε0αEQ

∇zE
∗
x

2
. (2.12)

As a result, after some trivial math operations, we obtain the following EQ-force:

⟨FEQ
z ⟩ = − 1

16
ε0ℜ(αEQ)k

3E2
0 sin 2kz. (2.13)

To proceed further, one could repeat the same steps to compute the magnetic

quadrupole force given as:

⟨FMQ
z ⟩ = 1

4
⟨ℜ
(
Qm

yz∇z∇zB
∗
y

)
⟩, (2.14)

and get the following expression:

⟨FMQ
z ⟩ = 1

16

ℜ(αMQ)

µ0
k3B2

0 sin 2kz. (2.15)

Overall, the total force formed by the electric and magnetic quadrupoles can be

written as:

⟨FQ
z ⟩ = ⟨FEQ

z ⟩+⟨FMQ
z ⟩ = − 1

16
ε0ℜ(αEQ)k

3E2
0 sin 2kz+

1

16

ℜ(αMQ)

µ0
k3B2

0 sin 2kz.

(2.16)

2.4 Trapping analysis

Since we have the expressions for the dipole and quadrupole forces derived

in the two previous subsections, we can write the total force being equal to:

⟨Fz⟩ = ⟨FD
z ⟩+ ⟨FQ

z ⟩ = 1

8
ε0ℜ(αED)kE

2
0 sin 2kz −

1

8

ℜ(αMD)

µ0
kB2

0 sin 2kz

− 1

16
ε0ℜ(αEQ)k

3E2
0 sin 2kz +

1

16

ℜ(αMQ)

µ0
k3B2

0 sin 2kz. (2.17)
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As was mentioned above, we are interested in trapping of a nanoparticle at E-

field minimum intensity spot, namely, at z = 0. To fulfil the trapping condition,

we should have:

Fz = −κ · z, κ > 0, (2.18)

where κ is the stiffness of the trap. When κ < 0, we have anti-trapping case and

the total force will take the particle out of the spot z = 0. Therefore, given the

expression 2.17 for the total force Fz, we can write:

κ = −∂zFz

∣∣
z=0

= −ε0E
2
0k

2

4
ℜ
(
αED − αMD − 1

2
αEQk

2 +
1

2
αMQk

2

)
. (2.19)

It is clearly seen that the sign of the total stiffness κ we get in 2.19 strongly

depends on the competition between the Mie-polarizabilities of the corresponding

multipole terms. To proceed, we consider a Mie-nanoparticle with radiusR = 150

nm and refractive index n = 3.6. Fig. 2.2 a) shows the absolute values of the Mie-

coefficient as a function of the wavelength λ of the standing wave we have. In

Figure 2.2 –– a) Absolute values of Mie-coefficients for electric dipole (ED),
magnetic dipole (MD), electric quadrupole (EQ) and magnetic quadrupole (MQ)
as a function of the standing wave wavelength λ. b) Total stiffness κ for trapping
of a nanoparticle at z = 0 position and its decomposition into multipole terms.
Green area represents the case when trapping condition (κ > 0) is full-filled, while
orange area defines κ < 0 - no trapping. Particle parameters: radius R = 150 nm,

refractive index n = 3.6
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Fig. 2.1 we plot total stiffness κ defined in 2.19 depending on the trap wavelength

λ. It is clearly seen that for λ > 1123 nm, we have κ > 0 provided by the MD

force (dashed red line) that keeps the particle at z = 0. Even though there is a

negative contribution fromMQ (purple dashed curve) and ED (blue dashed curve)

forces, their total contribution seems to be weaker compared to the MD force. If

we consider 847 nm < λ < 1123 nm, there is no trapping since κ < 0 and the

reason is a strong contribution of the electric and magnetic dipole forces taking the

particle out of z = 0 spot. Stable trapping appears again only when we cross the

wavelength of the MQ resonance, that being said, when λ < 779 nm. Overall, we

can make the following statement: if the wavelength of the standing wave is higher

than the resonant wavelength of the ED or EQmultipoles, the corresponding forces

would take out particle out of z = 0, while for the wavelengths lower than the

resonant ones, therefore, keeping the particle trapped. Completely opposite effect

is provided by themagneticmultipoles. Namely, above the resonant wavelength the

corresponding force will keep particle at z = 0, as a result, guaranteeing trapping,

while below the resonant wavelength it leads to no trapping at all.

To generalize the statement discussed in the paragraph above, we study trap

stiffness depending on the particle radius R and the wavelength λ of the standing

wave and, as a result, plot the phase map in Fig. 2.3 a) . One can clearly observe

that there are regions on the phase map where κ > 0 , therefore, stable trapping

is obtained, as well as the cases when κ < 0 - no trapping. In Fig. 2.3 b) we

demonstrate trapping stiffness as a binary phase map, where we define the regions

with κ > 0 (greed areas), provided by the magnetic dipole or magnetic quadrupole

forces, respectively.

