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Цель	исследования	/	Research	goal	
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теории	групп;	2)	исследование	одночастичных	высокодобротных	возбуждений	с	угловым
моментом	и	механизма	их	формирования;	3)	исследование	двухчастичных
высокодобротных	возбуждений	и	их	связь	с	одночастичными	высокодобротными
возбуждениями,	включая	правила	отбора.	\	1)	Develop	theoretical	analysis	of	eigenstates	in
oligomers	with	in-plane	rotational	symmetry	based	on	effective	Schrodinger	equation	and	group
theory;	2)	investigation	of	singly	excited	high-Q	states	with	angular	momentum	and	mechanism
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Краткая	характеристика	полученных	результатов	/	Short	summary	of	results/findings	
В	работе	исследуются	субизлучательные	(высокодобротные)	одночастичные	(ОЧ)	и
двухчастичные	(ДЧ)	возбуждения	с	угловым	моментом	(m)	в	ансамблях	двухуровневых



дипольных	эмиттеров,	которые	могут	хранить	возбуждения	в	виде	когерентных
коллективных	состояний.	1)	Проведен	теоретический	анализ	собственных	состояний	в
структурах	эмиттеров	с	симметрией	относительно	поворота	в	плоскости,	в	которых
возбуждения	обладают	угловым	моментом.	Во-первых,	сформулированы	эффективные
уравнения,	позволяющие	находить	ОЧ	и	ДЧ	собственные	состояния	с	разными	угловыми
моментами	в	системе	концентрических	колец	эмиттеров.	Во-вторых,	выведено	количество
ДЧ	собственных	состояний	с	различным	угловым	моментом	в	таких	системах.	В-третьих,
сформулировано	правило	отбора	вкладов	произведений	ОЧ	состояний	в	ДЧ	состояние:
неприводимое	представление	ДЧ	состояния	должно	входить	в	произведение	неприводимых
представлений	ОЧ	состояний.	2)	Для	получения	субизлучательных	состояний	берутся
олигомеры,	которые	можно	рассматривать	как	две	подсистемы	излучателей.
Взаимодействие	между	состояниями	подсистем,	обладающими	одинаковой	симметрией,
приводит	к	образованию	симметричных	и	антисимметричных	состояний,	которые
обладают	симметрией	исходных	состояний.	Показано,	что	из-за	деструктивной
интерференции	между	подсистемами	антисимметричное	состояние	имеет	добротность
много	больше,	чем	добротность	одиночного	излучателя	,	при	расстояниях	между
излучателями	менее	четверти	резонансной	длины	волны	одиночного	эмиттера.	В
частности,	кольцо	с	эмиттером	в	центре	поддерживает	высокодобротное	ОЧ	возбуждение	с
m	=	0,	тогда	как	два	кольца	поддерживают	высокодобротные	ОЧ	возбуждения	со	всеми
значениями	m.	3)	Два	кольца	поддерживают	66	двухчастичных	возбуждения,	из	которых
десять	имеют	m	=	3.	Самым	высокодобротным	ДЧ	возбуждением	является	возбуждение	с
m	=	3,	которое	представляет	собой	пару	высокодобротных	ОЧ	возбуждений	с	m	=	1	и	m	=	2,
а	энергия	этого	ДЧ	возбуждения	с	m	=	3	является	суммой	энергий	высокодобротных	ОЧ
возбуждений	с	m	=	1	и	m	=	2.	\	This	thesis	investigates	subradiant	(high-Q)	singly	excited	(SE)
and	doubly	excited	(DE)	states	with	angular	momentum	(m)	in	ensembles	of	two-level	dipole
emitters	that	can	store	the	excitations	in	coherent	collective	states.	1)	Theoretical	analysis	of
eigenstates	in	structures	of	emitters	with	in-plane	rotational	symmetry	is	performed.	Excitations
in	such	structures	can	have	angular	momentum.	Firstly,	we	formulated	the	effective	equations	that
allow	us	to	find	SE	and	DE	eigenstates	with	different	angular	momentum	in	the	system	of
concentric	rings	of	emitters.	Secondly,	the	number	of	DE	eigenstates	with	different	angular
momentum	in	such	systems	is	derived.	Thirdly,	the	selection	rule	for	contributions	of	products	of
SE	states	into	a	DE	state	is	formulated:	the	irreducible	representation	of	the	DE	state	should	enter
the	product	of	irreducible	representations	of	SE	states.	2)	To	achieve	subradiant	states,	we
consider	oligomers	that	can	be	viewed	as	comprising	two	subsystems	of	emitters.	The	interaction
between	subsystems'	states	possessing	the	same	symmetry	results	in	the	formation	of	symmetric
and	anti-symmetric	states,	which	also	retain	the	initial	states'	symmetry.	It	is	shown	that,	due	to
destructive	interference	between	subsystems,	the	anti-symmetric	state	has	a	large	Q-factor
compared	to	that	of	a	single	emitter	for	separations	between	emitters	smaller	than	a	quarter	of	the
emitter's	resonant	wavelength.	In	particular,	a	ring	with	a	central	emitter	maintains	a	high-Q	SE
state	with	m	=	0,	whereas	two	rings	maintain	high-Q	SE	states	with	all	values	of	m.	3)	Two	rings
maintain	66	excited	eigenstates,	and	ten	of	them	have	m	=	3.	The	most	subradiant	DE	state	is	the
state	with	m	=	3	which	is	a	pair	of	excitations	with	m	=	1	and	m	=	2	in	high-Q	SE	states.	The
energy	of	this	DE	state	with	m	=	3	is	a	sum	of	energies	of	high-Q	SE	states	with	m	=	1	and	m	=	2.
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INTRODUCTION
Artificial ensembles of ordered two-level systems – quantum emitters – sup-

port collective excitations stored in coherent collective states of dipole-coupled
emitters. Such ensembles can significantly enhance light-matter interaction and
photon storage at the nanoscale [1, 2] which has a great potential for various
quantum applications including metrology [3], memory [4], and computations [5].
However, in free space, the coupling strength between dipole emitters is small rel-
ative to the transition energy of a single emitter (ħω0), and such a coupling regime
is known in the literature as a weak coupling [6]. In the weak coupling regime,
the collective states of atoms, free from absorption due to non-radiative losses, are
susceptible to a decoherence mechanism due to spontaneous emission governed
by the decay rate of the state γ. It has been shown that the proper management
of the emitter arrangement allows reaching γ ≪ γ0 associated with a subradiant
eigenstate in the ensemble where γ0 is the decay rate of a single emitter (its natural
linewidth, or inverse lifetime).

The interest in subradiant states a with large lifetime originates from the clas-
sical work of Robert Dicke [7]. In this work, R. Dicke showed that constructive
interference between atoms leads to a significant increase in their radiation, which
is known as the superradiance effect. However, R. Dicke also considered the op-
posite effect of destructive interference for a dimer of identical two-level systems
which cannot radiate being in an anti-symmetric (subradiant) state with one exci-
tation. Thus, the collective spontaneous emission of an atomic ensemble can be
significantly suppressed due to destructive interference in a light-mediated inter-
atomic interaction, and the lifetime of stored excitations can be increased. This
effect is known as the subradiance. For a long time, this effect remained a the-
oretical concept [8, 9, 10] until it was experimentally demonstrated for a pair of
trapped ions [11] and later for molecules [12] and atomic clouds [13].

A further increase in the lifetimes of atomic systems became possible due to
the ordering of atoms into structures of various geometries. Thanks to the active
development of manipulation methods in atomic optics and nano-optomechanics
in recent years, it has become possible to arrange ultracold atoms and other quan-
tum emitters by optical traps into ordered 1D [14], 2D [15, 16], or 3D [17] struc-
tures at near-zero temperature. The subradiant states with one and two excitations
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have been reported for periodic one-dimensional chains in free space and near a
waveguide [2, 18, 19, 20, 21, 22, 23], and in two-dimensional arrays [3, 24, 25].

Since the radiation leakage in chains and lattices is primarily from open
boundaries, we investigate in this thesis subradiant states of closed ensembles such
as rings of quantum emitters in free space. The main feature of eigenstates in rings
is a well-defined integer angular quasi-momentum. To the best of our knowledge,
H. S. Freedhoff for the first time analyzed the radiative properties of singly excited
states of a single ring when N emitters are placed at the N vertices of a regular
polygon for N = 3 in Ref. [26], and N ⩽ 6 in Ref. [27]. In Ref. [25], A. Asenjo-
Garcia et al. reported that the lifetime of singly excited eigenstates of a single ring
for a fixed separation between the emitters growths exponentially with N similar
to whispering gallery modes of disk resonators [28]. In Ref. [29], J. Cremer et al.
found a polynomial scaling withN of the most subradiant doubly excited state for
a fixed separation between emitters. The reported singly excited subradiant states
have been applied to efficiently transfer an excitation between two rings placed in
one plane [25, 29], to develop a nano-antenna, [30] and a thresholdless laser [31].
In Ref. [32], H.H. Jen et al. studied the scattering of optical beams with different
angular momentum on atomic rings and demonstrated remarkable differences in
their radiation patterns.

As shown in Ref. [33] byM.Moreno-Cardoner et al., the lifetime of the most
long-lived state in a single ring becomes larger than the lifetime of the most long-
lived state in a linear chain with the same parameters only for a quite large number
of emittersN ≳ 40. Therefore, it motivates us to develop mechanisms of radiative
loss suppression for states with angular momentum available for relatively small
ensembles N ≲ 10 – oligomers – with a focus on underexamined doubly excited
states. In this thesis, we suggest a mechanism inspired by the Friedrich-Wintgen
mechanism for two resonant systems (or resonant modes) coupled via free prop-
agating photons (radiation continuum) [34]. This mechanism explains the forma-
tion of high-Q states in optical resonators or their arrays, including rings, known
as quasi-bound states in the continuum [35, 36, 37].