Finally, we can conclude that a standing wave can be used as a prospective

trapping platform forMie-resonant nanoparticle. By correctly choosing the particle

radius as well as the wavelength λ of the standing wave, one can enhance the

influence of the magnetic multipoles to achieve stable trapping. At the same time,

one can trap a nanoparticle at the node of the magnetic field via the electric

dipole and quadrupole forces in a similar way. Since at this particular position the
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Figure 2.3 –– a) Trap stiffness at z = 0 as a function of the wavelength λ of the
standing wave and particle’s radius R. b) Trap stiffness binary map. Green area
corresponds to κ > 0 - trapping, orange area represents κ < 0 - no trapping.
Stable trapping areas for particle radius andwavelength λ are provided bymagnetic
dipole and quadrupole forces, respectively. Numerical parameters: refractive index

n = 3.6

electric field intensity achieves its maximum value, one just needs to choose the

wavelength to be blue-detuned with respect to the corresponding electric multipole

resonances. However, since in the standing wave trap we would always have the

strong intensity coming from either electric or magnetic field, the overheating

as well as the presence of external noise still exist. Therefore, as we discussed

in Introduction, we naturally proceed to the bottle-beam trap and address the

possibility of optical trapping at a position where both intensities of electric and

magnetic fields can be minimized.
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3. BOTTLE-BEAM TRAP

In the following chapter we discuss the bottle-beam trap as a platform to

achieve resonant nanoparticle’s trapping. We start from the general description of

the bottle-beam trap formation. Next, we proceed to the calculation of the force

acting on the particle in minimum intensity spot. Finally, we analyse the stiffness

behaviour as a function of the beam wavelength and particule’s radius to identify

configurations when stable trapping can be obtained.

3.1 Trap formation

As was briefly mentioned in Introduction, the bottle-beam trap is formed by

the two destructively interfering Gaussian beams. That being said, as illustrated in

Fig. 3.1 a), one can consider two beams oriented along z-direction with relative π-

phase difference. Next, we focus on axial trapping, therefore, the radial dependency

just vanishes, and for further convenience we can assumewithout loss of generality

the electric field to be polarized along x-axis while the magnetic field is oriented

along y-direction. As a result, one can rewrite the paraxial approximation of the

electric field components for both beams in the following way:E1(z) = E0 êx
w1

w1(z)
exp (−i (kz −ψ1(z)))

E2(z) = E0 êx
w2

w2(z)
exp (−i (π+ kz −ψ2(z)))

, (3.1)

as well as the magnetic fields:B1(z) = B0 êy
w1

w1(z)
exp (−i (kz −ψ1(z)))

B2(z) = B0 êy
w2

w2(z)
exp (−i (π+ kz −ψ2(z)))

. (3.2)

Finally, the total electric and magnetic fields can be written as:Etotal = E0 êx exp (−ikz) ·
(

w1

w1(z)
eiψ1(z) − w2

w2(z)
eiψ2(z)

)
Btotal = B0 êy exp (−ikz) ·

(
w1

w1(z)
eiψ1(z) − w2

w2(z)
eiψ2(z)

) . (3.3)

Fig. 3.1 b) shows the schematic intensity profile for the electric field in the xz

plane. It is worth mentioning that the intensity profile for the magnetic field has the
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same structure in the yz-plane. That being said, at the focus center of the Gaussian

beams that form the bottle-beam trap we want to achieve minimum intensity. This

is the reason why we choose the amplitudes of the electric and magnetic fields to

be equal for both beams. As a result, destructive interference between the beams

leads to the absence of both electric and magnetic fields, the dark blue dot in

Fig. 3.1 b) shows exactly this particular position. At the same time, there are two

spots along z-direction with the maximum total intensity (the red points in Fig. 3.1

b)). Finally, the name ’bottle-beam’ was mostly motivated by the corresponding

intensity profile: according to Fig. 3.1 b), the minimum intensity area (dark-blue

region) is surrounded by the higher intensity area (green/yellow regions).

Figure 3.1 –– a) Two destructively interfering Gaussian beams oriented along z-
direction with π-phase difference. The focus center for both beams is located at
z = 0, whilew1 andw2 are the beam waists at the focus spot. b) Intensity profile of
the electric field in xz-plane. The dark-blue dot represents the spot with minimum
intensity where trapping is desired. The red dots correspond to the maximum

intensity spots where conventional trapping is usually observed

Our main goal here is to achieve stable trapping of a resonant nanoparticle

in the minimum intensity area. It is worth to highlight one more time the difference

between the standing wave and the bottle-beam traps. While for a standing wave

one always has the maximum intensity of the magnetic field at the node of the

electric field and vice versa, the bottle-beam trap provides a platform where there

exists a spot with no electric andmagnetic fields at all. In our case, that corresponds

to z = 0 position.
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3.2 Total axial force

Figure 3.2 –– A particle is shifted to the right along z-direction from the focus beam
spot at z = 0. To provide stable trapping, the total force must point backwards (to
the left) towards the equilibrium position. Green transparent area represents stable

trapping at minimum intensity spot

Before we address the explicit calculation of the total axial force acting on

a resonant nanoparticle placed in the beam focus at z = 0, we want to provide an

intuitive picture regarding what total axial force profile one could expect along z-

direction . First of all, one can imagine the scattering force to be so strong, that

there is no trapping at all. In other words, the total force might be completely

positive along z such that it always takes the particle out of the trap. The second

case is shown in Fig. 3.3 a), where there are two positions at which the total force is

zero. To be more precise, the red dot corresponds to the high intensity spot shown

in Fig. 3.1 b). At this particular position, trapping is stable, in other words, the

associated stiffness κ is positive. However, at the minimum intensity spot, where

we actually want to trap the particle, the corresponding stiffness is negative, as a

result, trapping is unstable. At the same time, Fig. 3.3 b) shows the last case on

how the total force might change along z-axis. In contrast to the case illustrated in

Fig. 3.3 a) and discussed above, now the trapping at z ≈ 0 is stable, that being said,

the corresponding stiffness is positive, while the second trapping spot is unstable.