Thus, this thesis is devoted to the development of singly and doubly ex-
cited subradiant eigenstates in oligomers of two-level dipole emitters in free
space [see figure 1(a)]. The oligomers have in-plane rotational symmetry, there-
fore, their eigenstates have angular quasi-momentum. The first chapter presents
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Schrödinger equation with an effective, non-Hermitian Hamiltonian that should be
solved in order to find the eigenstates of the ensemble. In this formalism, the cou-
pling between emitters is governed by the classical electromagnetic Green’s tensor
at the resonant frequency ω0 depending only on the positions of emitters.

D
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D
2

+

=

100

101

102
Q/Q0

1 exc @ m = 2 [E2]
1 exc @ m = 1 [E1]
2 exc @ m = 3 [B1]

2 exc @ m = 3 [B1]

1 exc @ all m

Emitter

(a) (b)

(c) (d)

Figure 1 – (a) Scheme of the considered structure (oligomer) of quantum emitters
arranged in two concentric rings supporting the eigenstates with angular

quasi-momentumm. For rings of six emitters,m ∈ {0,±1,±2, 3}. The oligomer
is placed in xy-plane. The quantum emitter is a two-level system with resonant

frequency ω0, spontaneous emission rate γ0, and transition electric dipole
moment d ∥ z. (b) Quality factors (Q-factors) of high-Q singly excited

eigenstates of the oligomer Qm for allm. Q is normalized by Q0 = ω0/γ0 and
plotted as a function of separation between emitters a/λ0 where λ0 = 2πc/ω0.

The high-Q state withm is the result of the alignment of ring states with the same
m into an anti-symmetric combination, as shown in the inset form = 3. (c)
Dependence on the ring parameters (shown in inset) of Q-factor for doubly

excited state withm = 3 such that Q−1 = Q−1
1 +Q−1

2 where Q−1
1 and Q−1

2 are
Q-factors of singly excited states from subfigure (b) withm = 1 andm = 2. (d)
Q-factor of this doubly excited state (burgundy dashed curve) and Q-factor of

singly excited states withm = 1 (yellow) andm = 2 (blue) vs a for R2/R1 = 2.2

In the second chapter, we present singly excited eigenstates of a single
ring of N emitters polarized in a transverse direction and introduce angular quasi-

11



momentum m of the state. We formulate effective equations for finding singly
and doubly excited eigenstates and their spectra in single- and multi-ring struc-
tures. We also derive the number of singly and doubly excited states with angular
quasi-momentumm for single- and multi-ring structures. In particular, it is shown
that one excitation in a single ring can be described by a single amplitude and two
excitations can be described by ∼ N/2 amplitudes for a givenm. In this chapter,
we also perform a symmetry classification of the eigenstates for a ring of N = 6

emitters using group theory, essentially, we derive the correspondence between
m and the irreducible representation of the symmetry group of a ring C6v. The
symmetry classification is used further to obtain selection rules for terms in the
expansion of a doubly excited state over the products of singly excited states. A
necessary and sufficient condition is the presence of an irreducible representation
of a doubly excited state in the product of irreducible representations of singly
excited states. It follows from this that the angular quasi-momentum of a doubly
excited state is the sum of the angular quasi-momentum of singly excited states.

In the third chapter, we study the subradiant properties of eigenstates in
ring oligomers. We introduced a mechanism based on the interaction of two sub-
systems of emitters supporting the states with the same symmetry in order to ob-
tain high-Q states. Then we consider an oligomer, composed of a ring and a central
emitter, that supports a high-Q state with only angular quasi-momentumm = 0. In
order to obtain high-Q states withm ̸= 0, we replace a central emitter with a sec-
ond ring of a smaller radius and the same number of emitters shown in figure 1(a).
Both rings support the states with all values of m that can interact and form anti-
symmetric superposition with suppressed radiative losses as shown in figure 1(b).
Moreover, we show that two rings of six emitters support a doubly excited state
withm = 3 such that its Q-factor is a sum of the Q-factor of high-Q singly excited
states with m = 1 and m = 2 (or m = −1 and m = −2): Q−1 = Q−1

1 + Q−1
2 .

By varying the ring radiiR2/R1 and separation between emitters a/λ0 as shown in
figure 1(c), we find the optimal parameters maximizing the Q-factor of the doubly
excited state. For the optimal parameters, Q-factors of singly excited statesQ1 and
Q2 have maxima, therefore the Q-factor of the doubly excited state also has a max-
imum whereQ/Q0 ≈ 110 [see figure 1(d)]. We also show that this doubly excited
state enters B1 irreducible representation which is contained only in the product
of irreducible representations E1 and E2 of singly excited states withm1 = 1 and
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m2 = 2, although the total angular quasi-momentum of singly excited states with
m0 = 1 andm3 = 2 is also equal three. The radiative properties of these states are
also studied.
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1 THEORETICAL DESCRIPTION OF QUANTUM EMITTER
ENSEMBLES
1.1 Effective Hamiltonian and spontaneous emission of radiation
Consider a free-space ensemble of N identical quantum emitters of the

hydrogen-like type so that each emitter consists only of nuclei and a single elec-
tron. Assume that the emitters are perfectly trapped around their positions at zero
temperature, therefore one can introduce perfectly defined coordinates of emit-
ters ri without any thermal fluctuations. Let us also suppose that the electron in
the emitter can occupy only two levels, namely ground |gi⟩ and excited |ei⟩ ones,
with an allowed optical transition between them at the resonant frequency ω0 [see
figure 2(a)]. Here the subscript i is introduced only to distinguish emitters. To de-
scribe the absorption and the emission of excitation by an atom, one can define the
ladder operators, σ̂†i = |ei⟩ ⟨gi| the creation operator and σ̂i = |gi⟩ ⟨ei| the annihi-
lation operator for the i-th emitter [see figure 2(b)]. In this regard, the Hamiltonian

of “free” emitters can be written as Ĥemitters =
N∑
i=1

ħω0σ̂
†
i σ̂i where ħ is the Planck

constant.
From a theoretical point of view, the two-level approximation for emitters

is attractive because, first, it describes well real optical emitters such as atoms,
ions, quantum dots, dye molecules, and superconducting qubits. Secondly, the
interaction of a two-level system with a quantized electromagnetic field in free
space is extensively covered in the literature [6, 38, 39]. Let us present the key
points of this formalism.

Since the size of a quantum emitter is much smaller than the optical wave-
length, the interaction of the emitter with an electromagnetic field can be described
in the dipole approximation. For a two-level system, the operator of the electric
dipole moment is d̂i = dσi + d∗σ†i where d = ⟨gi| d̂i |ei⟩ is so-called transition
dipole moment that is identical for all emitters. In the dipole approximation, the
exchange of excitations between emitters and electromagnetic modes can be cast

by Tavis-Cummings Hamiltonian Ĥint =
N∑
i=1

d̂i · Ê(ri) where Ê(ri) is the electric

field operator composed of an infinite set of plane waves in free space [40].
In order to eliminate electromagnetic degrees of freedom, we implement

a standard procedure based on their integration in the Born-Markov approxima-
tion [41, 42]. Note that the Born-Markov approximation is applicable because
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Figure 2 – (a) Two-level approximation for a quantum emitter. (b) The ladder
operators (σ† and σ), resonant frequency (ω0), and dipole moment (d) of the
transition in the two-level system from ground state |g⟩ to excited one |e⟩. (c)
Real and imaginary parts of quasi-resonant coupling strength (4) in units of ħγ0.
The coupling strength g̃(ω0) is plotted for two emitters polarized perpendicular to
the connection axis and separated by a/λ0 where λ0 = 2πc/ω0 (see inset). (d)

The population of the excited state for a single emitter as a function of time. γ0 is
the inverse lifetime (natural linewidth) of a single emitter. (e) Zeeman splitting of

excited level due to an external magnetic field B ∥ ez

the relaxation time of the reservoir (radiation continuum in the vacuum) is zero at
zero temperature [43] and is smaller than the relaxation time of the emitter system.
We will not go here through this formalism in detail, however, we will give an
intuitive explanation of the result written below. By an analogy with a classical
coupled-electric-dipole equation [44, 45], it is natural to suppose that an emitter σ̂i
is driven by a quantized field at position ri which is rescattered by other emitters
and depends only their positions via electromagnetic Green’s tensor Ĝ(ri, rj, ω)
[see section 1.4]. Indeed, both the classical and quantized fields should satisfy the
same wave equation [see equation (12) below]. Moreover, the emitters are actu-
ally atoms with a very narrow linewidth of the response, hence, the dependence of
Green’s tensor can be approximated as Ĝ(ri, rj, ω) ≈ Ĝ(ri, rj, ω0) –quasi-resonant
or Markov approximation.
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Thus, a quantized electromagnetic field can be written via the replacement
of classical dipole moments by their quantum counterparts di → d̂i which in the
absence of an external field reads [42]:

Ê†(r, ω0) =
ω2
0

ϵ0c2

N∑
i=1

Ĝ(r, ri, ω0) · d σ̂i, (1)

where c is the speed of light in vacuum, ϵ0 is the vacuum dielectric permittivity.
The superscript † indicates positive frequency components ω > 0.

If we formally substitute (1) into the light-matter interaction Hamiltonian

Ĥint =
N∑
i=1

d̂i·Ê(ri), we can expect to obtain the following effective, non-Hermitian

Hamiltonian Ĥeff = Ĥemitters + Ĥint =
N∑
i=1

ħω0σ̂
†
i σ̂i +

N∑
i,j=1

gij(ω0)σ̂
†
i σ̂j , where the

coupling strength between emitters gij(ω0) = − ω2
0

c2ϵ0
d† · Ĝ(ri, rj, ω0) · d.

Further, one will consider only the emitters with the orientation of d along z
axis, perpendicular to xy plane containing the emitters. In this case, the coupling
strength turns to gij(ω0) = −ω2

0 |d|2
c2ϵ0

Gzz (|ri − rj| , ω0)withGzz the element of free-
space Green’s tensor (16) depending only on the relative distance between emitters
|ri − rj| for the transverse polarization of d. Note that the real part of gij is the
strength of coherent coupling between dipoles via the exchange of photonswhereas
the imaginary part of gij is the rate of dissipative coupling. Figure 2(c) shows
the real and imaginary parts of gij for a case of two transverse emitters separated
by the length a. One can see the oscillatory behavior of coupling strength with
the increase of a, therefore, the radiative properties of emitter ensembles strongly
depend on the ensemble geometry.

It is important to take the limit of gij for a/λ0 → 0 corresponding to gii.
One can see in figure 2(c) that Re[gij] is divergent at a/λ0 → 0, however, it is
just a limitation of the dipole-dipole coupling model for small separations. This
issue can be overcome by the Green’s function renormalization yielding a finite
Re[gii] called the Lamb shift [46]. The Lamb shift is typically much smaller than
ω0 [47], and we assume that it is already incorporated in the definition of ω0. It is
more interesting to take a look at Im[gii] which remains finite. One can obtain it
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as Im[gii] = −ħγ0
2

where

γ0 =
ω3
0 |d|

2

3πħc3ϵ0
. (2)

We note that γ0 has a meaning of the doubled imaginary part of complex energy
(its natural linewidth) for a single emitter ħ

(
ω0 − i

γ0
2

)
. One can write the evo-

lution of the probability amplitude for the emitter in the excited state at t = 0 as
ce(t) = e−i(ω0−i γ02 )t. Hence, γ0 is also the decay rate of the excited state popu-
lation Pe(t) = |ce(t)|2 = e−γ0t due to the losses of energy via the radiation into
free-space electromagnetic modes [see figure 2(d)]. In literature, such a regime
of light-matter interaction is called a weak coupling [6]. In the presented model,
a weak coupling manifests itself in the magnitude of coupling strength (4). One
can see in figure 2(c) that |Re[gij]|, | Im[gij]| ∼ ħγ0 ≪ ħω0 for atomic emitters
(γ0/2π ∼ 10 MHz, ω0/2π ∼ 300 THz [25]). It also justifies the use of quasi-
resonant approximation for the coupling strength.

To sum up, one can consider a quantum emitter as a two-level system with
the resonant frequency ω0, the dissipation rate γ0, and interacting with the electro-
magnetic field as an electric dipole d. Let us discuss the possibility of obtaining
two distinct isolated levels in a realistic atom. It should be noted that atoms ex-
hibit numerous energy levels characterized by fine and hyperfine structures. For
the sake of simplicity, let us consider an atom with a single electron residing in
a nuclear potential that possesses spherical symmetry. This model represents the
simplest yet realistic depiction of hydrogen-like atoms. Within this model, there
is allowed electric dipole transition from the ground level (1s) to the excited level
(2p). However, this transition exhibits a three-fold degeneracy with respect to the
polarization of the transition dipole moment, namely out-of-plane ez and two in-
plane e± = ∓ (ex ± iey) ones, which can be excited by a linearly or circularly
polarized light [see figure 2(e)]. The degeneracy can be eliminated by an external,
strong magnetic field B which induces the Zeeman splitting of the atomic levels
such that |µB| ≫ γ0 where µ is the magnetic moment of an atom [see figure 2(e)].
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In a weak coupling regime, the ensemble of N identical dipole emitters can
be described by the following effective Hamiltonian:

Ĥeff =
N∑
i=1

ħ
(
ω0 − i

γ0
2

)
σ̂†i σ̂i +

N∑
i=1

N∑
j=1,
j ̸=i

g̃ij(ω0)σ̂
†
i σ̂j, (3)

where a quasi-resonant, normalized coupling strength for transverse emittersd ∥ ez
is given by:

g̃ij(ω0) =
gij(ω0)

ħγ0
= −3πc

ω0
Gzz (|ri − rj| , ω0) . (4)

1.2 Effective Schrödinger equation
Following the emergence of the basics of the theory concerning the in-

teraction between two-level systems and the electromagnetic reservoir (vacuum)
modes, it becomes possible to explore the characteristics exhibited by the eigen-
states of collections of two-level systems. The eigenstates along with the corre-
sponding eigenenergies of effective Hamiltonian (3) can be found from effective
Schrödinger equation:

Ĥeff |ψ⟩ = ε |ψ⟩ , (5)

where |ψ⟩ is the collective eigenstate of the system, and ε is the complex eigenen-
ergy that can be written in ε = ħ

(
ω − i

γ

2

)
form. Here the real partω is the angular

frequency of the eigenstate while the imaginary part γ/2 defines the collective de-
cay rate of the state.

We need to make also an important remark about the eigenstates |ψ⟩ of (5).
For a single emitter, the excited state |e⟩ with energy ħ

(
ω0 − i

γ0
2

)
is a solution

of equation (5). Let us assume that the emitter occupies this state at t = 0. Since
the probability Pe(t) decays with time [see figure 2(d)], then, strictly speaking,
the ket-vector |e⟩ can be associated with the emitter only at t = 0. To study the
rigorous dynamics of the system for t > 0, it is necessary to solve the Lindblad
equation for the density matrix of the emitter subsystem. Nevertheless, we can
call the state |e⟩ as the eigenstate of the system at t = 0. Hence, since our primary
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interest is the spectrum of an ensemble but not its time evolution, we can will solve
equation (5) instead of the Lindblad equation.

To conclude this subsection, let us mention that, for numerical diago-
nalization of Ĥeff, it is convenient to do the following transformation of (3):
Ĥeff → ˆ̃

Heff =
1

ħγ0

(
Ĥeff − ħω0Î

)
. In this regard, Schrödinger equation (5)

should be rewritten as

ˆ̃
Heff |ψ⟩ =

ε− ħω0

ħγ0︸ ︷︷ ︸
ε̃

|ψ⟩ ,

ˆ̃
Heff =

N∑
i=1

ħ
(
− i
2

)
σ̂†i σ̂i +

N∑
i=1

N∑
j=1,
j ̸=i

g̃ij(ω0)σ̂
†
i σ̂j,

(6)

where ε̃ the shifted and normalized eigenenergy is introduced. After applying this
transformation the calculated spectrum does not depend on particular numerical
values of ω0, and γ0.

1.3 Singly and doubly excited collective states
We can note that effective Hamiltonian (3) preserves the total number of

excitations in the system. Thus, the whole infinite-dimensional Hilbert spaceH of
states of the system can be decomposed into a series of subspaces (manifolds) as
follows

H = H0 +H1 +H2 +H3 + ...+HN , (7)

whereHn is the subspace corresponding to the case of n excitations in the system,
N is the total number of emitters. For the last term in the expansion, n = N be-
cause N two-level emitters cannot contain more than N excitations. The proper
analogy for this expansion is the space of quantum oscillator eigenstates: The
eigenstates are characterized by the number n.

To understand the physical meaning of expansion termsHn, let us consider
several cases of different n numbers of excitations.

a) n = 0: There are no excitations in the system, therefore all the N emitters
occupy the ground state. Thus, H0 the subspace consists only of one state
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|G⟩ = |g⟩⊗N ≡ |g⟩ ⊗ |g⟩ ⊗ ...⊗ |g⟩︸ ︷︷ ︸
N times

with a zero energy usually referred to

in the literature as a ground state of the ensemble;
b) n = 1: There is a single excitation in the system. In this case, H1 the

subspace consists of N states that can be written in the following way

|ψ⟩ =
N∑
i=1

ci |ei⟩ , (8)

with |ei⟩ = σ̂†i |g⟩
⊗N being the basis state with only i-th atomic emitter

excited, while the rest are in the ground state [see figure 3]. Let us plug (8)
into Schrödinger equation (6). This anzats yields a set ofN linear algebraic
equations on single-excitation probability amplitudes ci of excitation on i-th
emitter:

ε̃ci = − i
2
ci +

N∑
j=1,
j ̸=i

g̃ij(ω0)cj, (9)

with the eigenenergy ε̃ defined by (6), and g̃ij(ω0) given by (4).
c) n = 2: The doubly excited state is

|Ψ⟩ =
N∑
i=1

N∑
j=i+1

cij |eiej⟩ , (10)

where |eiej⟩ = σ̂†i σ̂
†
j |g⟩

⊗N is the state with excited both i- and j-th atomic
emitters [see figure 3]. The limits in sums are taken because of two fol-
lowing facts. The considered emitters have only two energy levels, there-
fore two excitations cannot be located at the same emitter, then i ̸= j. The
emitters and excitations are identical , hence double-excitation probability
amplitude is symmetric cij = cji. Combining these two properties of cij ,
one can consider only the amplitudes with i > j. Thus, for a system of N

dipole emitters, the total amount of doubly excited eigenstates is
N(N − 1)

2

which can be obtained by solving the following system of
N(N − 1)

2
linear
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equations:

ε̃cij = −icij +
∑
k>i

g̃kj(ω0)cik +
∑
k<j

g̃ik(ω0)ckj. (11)

Note that here and further capital Ψ is used to distinguish doubly excited
kets from singly excited ones.

d) n > 2: The dimension of Hn equals to the binomial coefficient

Cn
N ≡ N !

n!(N − n)!
. It is easy to verify using this formula that dim H0 =

1, dimH1 = N , and dimH2 =
N(N − 1)

2
.