Therefore, this is exactly the case we would like to achieve.
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Figure 3.3 –– a) Schematic total axial force acting on a nanoparticle when trapping
at high intensity spot is observed. The red dot represents the stable trapping out
of z = 0 position where the total field intensity is minimum. While the blue dot
correspond to the unstable trapping since the stiffness κ is negative. b) The total
axial force profile when stable trapping at minimum intensity spot is observed,

namely, the stiffness κ > 0

Next, we recall themethod presented in Section 1.4 to calculate the total axial

force acting on a nanoparticle based on contributions from different multipoles.

That being said, we start from the expression of the extinction force as a sum:

⟨F ext
z ⟩ = ⟨FED

z ⟩+ ⟨FMD
z ⟩+ ⟨FEQ

z ⟩+ ⟨FMQ
z ⟩, (3.4)

where the explicit multipole forces takes the following form:

⟨FED
z ⟩ = 1

2⟨ℜ (px∇zE
∗
x)⟩

⟨FMD
z ⟩ = 1

2⟨ℜ
(
my∇zB

∗
y

)
⟩

⟨FEQ
z ⟩ = 1

4⟨ℜ
(
Qe

xz∇2
zE

∗
x

)
⟩

⟨FMQ
z ⟩ = 1

4⟨ℜ
(
Qm

yz∇2
zB

∗
y

)
⟩.

(3.5)

As one can easily check, according to the system configuration presented in Fig.

3.1, only the terms mentioned above are non-zero.
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Following the similar steps, one can calculate the total recoil force as:

⟨F rec
z ⟩ = ⟨FED−EQ

z ⟩+ ⟨FED−MQ
z ⟩+ ⟨FMD−MQ

z ⟩+ ⟨FEQ−MQ
z ⟩, (3.6)

where the multipole-multipole force terms can be written as:

⟨FED−EQ
z ⟩ = − k4

12πε0c
ℜ
(
pxm

∗
y

)
⟨FED−MQ

z ⟩ = − k5

40πε0
ℑ (Qe

zxp
∗
x)

⟨FMD−MQ
z ⟩ = − k5

40πε0c2
ℑ
(
Qe

zym
∗
y

)
⟨FEQ−MQ

z ⟩ = − k6

240πε0c
ℜ
(
Qe

xzQ
m∗
zy

)
.

(3.7)

Figure 3.4 –– The total axial stiffness κ as a function of the trapping wavelength
λ. Green stripes represent stable trapping, κ > 0 , provided by MQ, ED or MD
forces, respectively. For orange stripes trapping condition is not fulfilled. Blue
range stands for the conventional trapping at maximum intensity spot. Particle

parameters: radius R = 150 nm, refractive index n = 3.6

Based on the expressions presented above, we calculate numerically the

total force acting on the nanoparticle. That being said, substituting the electric and

magnetic field components of the Gaussian beams, we implement second-order

finite-difference scheme to compute the gradient derivatives along z-axis. As a
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result, Fig.3.4 shows the trap stiffness κ as a function of the wavelength λ. As

always, we are interested only in cases when the stiffness is positive. Therefore,

the green areas in Fig.3.4 identify the particular ranges of λ when stable trapping

at minimum intensity spot can be obtained. The orange areas represents the cases

when there is no trapping at all due to the strong scattering force. Moreover, the

multipole analysis we implement allows to classify a pacrticular multipole that

contribute the most instable trapping formation. To be more precise, for 725 nm

< λ < 760 nm trapping is provided by MQ force, for 820 nm < λ < 830 nm

- by ED force, for 915 nm < λ < 1020 nm - by MD force. The blue range

of the wavelength λ corresponds to the conventional high-intensity spot trapping

illustrated in Fig. 3.3 a).

3.3 Axial trapping analysis

Figure 3.5 –– a) Total axial stiffness depending on the beam wavelength λ and on
the particle’s radius R. The grey area corresponds to the case when there is no
trapping due to the strong contribution of the scattering force. b) Axial stiffness
binary map. Green areas represent κ > 0 provided by the MD, ED and EQ forces,
respectively. Blue area correspond to high-intensity trapping. Particle parameters:

refractive index n = 3.6

Next, we study the trap stiffness as we did for the standing wave trap above.

Namely, Fig. 3.5 a) shows the axial stiffness κ as a function of the Gaussian beams’

wavelength λ and particle’s radius R. To plot this 2D map, we proceed as follows:
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at first, we distinguish the case when there is no trapping at all since the scattered

force is dominating, as a result, the grey area in Fig. 3.5 a) directly represents this

particular case. Next, we select configurations when the stiffness κ is negative, in

other words, when trapping is unstable, and represent it via the dark blue areas in

Fig. 3.5 a). And the only case left is exactly the one we are interested in, namely,

when stable trapping is achieved at a position close to the focus beam center z = 0.

That being said, Fig. 3.5 b) shows when low-intensity trapping is observed and the

main multipole that contributes to each particular trapping. In addition, we are also

able to identify conventional trapping at the maximum intensity spot.

3.4 Total transverse force

Figure 3.6 –– A particle is shifted along x-direction in the bottle-beam trap above
the equilibrium position at x = y = z = 0. To achieve stable trapping, the
total transverse optical force Fx must point down to the equilibrium spot. For
displacement below the trapping spot, the force direction should be the opposite

Since in the previous section we discuss the axial force acting on a

nanoparticle, now we proceed to radial trapping. Without loss of generality and

taking into account the axial symmetry of the bottle-beam trap, we consider the

transverse force acting on a nanoparticle shifted along x-direction as illustrated

in Fig. 3.6. Therefore, we are interested whether it is possible to obtain the total

transverse force that keeps the particle at minimum intensity spot.
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In this case, we can assume y = z = 0, as a result, the electric field

components of two Gaussian beams are simplified into:E1
x(x) = E0 · e

− x2

w2
1

E2
x(x) = −E0 · e

− x2

w2
2

, (3.8)

where indices (1,2) represents the first and the second beams, respectively. At the

same time, the magnetic field components can be written as:B1
y(x) = B0 · e

− x2

w2
1

B2
y(x) = −B0 · e

− x2

w2
2

, (3.9)

where the ”−”sign shows the π-phase difference between the beams. As a result,

the total field components are the following:
E total

x (x) = E0 ·
(
e
− x2

w2
1 − e

− x2

w2
2

)
Btotal

y (x) = B0 ·
(
e
− x2

w2
1 − e

− x2

w2
2

) . (3.10)

Next, we proceed to the transverse force calculation. First of all, for radially

shifted nanoparticle the scattering force is zero. This statement can be understood

in two ways: by direct calculation observing that the corresponding real and

imaginary parts vanish, or by the fact that scattering force is proportional to the

Poynting vector that is equal to zero for the decaying EM fields presented in 3.10.

As a result, the total force acting on the nanoparticle can be represented as a sum

of the gradient forces associated with the set of multipoles in the following way:

⟨Fx⟩ = ⟨FED
x ⟩+ ⟨FMD

x ⟩+ ⟨FEQ
x ⟩+ ⟨FMQ

x ⟩, (3.11)

where the multipole forces can be written as:

⟨FED
x ⟩ = ε0

2 ⟨ℜ
(
αEDE

total
x ∇xE

total
x

)
⟩

⟨FMD
x ⟩ = 1

2µ0
⟨ℜ
(
αMDB

total
y ∇xB

total
y

)
⟩

⟨FEQ
x ⟩ = ε0

4 ⟨ℜ
(
αEQ∇xE

total
x ∇2

xE
total
x

)
⟩

⟨FMQ
x ⟩ = 1

4µ0
⟨ℜ
(
αMQ∇xB

total
y ∇2

xB
total
y

)
⟩

. (3.12)

37



Here, in contrast to axial trapping discussed above, the gradient derivatives are

taken with respect to x, as a result, only x component of the total force is non-zero.

To proceed further, we calculate the stiffness κ at x ≈ 0 by expanding the

force components presented in 3.12 in Taylor series and taking into account only

linear termswith respect to x. As a result, we get the following approximation for κ:

κ
∣∣
x=0

≈
(
1/w2

2 − 1/w2
1

)2 · (ε0E2
0ℜ (αEQ) +

1

µ0
B2

0ℜ (αMQ)

)
. (3.13)

One can clearly notice that only quadrupole terms contribute to the stiffness in this

case. It can be also seen in 3.12, where, since E total
x = Btotal

y = 0 at the beam

focus center. Next, similarly to the standing wave trap we observe the competition

between different multipole forces, to be more precise, related to electric and

magnetic quadrupoles. As we already discussed, the fact whether EQ or MQ force

will keep the particle at the focus spot or take it away from the equilibrium position

strongly depends on the wavelength of the trapped beams. That being said, this

dependency is contained in the Mie polarizabilities αEQ and αMQ, thus, below we

analyse the transverse stiffness in more detail.

Fig. 3.7 b) shows the transverse stiffness κ depending on the wavelength λ.