State

Singly
excited

Doubly
excited

Basis Wave function

Figure 3 – Summary on a basis and wave functions for singly excited and doubly
excited eigenstates of the Hamiltonian (3)

Thus, the collective states of ensembles of quantum emitters can be classi-
fied, first of all, by the number of involved atomic (matter) excitations. As one can
see, a growth of the excitation number significantly increases the dimensionality of
the eigenvalue problem. This thesis focuses only on the cases of n = 1 and n = 2

excitations in order to limit the numerical effort. For singly and doubly excited
eigenstates, we can calculate the eigenstates and eigenenergies as right-column
eigenvectors and eigenvalues of equations (9) and (11), respectively.

1.4 Green’s tensor in free space
The coupling strength between emitters (4) as well as the collective effects

in their ensembles are governed by Green’s tensor of the wave equation for the
electromagnetic field.
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In the frequency domain, the electromagnetic wave equation is written
as [44]

∇×∇× E (r, ω)− ϵ (r, ω)
ω2

c2
E (r, ω) =

ω2

ϵ0c2
P (r, ω) , (12)

where ∇ is the nabla operator, ϵ (r, ω) is the dielectric permittivity depending on
the coordinate r and frequency ω, and E (r, ω) is the classical electric field.

For a point dipole source located at r′ point, the polarization vector is
P (r, t) = dδ (r− r′) e−iωt with d the electric dipole moment and δ (r− r′) three-
dimensional Dirac delta function. After replacing the right-hand side of (12) with
the polarization in the dipole approximation P (r, ω) = dδ (r− r′), equation (12)
transforms to the following one:

∇×∇× E (r, ω)− ϵ (r, ω)
ω2

c2
E (r, ω) =

ω2

ϵ0c2
dδ (r− r′) . (13)

A particular solution of this equation (so-called scattered field) can be formally
written as

E (r, ω) =
ω2

ϵ0c2
Ĝ (r,r′, ω) · d, (14)

which is electric field generated by an electric dipole.
Green’s tensor obeys the following equation:

∇×∇× Ĝ (r,r′, ω)− ϵ (r, ω)
ω2

c2
Ĝ (r,r′, ω) = δ (r− r′) Î , (15)

where Î is 3 × 3 identity matrix. Note that, in the above equation, the nabla
operator ∇ differentiates with respect to the r variable. For the case of free
space, one should set ϵ (r, ω) = 1 in equation (15). In this case, the solution is
Ĝ (r,r′, ω) = Ĝ0 (R, ω) with R = r− r′ where

Ĝ0 (R, ω) =
eikR

4πR

{(
1 +

i1
kR

− 1

k2R2

)
Î +

(
−1− i3

kR
+

3

k2R2

)
R⊗ R
R2

}
(16)
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with R = |R|, k = ω/c the wavenumber, R ⊗ R the dyadic (tensor) product of
radius-vector R with itself [44].

In the presence of nanostructure or other non-homogeneous environments,
Green’s function involves not only a free space part but also a scattered component
Ĝ = Ĝ0 + Ĝsca that can modify both the resonant frequency ω0 and the emission
rate γ0 of a single emitter.

In this chapter, we introduced effective Schrödinger equation with non-
Hermitian Hamiltonian describing the coupling between dipole emitters in free
space and eigenstates in Born-Markov approximation. In particular, one- and two-
excitation manifolds were considered.

23



2 EIGENSTATES OF A SINGLE RING AND MULTIRING
ENSEMBLES OF EMITTERS
Chapters 2 and 3 are devoted to the modeling of eigenstates of single- and

multi-ring structures as well as to the investigation of their subradiant properties.
2.1 The single excitation spectrum of a ring. Angular
quasi-momentum
Using the formalism from Chapter 1, let us first find singly excited eigen-

states of a single ring of Np emitters located in free space. The ring is shown
schematically in Figure 4. Let us also assume that all emitters have the trans-
versely oriented transition dipole moments d ∥ ez. The ring is located in xy-plane
such as its center coincides with the origin of the Cartesian coordinate system. The
emitters are placed at the vertices of a regular polygon withNp edges. In this case,
the radius vector of the position for i-th emitter in a ring is

ri = R (cosφi, sinφi, 0)
T , i = 1..Np, (17)

whereR is the ring radius, and φi = (i−1)2π/Np is the angular coordinate of i-th
emitter. Thus, the distance between neighboring emitters in the ring is the same for
all emitters and equals a = 2R sin (π/Np). Since the spectrum and eigenstates are
the subjects of our interests, there are no external electromagnetic or other fields.

z

y

x
1

23

4

5 Np=6

R

=
a

ϕi

Figure 4 – Scheme of a single ring of Np two-level dipole emitters placed in
xy-plane (Np = 6 here). The emitters with subwavelength separation distance a
are arranged in a regular equilateral polygon along a circle of radius R. The
angular coordinate of i-th emitters is shown as φi = 2π(i− 1)/Np. The

parameters of two-level emitters are the same as in figure 1

To calculate the single excitation spectrum of a ring of emitters shown in
figure 4, we use equation (9). Since a ring of dipoles preserves rotational sym-
metry along z-axis (CNp,v point symmetry group), the eigenstates of a ring can
be described by the angular quasi-momentum m [29, 33]. The meaning of m is
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the following: for the state of a ring with the angular quasi-momentum m, the
phase shift between the amplitudes of neighboring emitters ci+1 and ci equals
∆φ(m) = 2πm/Np. The prefix “quasi” in the name of the m indicates that it
is determined up to the number of emitters in a ring Np because the values of an-
gular quasi-momentumm and (m+nNp), where n is an integer, correspond to the
same phase shifts ∆φ(m + nNp) = ∆φ(m) + 2πn, hence the identical physical
states of the system. The direct analogy for the angular quasi-momentum for the
systems with rotational symmetry is the quasi-wavevector or Bloch wavevector
for the systems with translational symmetry which is defined up to the recipro-
cal lattice vector. Furthermore, one can introduce “the first Brillouin zone” of
values for the m as a set {0,±1,±2, ...,± (Np − 2) /2, Np/2} for even Np, or
{0,±1,±2, ...,± (Np − 2) /2,± (Np − 1) /2} for odd Np.

The number of states for different parities of m is summarized in figure 5.
Note that, for evenNp, the maximum angular quasi-momentum with opposite sign
m = −Np/2 corresponds to the same phase shift of ∆φ (m = ±Np/2) = π be-
tween neighboring emitters and, consequently, the same state. For convenience,
we choose a positive signm = Np/2.

Number 
of values
of m

Figure 5 – Number of eigenstates with even or odd angular quasi-momentumm
(rows) for different parities of Np number of emitters in a ring (columns). Note
that the sum of the values in each column equals the total number of singly

excited eigenstates Np

Thus, the spectrum of a ring can be calculated using the following ansatz for
the excitation amplitudes ci:

ci = c(m)eimφi, (18)
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where c(m) is the analog of periodic Bloch amplitude for a ring. After inserting (18)
in equation (9), one obtains a set of energies of Np singly excited eigenstates for a
ring:

ε̃
(m)
ring = − i

2
− 3πc

ω0

Np∑
i=2

Gzz(|r1 − ri| , ω0)eimφi, (19)

or equivalently

ε̃
(m)
ring = − i

2
− 3

4
Σ(m) (R,Np) , (20)

where Σ(m) (R,Np) is the dipole sum for the state with the angular quasi-
momentumm in a ring of radius R and of Np emitters:

Σ(m) (R,Np) =
4πc

ω0

Np∑
i=2

Gzz(|r1 − ri| , ω0)eimφi. (21)

For a ring of Np = 6 emitters and the separation between neighboring emitters a,
the dipole sums are

Σ(m) (R,Np = 6) =
8πc

ω0

[
Gzz (a,ω0) cos

(πm
3

)
+Gzz

(√
3a,ω0

)
cos
(
m
2π

3

)
+

1

2
Gzz (2a,ω0) cos (πm)

]
.

(22)

One can notice that dipole sums (22) forNp = 6 emitters are symmetric with
respect to a sign ofm that can be shown for any number of emitters Np. Thus, the
exchange of a quasi-momentum sign m ↔ −m conserves energy ε̃(m) = ε̃(−m).
Hence, the ring eigenstates [see equation (26)] are doubly degenerate except for
two cases. The state with m = 0 is non-degenerate for any Np, and the state with
m = Np/2 has also no degeneracy for even Np.

Equation (6) implies that a set of dimensional energies ε(m) can be obtained
from a set of dimensionless eigenvalues ε̃(m) as follows

ε
(m)
ring = ħω0 + ħγ0 × ε̃

(m)
ring. (23)
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On the other hand, ε(m) = ħ

(
ω
(m)
ring − i

γ
(m)
ring

2

)
, therefore one obtains the frequency

of the collective ring state as

ω
(m)
ring = ω0 −

3γ0
4

Re
[
Σ(m) (R,Np)

]
, (24)

and its collective decay rate as

γ
(m)
ring = γ0 +

3γ0
2

Im
[
Σ(m) (R,Np)

]
. (25)

Thus, the resonant frequency and emission rate of the emitter can be modified not
only by the presence of a non-homogenous environment but also by the collective
emitter-emitter interactions via the real and imaginary parts of the dipole sum,
respectively.