As before, the green areas represent the cases when stable trapping is observed,

in other words, when the stiffness is positive, while the orange regions state for

κ < 0, the absence of trapping. By comparing Fig. 3.7 b) with Fig. 3.7 a) where

the absolute value of Mie-coefficients are plotted, one can clearly see that for 580

nm < λ < 625 nm transverse trapping is achieved by the EQ force, while for 755

nm < λ < 779 nm stable trapping is provided by the MQ force. Therefore, here

one can notice the similar effect we observe for the standing wave trap, namely, by

choosing the wavelength λ from the corresponding side of the multipole resonance

(in this particular case, of EQ or MQ resonance), we can observe trapping in

minimum intensity spot.
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Figure 3.7 –– a) Absolute values of Mie-coefficients for electric dipole (ED),
magnetic dipole (MD), electric quadrupole (EQ) and magnetic quadrupole (MQ)
as a function of the standing wave wavelength λ. b) Transverse stiffness κ for
trapping of a nanoparticle at z = 0 position and its decomposition into multipole
terms. Green stripes represent the case when stable trapping (κ > 0) is achieved
, while orange stripes defines κ < 0 - no trapping. Particle parameters: refractive

index n = 3.6

Figure 3.8 –– a) Transverse stiffness as a function of λ and particle’s radius R.
b) Transverse stiffness phase map. Green areas κ > 0 represent stable trapping
provided by MQ and EQ forces, respectively. Particle parameters: refractive index

n = 3.6

3.5 Transverse trapping analysis

Now we want to investigate transverse trap stiffness as usually in this

thesis depending on the wavelenght λ and R-radius of the particle. Fig. 3.8 a)
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shows the transverse stiffness map, where one can notice two areas of parameter

configurations with κ > 0. To be more precise, Fig. 3.8 b) shows directly the

ranges of λ and R when stable trapping can be obtained. As before, the multipole

approach we implement allow as to identify that trapping is achieved due to the

MQ or EQ forces, respectively, in agreement with the expression derived in 3.13.

To summarize the results presented in this chapter, we observe that the

bottle-beam trap can be used to achieve stable trapping in minimum intensity spot.

The multipole decomposition method allows to define the ranges of the particle’s

radius R and beam wavelength λ such that the total axial or transversal stiffnesses

are positive. If one compare the binary phase maps for axial (see Fig. 3.7a))

and transverse ( see Fig. 3.8 b)) stiffnesses, we see that the particular green area

associatedwith theMQ trapping force provides trapping in all desired directions, in

other words, both for axial and radial trappings. At the same time, MD trapping is

achieved for displacements along z-direction, while there is no transverse trapping

in the corresponding ranges of λ and R.

40



4. OPTICAL TORQUE INDUCED BY THE SECOND HARMONIC
GENERATION

As was announced in Introduction, resonant nanoparticles provide

new opportunities not only for optical trapping, but also for optomechanical

manipulations. In the following chapter, we address the rotation properties, and

propose a novel mechanism to achieve the angular-momentum transfer to a non-

absorbing particle induced by the second harmonic generation. That being said,

the mechanism we introduce is completely different compared to earlier well-

known ways to optically rotate a particle based on either the rotational symmetry

breaking or on the presence of particle’s absorption.

Figure 4.1 –– A spherical nanoparticle illuminated by circularly polarized light
at the frequency ω generates scattered second-harmonic field at the doubled
frequency. Total torque acting on the nanoparticle is a sum of the torque induced
by incident light (fundamental torque) and torque associated with the scattered SH

field (SH torque)

To be more precise, we consider a spherical nanoparticle illuminated by

circularly polarised incident light as illustrated in Fig. 4.1. We assume the

emergence of the second harmonic scattered field, as a result, total torque Ttotal

acting on the nanoparticle can be written, in general, as a sum of fundamental
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torque T(ω) coming from the incident light and torque T(2ω) generated by the

second harmonic scattered field. Therefore, below we present explicit derivations

for the mentioned torque components based on the multipole decomposition.

4.1 VSH approach for optical torques

In the following subsection we discuss the approach to calculate optical

torque acting on a nanoparticle using complex vector spherical harmonics (VSH) as

a main tool we used for our work. First of all, we start form the general expression

for time-averaged torque mentioned in [40; 41]:

T =

˛

S

M̂ · ndS, (4.1)

where n stands for outer unit normal vector to the surface S, while M̂ = r × T̂

represents the angular momentum flux tensor. T̂ corresponds to the Maxwell’s

stress tensor defined as:

T̂ =
1

2
ℜ
(
εε0E

∗ ⊗ E+ µµ0H
∗ ⊗H− 1

2

(
εε0|E|2 + µµ0|H|2

)
Î
)
. (4.2)

For further convenience, one can choose the integration surface to be just a perfect

sphere and simplify the integral 4.1 into [42; 43]:

T = −r3

2
ℜ
ˆ

4π

dΩ

(
(εε0E

∗
rEφ + µµ0H

∗
rHφ) êϑ − (εε0E

∗
rEϑ + µµ0H

∗
rHϑ) êφ

)
,

(4.3)

where the integration is performed over the solid angle dΩ, and the electric and

magnetic field components are represented in spherical coordinates (r, θ,φ).

Next, we use VSH to represent the electric and magnetic fields in the

following way [34]:
E =

∞∑
n=1

n∑
m=−n

(AmnMmn +BmnNmn)

H = 1
iZ

∞∑
n=1

n∑
m=−n

(AmnNmn +BmnMmn),
(4.4)
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Here Z represents the total medium impedance, Mmn and Nmn stand for the

magnetic and electric multipoles, respectively, with the total angular momentum

n and the z-projection of the total angular momentum being equal to m.

The total fields are formed by the incident and scattered ones, namely, E =

Einc + Escat andH = Hinc +Hscat. Thus, we can use the VSH notation presented

above and express the incident and scattered fields as [34]:
Einc =

∞∑
n=1

n∑
m=−n

(Ainc
mnM

(1)
mn +Binc

mnN
(1)
mn)

Escat =
∞∑
n=1

n∑
m=−n

(Ascat
mnM

(3)
mn +Bscat

mnN
(3)
mn)

, (4.5)

as well as 
Hinc = 1

iZ

∞∑
n=1

n∑
m=−n

(Ainc
mnN

(1)
mn +Binc

mnM
(1)
mn)

Hscat = 1
iZ

∞∑
n=1

n∑
m=−n

(Ascat
mnN

(3)
mn +Bscat

mnM
(3)
mn).

(4.6)

Finally, performing the integration presented in 4.3 and taking into account the

orthogonality properties for VSH [44; 45], we obtain the following expression for

the torque component along z-direction:

Tz = T amp
z + T cross

z , (4.7)

where T amp
z associated with the amplitudes of expansion coefficients and equal to:

T amp
z = − εε0

2k(ω)3

∞∑
n=1

n∑
m=−n

mn(n+ 1)
(
|Ascat

mn |2 + |Bscat
mn |2

)
, (4.8)

while T cross
z contains the interference terms between incident and scattered fields

as:

T cross
z = − εε0

2k(ω)3

∞∑
n=1

n∑
m=−n

mn(n+ 1)Re
(
Ainc

mjA
scat∗
mn +Binc

mnB
scat∗
mn

)
. (4.9)

4.2 Torque on the fundamental frequency

As was mentioned above, we consider circularly polarised incident light

and, without loss of generality, magnetic numbermi is equal to +1 for right-hand
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polarization. As a result, the VSH coefficients related to the incident field take the

following form [34]: Ainc
mn ∼

√
4π(2n+1)
n(n+1) · δm,mi

Binc
mn = mi · Ainc

mn.
(4.10)

Next, VSH coefficients related to the scattered fields are proportional to the Mie-

scattering coefficients an and bn [34], as a result, equal to:Ascat
mn ∼ an · δm,mi

Bscat
mn ∼ bn · δm,mi.

(4.11)

Finally, substituting 4.10 and 4.11 into 4.9, we get T (ω)
z to be proportional to the

absorption cross-section, namely:

σabs ∼ T (ω)
z =

∞∑
n=1

n(n+ 1)
(
Re(an + bn)− (|an|2 + |bn|2)

)
, (4.12)

and, to be more precise, take the following form:

T (ω)
z =

c

nm
· σabsS(ω)

z , (4.13)

where nm represents the refractive index of medium, σabs is the absorption cross-

section, S(ω)
z = mi

2ωεε0E
2
0 stands for z-component of the canonical spin-angular

momentum density.

Next, we assume that all the absorbed power coming from the incident light

goes directly to the second harmonic generation. In other words, we have σabs →

σSHG, where σSHG represents the SHG cross-section. As a result, the expression

for the fundamental torque can be re-written as:

T (ω)
z =

c

nm
· σSHGS(ω)

z . (4.14)

To compute σSHG, we follow the approach presented in [46]. At first, one can

represent the scattered second harmonic field via real VSH in the following way:

E2ω(r) =
∞∑
n=1

n∑
m=0

∑
W=M,N

(
DWemjW

(3)
emj (k1(2ω), r) +DWomjW

(3)
omj (k1(2ω), r)

)
,

(4.15)
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where k1(2ω) =
√
ε1·2ω
c represents the wave vector of the outside medium, W =

M,N stand for the electric and magnetic real vector spherical harmonics such that

the superscript (3) corresponds to the first-kind spherical Hankel functions , while

(1) states for the first-kind spherical Bessel function [34].DW o
emn are the expansion

coefficients that, according to [46], are proportional to:

DWe
omj

∼
ˆ

V

W
(1)
e
omn(k2(2ω), r) ·P2ω(r)dV, (4.16)

where P2ω(r) states for the nonlinear polarization at the second-harmonic

frequency and defined via the second-order polarizability tensor χ̂ as:

P2ω(r) = χ̂E(ω)(r)E(ω)(r), (4.17)

and k2(2ω) =
√
ε2·2ω
c represents the wave vector inside the particle.

At the same time, we can express the scattered field via the complex VSH

as [46]:

E2ω(r) =
∞∑
n=1

n∑
m=−n

(
ascatmnM

(3)
mn + bscatmnN

(3)
mn

)
. (4.18)

To connect the expansion coefficients DW o
emn related to the real VSH with

ascatmn , b
scat
mn coming from the complex VSH decomposition, one can use the following

relation between real and complex VSH for non-negativem ⩾ 0 presented in [34]:

Wmn =

√
2n+ 1

4π

(n−m)!