Eigenenergies (20) correspond to the set of singly excited eigenstates∣∣ψ(m)
〉
=

Np∑
i=1

ci |ei⟩ with ci the excitation probability amplitudes (18). In order

to find c(m) in equation (18), let us remind the expression for the total probability

to find an excitation on the ring. The total probability expression
Np∑
i=1

|ci|2 = 1 im-

plies that c(m) =
1√
Np

for a single ring, therefore one can write the singly excited

eigenstates as

∣∣∣ψ(m)
ring

〉
=

1√
Np

Np∑
i=1

eimφi |ei⟩ . (26)

Recall that |ei⟩ = σ̂†i |g⟩
⊗Np is the state where the excitation is fully localized at

i-th emitter.
2.2 Relation between angular quasi-momentum and irreducible
representation
Let us look at how the ring states (26) are transformed under the rotation of

a ring in xy-plane by φ′ = 2π/Np angle around z axis in the clockwise direction.
It is shown in figure 6(a) for a ring of Np = 6 emitters when φ′ = π/3. One can
associate this operationwith an operator of rotation R̂(φ′). Note that such a rotation
does the following permutation of indices of excitation amplitudes i→ i′ = (i+1)
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mod Np [see figure 6(a)]. Hence, the matrix of R̂(φ′) in the basis of singly excited
states {|ei⟩}

Np

i=1 has the following entries: Rij(φ
′) = δj,i′ for {i,j} ∈ {1..Np}where

δj,i′ is the Kronecker delta. From equation (18), it follows that ci+1 = eimφ′
ci.

Hence, one can write the action of R̂(φ′) operator on eigenstates (26) as follows

R̂(φ′)
∣∣∣ψ(m)

〉
= eimφ′

∣∣∣ψ(m)
〉
. (27)

Thus, the rotation operator R̂ and effective Hamiltonian ˆ̃
Heff are diagonalizable

in the same basis (26) with the eigenvalue sets
{
eimφ′} and {ε̃(m)

}
, respectively.

This is reflected in a fact that the operators commute ˆ̃
HeffR̂ = R̂

ˆ̃
Heff.

Note that the operation of rotation of a ring by φ′ = 2π/Np angle is in-
cluded in transformations from the symmetry group of the ring of transverse emit-
ters CNp,v. The structure is converted into itself after symmetry transformations
consisting of rotations and reflections. For example, the symmetry group of a ring
of six emitters C6v consists of the rotation by π/3 angle around the z axis denoted
in group theory as C6(z) [see figure 6(a)], the rotation C3(z) by 2π/3 angle, the
rotation C2(z) by π angle, and two reflections σv and σd relative to y and x axis,
respectively, as shown in figure 6(b). All operators corresponding to these trans-
formations can be diagonalized in the same basis

∣∣ψ(m)
〉
of eigenstates of ˆ̃

Heff.

Therefore, the Hamiltonian ˆ̃
Heff commutes with all transformations of the sym-

metry group of the ring structures. Then the transformations from the symmetry
group do not change the Hamiltonian (3) since they do not change the structure.

Here we can notice a deep connection of physics with group theory formu-
lated by so-called Wigner’s theorem. In simple words, this theorem can be formu-
lated for Schrödinger equation (5) as follows. If the Hamiltonian remains invariant
under transformations from the symmetry group, the eigenstates of such a Hamil-
tonian (3), which are solutions of the Schrödinger equation (5), are transformed
by irreducible representations of the symmetry group. Thus, the symmetry of the
eigenstate under transformations from the symmetry group is determined by the
symmetry of the corresponding irreducible representation of the group.

Let us turn back to the example of a ring of six emitters with C6v sym-
metry group. Figure 6(c) presents a character table for C6v group with sym-
metry transformations and irreducible representations of the group. The irre-
ducible representations are essentially the matrices acting on a column of functions
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σv

σd

(b)

(c)

A
1
(1)

A
2
(1)

B
1
(1)

B
2
(1)

E
1
(2)

E
2
(2)

С
6v

+1 +1 +1 +1 +1 +1

+1 +1 +1 +1 -1 -1

+1 -1 +1 -1 +1 -1

+1 -1 +1 -1 -1 +1

+2 +1 -1 -2 0 0

+2 -1 -1 +2 0 0

E 2C
6
(z) 2C

3
(z) C

2
(z) 3σv 3σd

z z

(d)

A
1
(1)

B
2
(1)

E
1
(2)

E
2
(2)

mIrrep Real part Imaginary part

0

3

+1

-1

+2

-2

С
6
(z)

(a)

z z= 2

2

1

1

3 3

4

4

5

5

66

Figure 6 – (a) Altering of emitter indices after rotating the ring around z-axis by
angle 2π/Np. (b) Reflection of the ring with respect to the axis passing between
atoms (left) and through atoms (right). (c) Table of characters for C6v symmetry
group. The columns contain symmetry transformations, the rows correspond to
irreducible representations with their dimensions in brackets. The cells show the
trace (character) of irreducible representations for a given transformation. (d)
Correspondence of the angular quasi-momentumm of singly excited states of a
ring (26) for Np = 6 to the irreducible representations (irreps) of the symmetry
group of the ring (C6v). The arrows show the real part ∝ cos(mφ) and the
imaginary part ∝ sin(mφ) of the states. For clarity, the values with the same

magnitude, but with different signs, are highlighted by different colors

(cos(mφ), sin(mφ))T under symmetry transformations, and the character is a trace
of such a matrix. Let us identify the irreducible representations for the singly ex-
cited eigenstates (26) for a ring of six emitters. The excitation amplitudes of ring
eigenstates (26) have real part∝ cos(mφi), and imaginary part∝ sin(mφi) where
φi = (i−1)π/3 as shown in figure 6(d). It is obvious that the imaginary part is zero
for m = 0 and m = 3, therefore these states should enter one-dimensional repre-
sentations. For the states entering one-dimensional irreducible representations, we
just need to multiply a state by a character in order to obtain a transformed state.
The state withm = 0 has a homogenous distribution of amplitudes, therefore it re-
mains the same under the symmetry transformations and enters trivial irreducible
representation A1 [see figure 6(c)]. The state withm = 3 is symmetric for the re-
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flection σd [see figure 6(b)], therefore it enters B2 representation [see figure 6(c)].
The modes with m = ±1 and m = ±2 have non-zero real and imaginary parts.
Hence, they enter two-dimensional representations, E1 or E2, and they are dou-
ble degenerate [cf. equation (20)]. For these states, the real and imaginary parts
have opposite symmetry with respect to the reflections, therefore they have zeros
at corresponding cells in figure 6(c). Hence, let us take a look at the rotation by
π around the z-axis C2(z). The irreducible representations E1 and E2 are 2 × 2

diagonal matrices for this rotation, therefore negative character (trace) “-2” corre-
sponds to both anti-symmetric real and imaginary parts while the positive character
“+2” is for both symmetric real and imaginary parts. The real and imaginary parts
of states withm = ±1 (resp. m = ±2) are both anti-symmetric (resp. symmetric)
with respect to this rotation, therefore the states with m = ±1 (resp. m = ±2)
enter E1 (resp. E2) irreducible representation.

Thus, singly excited states of a ring of six emitters enter irreducible repre-
sentations A1, B2, E1, and E2. Note that doubly excited states can enter other
irreducible representations [see section 3.5].

2.3 Selection rules for expansions of doubly excited states
The symmetry analysis presented in section 2.2 can be helpful for the se-

lection of non-zero coefficients in the expansion of doubly excited states over the
products of singly excited states. For a doubly excited state

∣∣Ψ(m)
〉
with the defined

angular quasi-momentumm, such an expansion can be written as follows∣∣∣Ψ(m)
〉
=
∑
m1,m2

vm1,m2

∣∣∣ψ(m1)
〉 ∣∣∣ψ(m2)

〉
, (28)

where
∣∣ψ(m1)

〉
and

∣∣ψ(m2)
〉
are singly excited states with angular quasi-momentum

m1 and m2, respectively. Expansion coefficients vm1,m2
can be considered as am-

plitudes of doubly excited state
∣∣Ψ(m)

〉
in reciprocal space of momentum as well

as amplitudes cij describe this state in direct space of coordinates.
In the general case, a coefficient vm1,m2

is not equal to zero if the irreducible
representation of doubly excited state

∣∣Ψ(m)
〉
is included in the expansion over the

irreducible representations of the product of irreducible representations of
∣∣ψ(m1)

〉
and

∣∣ψ(m2)
〉
singly excited states.

Let us consider an example of C6v symmetry group and write down expan-
sions for all products of irreducible representations of singly excited eigenstates of
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the ring [see figure 6(d)]:

A1 × A1 = A1,

A1 × B2 = B2,

A1 × E1 = E1,

A1 × E2 = E2,

B2 × B2 = A1,

B2 × E1 = E2,

B2 × E2 = E1,

E1 × E1 = A1 + A2 + E2,

E1 × E2 = B1 +B2 + E1,

E2 × E2 = A1 + A2 + E1,

(29)

where × is the product of representations. For instance, assume that a doubly
excited state

∣∣Ψ(m)
〉
is transformed according to the irreducible representation

B2. Thus, it can be composed of products of singly excited states entering A1

and B2 representations, or E1 and E2 representations. Otherwise, the coefficients
vm1,m2

≡ 0 for products of other singly excited states. Hence,
∣∣Ψ(m)

〉
, transformed

according to the representation B2, has angular quasi-moment m = 3 and can be
obtained from pairs of the states with angular quasi-momentum m1 = 0 (A1) and
m2 = 3 (B2), or m1 = 1 (E1) and m2 = 2 (E2), or m1 = −1 (E1) and m2 = −2

(E2). Thus, one can conclude that the sum of the angular quasi-momentum of
singly excited states (m1 +m2) should be equal to the angular quasi-momentum
of doubly excited state m. Hence, we obtain a weaker condition: The coeffi-
cient vm1,m2

can be zero or not if m1 + m2 = m mod Np, but vm1,m2
≡ 0 for

m1 +m2 ̸= m mod Np.
In conclusion of this section, let us note that vm1,m2

coefficients in the most
general case can be calculated as a solution of a system of linear equationsCv = v0
where v is a column vector of vm1,m2

coefficients of lengthN 2, and v0 is a column
vector of amplitudes cij of doubly excited state

∣∣Ψ(m)
〉
including cii = 0, and cji

(recall that cji = cij). Entries of N × N matrix C are defined as a product of
amplitudes ci × cj from

∣∣ψ(m1)
〉
and

∣∣ψ(m2)
〉
singly excited states, respectively.