(n+m)!
(Wemn + iWomn) = βmn (Wemn + iWomn) ,

(4.19)

where βmn =
√

2n+1
4π

(n−m)!
(n+m)! . Next, in order to generalize this relation for negative

m, we use the following symmetry property for m ⩾ 0:

W−mn = (−1)mW∗
mn = (−1)mβmn (Wemn − iWomn) . (4.20)

As a result, we can convert the expansion coefficients from real VSH to complex

ones and vice versa as follows:

m > 0 :


ascatmn =

DMemn

2βmn
+

DMomn

2iβmn

bscatmn =
DNemn

2βmn
+

DNomn

2iβmn

,
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m = 0 :


asmn =

DMemn

2βmn

bsmn =
DNemn

2βmn

,

m < 0 :


asmn =

(−1)|m|DMe|m|n

2β|m|n
−

(−1)|m|DMo|m|n

2iβ|m|n

bsmn =
(−1)|m|DNe|m|n

2β|m|n
−

(−1)|m|DNo|m|n

2iβ|m|n

. (4.21)

Finally, one can use the relations presented above together with the expression of

the SHG cross-section defined via the real VSH expansion coefficients as [46]:

σSHG =
2π

k1(2ω)2

∞∑
n=1

∑
W=M,N

n(n+ 1)

(2n+ 1)
×

×

(
n∑

m=1

(n+m)!

(n−m)!

(
|DWemn|2 + |DWomn|2

)
+ 2 |DWe0n|2

) (4.22)

to rewrite the fundamental torque 4.14 in the following way:

T (ω)
z = miT0

σSHG

σgeom
= miT0

1

σgeom

1

k(2ω)2

∞∑
n=1

n∑
m=−n

(
W E

mn +WM
mn

)
. (4.23)

Here σgeom = πa2 is the geometrical cross section, T0 = εε0
2k(ω)E

2
0σgeom is a

normalization factor.W E
mn andWM

mn are the dimensionless expansion coefficients

related to ascatmn and bscatmn in the following way:W E
mn = n(n+1)

E2
0

|ascatmn |
2

WM
mn = n(n+1)

E2
0

|bscatmn |
2
.

(4.24)

4.3 Torque on the doubled frequency

Next, we want to compute the torque associated with the doubled frequency

2ω. Taking into account the fact that there is no incident field at this particular

frequency, the corresponding VSH expansion coefficients Ainc
mn = Binc

mn = 0.

As a result, only scattering coefficients Ascat
mn and Bscat

mn are non-zero. Therefore,

recalling the general expression of the torque derived in 4.9, we get the following
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SH torque where only squared amplitudes associated with expansion coefficients

of the scattered fields are involved :

T (2ω)
z = − εε0

2k(ω)3

∞∑
n=1

n∑
m=−n

mn(n+ 1)
(
|Ascat

mn |2 + |Bscat
mn |2

)
. (4.25)

To proceed further, we use the dimensionless expansion coefficients we introduced

above, and the SH torque can be re-written as:

T (2ω)
z = −1

2
T0

1

σgeom

∞∑
n=1

n∑
m=−n

m
(
W E

mn +WM
mn

)
, (4.26)

where, as we did for the fundamental torque, the normalization factor T0 was used.

4.4 Total torque

Finally, since we obtain the expressions for torques on the fundamental and

double frequencies, total torque acting on a nanoparticle takes the following form:

T total
z = T (ω)

z + T (2ω)
z =

1

2
T0

1

σgeomk(2ω)2

∑
nm

(2minc −m)
(
W E

mn +WM
mn

)
.

(4.27)

As a result, given the dimensionless expansion coefficientsW E
mn andWM

mn, one can

directly compute total torque. Since it is impossible to calculate these coefficients

fully analytically, we address the numerical approach. To be more precise, we

compute overlapping integrals presented in 4.16 to obtain the real VSH expansion

coefficientsDW o
emn. Next, we use the relation between real and complex expansion

coefficients 4.21 to convert numerically DW o
emn into asmn, b

s
mn. Therefore, we can

use 4.24 to calculateW E
mn,W

M
mn, and, finally, compute the total torque acting on a

nanoparticle. Below we illustrate the emergence of non-linear induced torque for

a concrete example.

That being said, we consider a spherical nanoparticle made of GaAs as one

of the most-common materials to observe the second harmonic generation in real

experiments [47]. The wavelength of the incident light is λ = 1550 nm, while the

refractive indices at the frequencies ω and 2ω are slightly different, and equal to
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nω = 3.28 and n2ω = 3.58, respectively. In the principal axes the only non-zero

components of the second-order susceptibility tensor χ(2)GaAs are the following:

χ(2)xyz = χ
(2)
yzx = χ

(2)
zxy = χ

(2)
xzy = χ

(2)
zyx = χ

(2)
yxz = χ

(2)
GaAs = 100 pm/V. (4.28)

Figure 4.2 –– SHG efficiency produced by a spherical GaAs nanoparticle
depending on its normalized radius. The dashed lines represent the multipole
decomposition confirming the statement that only multipoles with m = 0, 4

are involved by the symmetry properties. Numerical parameters: incident light
wavelength λ = 1550 nm, refractive index at the fundamental frequency nω =

3.28, at the 2ω nω = 3.56

As a result, taking into account the lattice symmetry of GaAs crystal

provided by χ(2)GaAs as well as the axial symmetry of the spherical particle, one

can show that only m = 0, ± 4 VSH are allowed in the second harmonic field

produced from the right/ left circularly polarised incident light [46]. To confirm

this statement, Fig. 4.2 shows the SHG efficiency (naturally defined as the fraction

σSHG/σgeom) depending on the particle radius normalized by the wavevector k(ω).