The desired coefficients can be formally written as v = C−1v0. Note that the
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matrix C always has a non-zero determinant because it is composed of products of
amplitudes of orthogonal states.

2.4 Remark on the numerical calculation of degenerate eigenstates
The symmetry analysis is also helpful for the numerical calculation of the

eigenstates of Hamiltonian (3). The eigenvalue problem can be solved, for ex-
ample, in Matlab using the eig function. However, this method has a disadvan-
tage regarding the calculation of degenerate eigenstates. Let

∣∣ψ(m)
〉
and

∣∣ψ(−m)
〉

be the “true” degenerate eigenstates with defined angular quasi-momentum m

and −m. The numerical method, however, returns us their linear combinations(
a
∣∣ψ(m)

〉
+ b
∣∣ψ(−m)

〉)
with a and b being the complex coefficients. These com-

binations are also the eigenstates of the Hamiltonian (3) but their angular quasi-
momentum is not defined. How to overcome this difficulty?

One can employ transformations from the symmetry group of the struc-
ture. Choose a non-trivial transformation P̂ being a rotation or reflection from
the symmetry group. Introduce a matrix V whose columns are the right eigenvec-
tors for both operators ˆ̃

Heff and P̂ . We also define diagonal matrices DH and DP

as DH = V −1 ˆ̃HeffV and DP = V −1P̂ V with the diagonal entries being eigen-
values of ˆ̃

Heff and P̂ , respectively. If we calculate numerically the eigenvalues
DH and eigenvectors V directly from the diagonalization of ˆ̃

Heff, we meet the
problem mentioned above. However, we can first diagonalize the following op-
erator

(
ˆ̃
Heff + rP̂

)
with r being a random real number. It can be noticed that

this operator has the same eigenvectors V but a different spectrum (DH + rDp).
However, if we obtain the “true” eigenvectors V , we can calculate eigenenergies
DH = V −1 ˆ̃HeffV . Note that this method can be applied for rigorous numerical
calculation of both singly and doubly excited states.

2.5 The single excitation spectrum of a multi-ring structure
Section 2.1 describes how to analytically calculate a single excitation spec-

trum and corresponding eigenstates of a ring withNp emitters using the knowledge
about the rotational symmetry of the structure. This helps to instantly obtain all
Np singly excited eigenstates energies with an angular quasi-momentum by calcu-
lating the dipole sums (21) for positive values of m instead of diagonalizing the
Np ×Np matrix.

This section considers structures of Nr ̸= 1 concentric rings of Np dipole
emitters with {Rj}Nr

j=1 radii placed in xy-plane. Thus, the total number of emit-
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ters in the system is N = Nr × Np. An example of the geometry is illustrated
schematically in figure 7.

z

y

x

1. Structure 2. Anzats 3. Diagonalization

j = 1j = 2

j = 3

Figure 7 – A general approach to calculating the singly excited eigenstates with a
defined angular quasi-momentumm for Nr concentric rings (Nr = 3 here). Each
ring has Np identical emitters (Np = 6 here). First of all, we need to initialize the

rings with their radii Rj and initial angle of rotation αj . Secondly, use the
following anzats for the excitation amplitudes ci+(j−1)Nr

= c
(m)
j eim(φi+αj) (with

i = 1..Np, and j = 1..Nr) and construct the matrix (31) for eachm. Finally,
solve the eigenvalue problem and obtain the spectrum {Ẽ (m)} with eigenvectors

of excitation eigenstates {c(m)
j }

Let us denote the probability amplitudes for a single excitation by two
subindices ci+(j−1)Nr

. The first subindex enumerates the emitters of a certain ring
i = 1..Np as in Section 2.1, while the second subindex corresponds to the ring with
j = 1..Nr. To calculate the single excitation spectrum, we use equation (9) with
the anzats similar to (18):

ci+(j−1)Nr
= c

(m)
j eim(φi+αj), j = 1..Nr (30)

where φi = (i − 1)2π/Np, αj is the initial angle of rotation of the j-th ring in
xy plane, and c(m)

j is the excitation amplitude describing the j-th ring in an eigen-
state with quasi-momentum m [see figure 7]. A ket-vector for the corresponding
eigenstate is written as

∣∣ψ(m)
〉
=
∑Nr

j=1

∑Np

i=1 ci+(j−1)Nr

∣∣ei+(j−1)Nr

〉
.

As we can notice, a key difference from a single ring case is Nr unknown
amplitudes {c(m)

j }Nr

j=1 instead of one for a certain value of m. After inserting this
new anzats in (9) and employing the ring dipole sums defined in equation (21),
we obtain a system of equations to find Nr right eigenstates of (5) with the quasi-
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momentumm as:
ε̃
(m)
1 κ̃(m)

1,2 κ̃(m)
1,3 . . . κ̃(m)

1,Nr

κ̃(m)
2,1 ε̃

(m)
2 κ̃(m)

3,2 . . . κ̃(m)
2,Nr... ... ... . . . ...

κ̃(m)
1,Nr

κ̃(m)
2,Nr

κ̃(m)
3,Nr

. . . ε̃
(m)
Nr


︸ ︷︷ ︸

M (m)


c
(m)
1

c
(m)
2
...

c
(m)
Nr

 = Ẽ (m)


c
(m)
1

c
(m)
2
...

c
(m)
Nr

 , (31)

where the diagonal entries of the introduced matrix are defined according to (20)

and (21) as ε̃(m)
j = − i

2
− 3

4
Σ(m)(Rj, Np), the energies of the excitation located

only at j-th ring without the interaction with other rings. The non-diagonal entries
are defined as normalized inter-ring coupling strengths

κ̃j,l = −3πc

ω0
eim(αl−αj)

Np∑
n=1

eimφnGzz(|r1+(j−1)Nr
− rn+(l−1)Nr

|, ω0). (32)

For the definition of Gzz see equation (16). In order to denote the eigenvalues of
the multi-ring structure, we use the letter E instead of ε. It will be useful further to
distinguish the eigenvalues of multi-ring structures from the eigenvalues (20) of a
single ring.

A general scheme for the efficient diagonalization of equation (9) for multi-
ring structures is illustrated in figure 30. After this, we obtain a set of Nr eigen-
values and eigenstates for eachm. In section 3.2, eigenvalue problem (31) will be
solved analytically for Nr = 2 rings and will be demonstrated that the interaction
between two states with the same m leads to the formation of subradiant states
with a larger Q-factor.

To sum up, in order to calculate a single excitation spectrum ofNr concentric
rings, namely N = Nr × Np states with all possible values of angular quasi-
momentum, one needs to diagonalize Nr ×Nr matrix for each positivem instead
of the diagonalization of N ×N matrix representing the total Hamiltonian (3).

2.6 Doubly excited eigenstates
In sections 2.1 and 2.5, equations for calculating the single excitation spec-

trum of ring structures, namely (9) and (31), are formulated and investigated. This
section is devoted to the analysis of the double excitation spectrum when states of
a system are described by ket-vector (10). In this case, the study becomes more
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complicated than for a single excitation case due to a significant dimensionality
growth from N to N(N − 1)/2 for N emitters. However, in order to gain an un-
derstanding of doubly excited states with the angular quasi-momentum, one can
formulate a general approach to obtain a double excitation spectrum illustrated by
a relatively simple example of a ring of N = Np = 6 emitters shown in figure 4.

As well as for singly excited eigenstates, the doubly excited eigenstates of a
ring can be distinguished by the angular quasi-momentumm taking the same val-
ues as for a single excitation case [see section 2.1]. Hence, the double excitation
amplitudes can be connected to each other by a relationship similar to (18). Thus,
the whole set of double excitation amplitudes can be reduced to a set of “inde-
pendent” amplitudes that differ not only by a phase factor einmφ′ but also differ in
absolute value. Here m is the state angular quasi-momentum, n is an integer and
φ′ = 2π/Np.

Let us first consider an example of a ring of Np = 6 emitters [see figure 4].
As discussed in section 2.2, rotation of a ring by φ′ = 2π/Np angle around z axis
converts the double excitation amplitudes as cij → eimφ′

ci′j′ where i′ = (i + 1)

mod Np and j′ = (j+1) mod Np [see figure 6(a)]. Thus, taking into account the
symmetry of amplitudes cij = cji and their transformation upon the ring rotation,
a whole set of Np(Np − 1)/2 = 15 amplitudes cij for a ring of Np = 6 emitters is
reduced to three following sets:

S1 = {c12, c23, c34, c45, c56, c16};
S2 = {c13, c24, c35, c46, c15, c26};
S3 = {c14, c25, c36}.