The solid black line represents the total SHG efficiency, while dashed curves

correspond to the multipole decomposition, where (m,n) notation was used on

the right to address different multipoles that contribute to the total SHG efficiency.
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Therefore, one can clearly see that the total efficiency is fully represented only via

multipoles withm = 0, 4, therefore, indeed only these particular terms are allowed

in the second harmonic scattered filed spectrum.

Going back to the expression for total torque presented in 4.27, we recall the

fact that mi = 1 for the polarization of the incident light we consider. Therefore,

for VSH with m = 0, SH torque T
(2ω)
z = 0, while T

(ω)
z > 0, as a result, the

corresponding term that goes to total torque is positive and provided only by the

one that corresponds to the fundamental frequencyω. At the same time, form = 4

harmonics, we have 2mi − m = 2 − 4 = −2, thus, T (2ω)
z = −2 · T (ω)

z and the

contribution to total torque coming from this particular multipole is negative and

equal to −T
(ω)
z .

Figure 4.3 –– Total optical torque acting on the spherical GaAs nanoparticle as a
function of its radius. Due to the dominating contribution of m = 0 multipole

modes, the total torque is fully positive

Finally, we compute the total torque acting on a resonant nanoparticle as a

function of normalized particle radius shown in Fig. 4.3. Even though it was shown

that for m = 4 multipoles the contribution to total torque is negative, total torque

we obtain numerically is still fully positive. The reason for that is the dominating

contribution to the SHG process coming from the harmonics with m = 0 (as

illustrated in Fig. 4.2). At the same time, one can clearly see that the maximum

values of the total torque correspond to the maximal values of the SH efficiency
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as shown in Fig. 4.2, while the strongest contribution of the SH torque appears

at ka ≈ 3.18.

Overall, we indeed observe the emergence of non-linear optical torque acting

on a Mie-resonant nanoparticle and induced by the second harmonic generation.

However, even though the terms that correspond to SH torque are negative, total

torque seems to be positive. At this point a natural question might appear, namely,

whether it is possible to obtain negative total torque. The answer is yes [48], but

goes beyond the scope of this work, however, wewould like to highlight the general

idea. First of all, it is quite intuitive that one needs to modify the SH scattered field

such that the modes with m = 4 are sufficiently enhanced. To be more precise,

changing the shape of the particle from spherical to cylindrical can lead to the

emergence of quasi-bound states (qBIC) in the continuum, therefore, resulting in

negative optical torque due to its dominating contribution in the scattered field

spectrum. As was already mentioned, a more detailed analysis of this question is

presented in [48].
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CONCLUSION

To summarize, we demonstrated several optomechanical applications

related to trapping and rotating properties of resonant Mie-nanoparticles. To

be more precise, in the following work we:

1) Investigated the total force acting on a resonant nanoparticle trapped at

the node of the standing wave electric field. We derived the analytical expression

for total trap stiffness based on the multipole decomposition and identify the main

multipole forces for stable trapping at low-intensity spot related to the particle’s

radius and the wavelength of the standing wave. It was shown that at the node of

the electric field stable trapping is provided by magnetic multipole forces, while

for trapping at the node of magnetic field one could expect electric multipoles to

provide trapping in the same way.

2) Studied the formation of the bottle-beam trap and observed stable

trapping at minimum intensity spot. Explicitly calculated axial and transverse

forces allowed us to determine the relative particle’s radius and beam wavelength

such that stable trapping can be observed. The multipole decomposition approach

showed that magnetic dipole, electric dipole and magnetic quadrupole forces stand

for trapping at minimum intensity spot along z-direction, while the transverse

trapping is achieved mainly by the electric and magnetic quadrupole forces.

3) Demonstrated the emergence of optical torque acting on a perfect

spherical nanoparticle induced by the second harmonic generation. We explicitly

derived the fundamental and the SH torque components that forms total torque.

In addition, we presented a concrete example how the expression we derived can

be implemented to calculate torque acting on a GaAs nanoparticle. The following

results are included in arxiv publication [48] that was recently accepted in Physics

Review Letters.

We believe that our findings open several prospective directions for

studying optomechanical properties of resonant nanoparticles. Here we are
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especially interested in the ones related to optical trapping, namely, regarding

the optimization of system parameters for a real experiment. In other words,

taking into account the natural constraints on incident beam power, desired

trapping wavelength, refractive index of a particle as well as its common radius,

the question on how tomaximise stability of trapping, namely, to increase the value

of total positive stiffness, still remains to be open and quite non-trivial. At the same

time, since one of the main motivations to use bottle-beam traps is minimising the

internal temperature of a trapped particle, its explicit calculation or, for instance,

an estimation based on the black body radiation, could convince experimentalists

to continue developing optical levitation techniques with resonant nanoparticles.
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