(33)

Note that c23 = eimφ′
c12, c34 = eimφ′

c23 = ei2mφ′
c12 for the first set S1;

c24 = eimφ′
c13, c35 = eimφ′

c24 = ei2mφ′
c13 for the second set S2, and so on

[φ′ = π/3].
Hence, the doubly excited eigenstates of a ring of six emitters are determined

only by three amplitudes {c12, c13, c14}, while the singly excited eigenstates in a
ring are determined only by one amplitude c1 (see section 2.1). Thus, the number
of doubly excited eigenstates with a certain value of angular quasi-momentum m

equals three or less for a ring ofNp = 6 emitters. In order to clarify the latter point,
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let us note that c14 = 0 for values of m = ±1 and m = 3. Indeed, c14 = eimφ′
c36,

then c14 = ei3mφ′
c14 or c14

(
ei3mφ′ − 1

)
= 0 implies two possible cases:

• ei3mφ′ − 1 = 0, then 3mφ′ = 2πn where n is integer. After inserting
φ′ = π/3, one can obtain thatm = 2n is an even integer number;

• otherwise, for oddm = (2n+ 1), the amplitude is c14 = 0.
Hence, it is proven that c14 = c25 = c36 = 0 for m = ±1 and m = 3 values of
angular quasi-momentum.

Thus, one ring of six emitters supports N0 = 3 doubly excited states with
m = 0, N+1 = 2 states with m = +1, N−1 = 2 states with m = −1, N+2 = 3

states withm = +2,N−2 = 3 states withm = −2, andN3 = 2 states withm = 3.
The total number of states is 3× 2 + 3× 3 = 15 for a ring of Np = 6 emitters as
it should be according to the formula Np(Np−1)

2 .
After dividing the amplitudes into sets, we can derive the effective eigen-

value equations for doubly excited states similar to the single excitation case (31).
Looking at Schrödinger equation for double excitation amplitudes (11), one can
notice that the amplitude cij is coupled via Green’s tesnor (16) only to the ampli-
tudes for which one of the indices – i or j – remains the same. Hence, the amplitude
c12 is coupled only to c23 and c16 amplitudes from S1 set; to c13, c24, c15, and c26
amplitudes from S2 set; and to c14, and c25 amplitudes from S3 set. Taking into
account the phase relationship between the amplitudes for each set, one can write
the equation for c12:

ε̃(m)c12 =
(
−i + g̃13eimφ′

+ g̃26ei5mφ′
)
c12

+
(
g̃23 + g̃14eimφ′

+ g̃25ei4mφ′
+ g̃16ei5mφ′

)
c13

+
(
g̃24 + g̃15eimφ′

)
c14,

(34)

where g̃ij(ω0) is given by (4). In a similar way, we can write the equations for c13
and c14 amplitudes and obtain the eigenvalue equation for doubly excited states in
a compact matrix form as follows: M11 M12 M13

M21 M22 M23

M31 M32 M33


 c12

c13

c14

 = ε̃(m)

 c12

c13

c14

 , (35)
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where

M11 = −i + g̃13eimφ′
+ g̃26ei5mφ′

,

M12 = g̃23 + g̃14eimφ′
+ g̃25ei4mφ′

+ g̃16ei5mφ′
,

M13 = g̃24 + g̃15eimφ′
,

M21 = g̃23 + g̃12eimφ′
+ g̃14ei2mφ′

+ g̃36ei5mφ′
,

M22 = −i + g̃15ei2mφ′
+ g̃35ei4mφ′

,

M23 = g̃34 + g̃16ei2mφ′
,

M31 = g̃24 + g̃13ei2mφ′
+ g̃15ei3mφ′

+ g̃46ei5mφ′
,

M32 = g̃34 + g̃12eimφ′
+ g̃16ei3mφ′

+ g̃45ei4mφ′
,

M33 = −i

(36)

with φ′ = π/3 being the angular separation for a ring of six emitters. Moreover,
equation (35) can be used for m = 0 and m = ±2. However for m = ±1 and
m = 3, it can be simplified to the following equation since c14 = 0 for these values
ofm: (

M11 M12

M21 M22

)(
c12

c13

)
= ε̃(m)

(
c12

c13

)
. (37)

Equations (35) and (37) are used in section 3.1 for the calculation of the spectrum of
doubly excited states and investigation of subradiant states in a ring of six emitters.

One can generalize this approach for a ring of Np emitters. A set of
Np(Np − 1)/2 double excitation amplitudes can be reduced for even Np to
(Np/2− 1) sets of Np doubly excited amplitudes each and one set ofNp/2 ampli-
tudes as follows

S1 = {c12, c23, c34, ..., cNp−1,Np
, cNp,1},

S2 = {c13, c24, c35, ..., cNp−1,1, cNp,2},
...

SNp/2−1 = {c1,Np/2, c2,Np/2+1, c3,Np/2+2, ..., cNp/2−2,Np−1, cNp/2−1,Np
},

SNp/2 = {c1,Np/2+1, c2,Np/2+2, c3,Np/2+3, ..., cNp/2−1,Np−1, cNp/2,Np
}.

(38)
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Note that cij = cji. Moreover, the amplitudes in SNp/2 set equal to zero for odd

m since a condition
Np

2
mφ′ = 2πn should be satisfied for SNp/2 set because its

dimension is not Np but Np/2 (see a proof above for Np = 6).
For odd Np, the amplitudes can be divided into the following (Np − 1)/2

sets of Np amplitudes:

S1 = {c12, c23, c34, ..., cNp−1,Np
, cNp,1},

S2 = {c13, c24, c35, ..., cNp−1,1, cNp,2},
...

S(Np−1)/2 = {c1,(Np+1)/2, c2,(Np+3)/2, c3,(Np+5)/2, ..., cNp−1,(Np−3)/2, cNp,(Np−1)/2}.
(39)

The number of sets is equal to the number of doubly excited statesNm for eachm
in a ring of emitters. Figure 8 summarizes the values ofNm for different parities of
angular quasi-momentumm and the number of emittersNp in a ring. For arbitrary
Np, one can get equations similar to (35) using the same approach.

Number 
of states N

m

(m is fixed)

Figure 8 – Number of doubly excited eigenstates Nm in a single ring of Np

emitters Nm for the fixed value of angular quasi-momentumm depending on the
parity ofm (rows) and Np (columns)

Let us consider the most general case of Nr rings with the same number of
emittersNp. For simplicity, we first determine the number of doubly excited states
Nm with each angular quasi-momentum m in Nr = 2 rings of Np = 6 emitters
[see figure 9]. First of all, two excitations can occupy one of the rings, being in a
state with angular quasi-momentumm. The number of states withm for one ring
Nm is given in figure 8. For two rings, we need to multiply this number by two.
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Figure 9 – Enumeration of emitters for Nr = 2 concentric rings of Np = 6
emitters

For evenm, there are six sets of amplitudes:

S1 = {c12, c23, c34, c45, c56, c16}
S2 = {c13, c24, c35, c46, c15, c26};
S3 = {c14, c25, c36};
S4 = {c78, c89, c9,10, c10,11, c11,12, c12,7};
S5 = {c79, c8,10, c9,11, c10,12, c11,7, c12,8};
S6 = {c7,10, c8,11, c9,12}.

(40)

Thus, two rings support at least 6 doubly excited states with each evenm (m = 0,
m = 2, m = −2). For each odd m (m = 1, m = −1, m = 3), there are at least
4 states because the amplitudes in sets S3 and S5 are zero. However, these are not
all possibilities for placing two excitations on two rings. A first excitation can also
occupy the inner ring while the second one occupies the outer ring yielding to the
following six sets of amplitudes and six states for eachm:

S7 = {c17, c28, c39, c4,10, c5,11, c12,6}
S8 = {c18, c29, c3,10, c4,11, c5,12, c67};
S9 = {c19, c2,10, c3,11, c4,12, c57, c68};
S10 = {c1,10, c2,11, c3,12, c47, c58, c69};
S11 = {c1,11, c2,12, c37, c48, c69, c7,10};
S12 = {c1,12, c27, c38, c49, c5,10, c6,11}.

(41)

Thus, two rings of six emitters support 66 doubly excited states. In particular,
N0 = 12 doubly excited states with m = 0, N+1 = 10 states with m = +1,
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N−1 = 10 states with m = −1, N+2 = 12 states with m = +2, N−2 = 12 states
withm = −2, and N3 = 10 states withm = 3.

Using a similar approach, we can find the number of doubly excited states
Nm with a certain angular quasi-momentumm for even Np as

Nm =


Nr ×

Np

2
+
Nr(Nr − 1)

2
×Np evenm,

Nr ×
(
Np

2
− 1

)
+
Nr(Nr − 1)

2
×Np oddm.

(42)

For odd Np, the value of Nm is

Nm = Nr ×
(Np − 1)

2
+
Nr(Nr − 1)

2
×Np (43)

for even and oddm.
In this chapter, we considered singly and doubly excited eigenstates in ring

structures of transverse emitters. Due to the rotational symmetry of the system, we
can introduce the angular quasi-momentumm describing the phase shift between
emitters. This helped us to reduce the dimensionality of the eigenvalue problem to
Nr for a single-excitation manifold inNr concentric rings ofNp emitters. For two
excitations, the dimensionality is given by (42) for evenNp, and by (43) for oddNp.
Moreover, we studied the change of ring eigenstates under transformations from
the symmetry group of the structure. We provided a correspondence between the
value ofm and irreducible representations of symmetry groupC6v for six emitters.
The same approach can be applied to any number of emitters. The correspondence
of the ring states to certain irreducible representations determines nonzero terms in
the expansion of a doubly excited state over the products of singly excited states.
It also strictly shows that the angular quasi-momentum of the doubly excited state
is equal to the sum of the angular quasi-momentum of singly excited states.
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3 SUBRADIANT EIGENSTATES OF RING OLIGOMERS
This chapter applies formalism developed in chapter 2 to model singly and

doubly excited eigenstates of a single ring and ring oligomers. The main aim of
the chapter is the investigation of subradiant eigenstates (with a large lifetime) and
the mechanisms of their formation.

3.1 Subradiance of a small single ring
First of all, let us model singly and doubly excited eigenstates with various

values of angular quasi-momentum m of a single ring of Np = 6 identical emit-
ters shown in figure 4. We recall that the obtained normalized and shifted complex

eigenvalue of the eigenstate withm can be written as ε̃(m) =

(
ω(m) − ω0

γ0

)
−iγ

(m)

2γ0

[see equation (6)]. The ratio Q0 =
ω0

γ0
defines a quality factor (Q-factor) of a

single emitter resonance. In order to characterize the resonances of collective

states, one can introduce the collective Q-factor as Q(m) =
ω(m)

γ(m)
. In order to

simplify the analysis, let us notice that the frequency detuning of collective state∣∣ω(m) − ω0

∣∣ ≪ ω0 since ω0 ≪ γ0 for atomic resonances. Thus, one can define
approximately a ratio of the collective state’s Q-factor to the single emitter’s Q-

factor as
Q(m)

Q0
≈
(
γ0
γ(m)

)−1

. The latter ratio of decay rates can be extracted from

analytically or numerically calculated eigenvalues as
γ(m)

γ0
= −2 Im(ε̃(m)).

Figures 10(a) and 10(b) show the ratio of Q-factors
Q(m)

Q0
for singly and

doubly excited eigenstates, respectively, as functions of normalized separation be-
tween emitters a [see inset in figure 10(b)]. The eigenenergies for singly excited
states are calculated using equation (20) with analytically derived dipole sum (22)
whereas the spectrum of doubly excited states is calculated from equation (35) for
even m = 0, ± 2, and from equation (37) for odd m = ±1,3. In figure 10(a) one

can see that
Q(m)

Q0
≲ 1 for m = 0,

Q(m)

Q0
∼ 1 for m = ±1, and

Q(m)

Q0
≫ 1 for

m = ±2 and m = 3 in the considered range of separations a/λ0 ≲ 0.25. The

states with
Q(m)

Q0
≪ 1 are called superradiant (low-Q) states whereas the states

with
Q(m)

Q0
≫ 1 are subradiant (high-Q) states.

We can see also in figure 10(a) that the largerm, the higher theQ-factor of the
state. This can be explained as follows. A ring excitation in the state

∣∣ψ(m)
〉
can be
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(a) (b)1 excitation 2 excitations

1

23

4

5 6

Figure 10 – (Logarithmic scale) Quality factors (Q-factors) of eigenstates in a
ring of Np = 6 as a function of separation between emitters normalized by the
resonant wavelength of a single emitter resonance [see inset in (b)]. The curves

in both subfigures are colored depending on the value of angular
quasi-momentumm [see legend in (a)]. The emitters are polarized perpendicular
to the ring plane. The collective Q-factor is normalized by that of a single emitter
Q0. Q/Q0 = (−2 Im[ε̃])−1 where ε is calculated from (20) for singly excited

states (a), and from (35) for doubly excited states (b) in a single ring. The dipole
sums for a ring of six emitters are calculated in (22). Kets in (b) highlight doubly

excited states with the highest and lowest Q-factor

considered as a quasi-particle with a wavenumber km
k0

= m
Npa/λ0

[25, 29]. Therefore,
suppression of radiative losses of the states is due to a mismatch between km and
wavenumber in free space k0 and the former growth withm.

Moreover, if separation a/λ0 decreases, Q-factors increase form ̸= 0 but the
Q-factor ofm = 0 eigenstate decreases [see figure 10(a)]. Note that the collective
decay rates γ(m) approach the Dicke limit for a/λ0 → 0 [7]. In this limit, the
separation between the emitters is so small that their interaction can be considered
to be infinitely strong. This, in turn, for the case of Np transverse dipoles leads
to the appearance of (Np − 1) collective states with γ = 0 (Q = ∞), and one
superradiant state with γ = Npγ0 (Q = Q0/Np). The first case of infinite Q-
factors corresponds tom ̸= 0 whereas the second case is the state withm = 0.

In accordance with figure 10(b), adding a second excitation to the ring can
help to increase the Q-factors of states with a small quasi-momentum, namely
m = 0 and m = ±1, by several orders of magnitude. Indeed, the state with
m = 0 becomes the most subradiant for the case of two excitations. This state is
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denoted as
∣∣∣Ψ(0)

1

〉
in figure 10(b). It is also interesting to compare

∣∣∣Ψ(0)
1

〉
with the

most superradiant state, also withm = 0, denoted as
∣∣∣Ψ(0)

2

〉
in figure 10(b).
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Figure 11 – Maps for doubly excited states withm = 0 from figure 10(b) with the
highest and lowest Q-factor (the corresponding eigenvalues are written on top of
the figure). The ring is composed of Np = 6 emitters separated by a/λ0 = 0.16.
(a) Probabilities |cij|2 of the double excitation of i-th and j-th emitter. Note that

cii = 0 but cji = cij . (b) The phase of amplitudes cij in units of π. (c, d)
Coefficients {vm1,m2

} of expansion of doubly excited state over the products of
singly excited states with angular quasi-momentumm1 andm2 (28). The
coefficients are calculated using the method described in section 2.3. The
absolute values of vm1,m2

are shown in (c), and their phases in units of π are
shown in (d). There are only nonzero coefficients such that (m1 +m2)

mod 6 = 0. (e-h) The same but for low-Q state
∣∣∣Ψ(0)

2

〉
Figures 11(a)-(d) and 11(e)-(h) contain all the information about

∣∣∣Ψ(0)
1

〉
and∣∣∣Ψ(0)

2

〉
states for a/λ0 = 0.16, respectively. Figures 11(c) and 11(g) show the

expansion coefficients vm1,m2
of doubly excited states

∣∣∣Ψ(0)
1

〉
and

∣∣∣Ψ(0)
2

〉
over the

products of singly excited states
∣∣ψ(m1)

〉 ∣∣ψ(m2)
〉
[see section 2.3]. One can see

that subradiant singly excited states with m1 = m2 = 3 mostly contribute to
subradiant

∣∣∣Ψ(0)
1

〉
[see figures 10(a) and 11(c)] whereas the highest contribution

to superradiant
∣∣∣Ψ(0)

2

〉
is given by m1 = m2 = 0 term with the highest radiative

losses [see figures 10(a) and 11(g)]. Note that in figures 11(c) and 11(g) vm1,m2
̸= 0

such that (m1 +m2) = 0 mod 6.
Thus, it is possible to reach higher Q-factors for low m by going from a

single excitation manifold to a double excitation one. Nevertheless, the Q-factor
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of the most subradiant singly excited state is higher than the Q-factor of the most
subradiant doubly excited state.

In the next section, we introduce a general approach for obtaining high-Q
states for all valuesm in single and double excitation manifolds based on the cou-
pling of modes in two subsystems with the same symmetry.

3.2 Mechanism of subradiant state formation
We consider an oligomer consisting of two open subsystems of emitters (A

and B).We denote the initial singly excited states of subsystemswithout interaction
(Ĥ0) as |φa⟩ and |φb⟩ with complex eigenenergies read as ε̃s ≡

(
ωs−ω0

γ0
− i γsγ0

)
where s = a,b. Assume that |φa⟩ and |φb⟩ have the same symmetry, i.e. enter
the same irreducible representation. Now let us introduce the interaction between
the states through the continuum of free space modes (radiation continuum) V̂
depending on the system’s parameters. One can formally write down the 2 × 2

Hamiltonian describing the whole system as

Ĥ =

(
ε̃a 0

0 ε̃b

)
︸ ︷︷ ︸

Ĥ0

+

(
0 κ̃ab

κ̃ba 0

)
︸ ︷︷ ︸

V̂

, (44)

where κ̃ab and κ̃ba are the coupling strengths. The eigenenergies of “dressed”
eigenstates of Ĥ can be easily found as

Ẽ± =
1

2

[
ε̃a + ε̃b ±

√
(ε̃a − ε̃b)

2 + 4κ̃abκ̃ba

]
. (45)

The corresponding “dressed” eigenstates are

|ψ±⟩ ≡

(
u±

v±

)
=

1√
1 + |η±|2

(
1

η±

)
, (46)

where

η± = − 1

2κ̃ab

[
ε̃a − ε̃b ∓

√
(ε̃a − ε̃b)

2 + 4κ̃abκ̃ba

]
. (47)

As shown further, the radiative decay rate of a “dressed” state γ− ∝ Im
[
Ẽ−
]

can be significantly decreased compared to that of a single emitter and single rings
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due to destructive interference of |φs⟩ states (subsystems A and B) in radiation to
the continuum.

3.3 An example of m = 0 with a central emitter
First, let us consider a simple example of the formation of a high-Q state with

m = 0 via the mechanism (44) in an oligomer of emitters. Figure 12(a) presents
an oligomer composed of a ring of Np emitters and one emitter placed at the ring
center coinciding with the origin of Cartesian coordinate systems. A total number
of singly excited eigenstates, in this case, is N = Np + 1.

Note that a central emitter can interact only with the ring state havingm = 0.
Indeed, the electric field strength of the state (26) with m ̸= 0 is zero at the ring
center due to a symmetry reason (see also figure 14), therefore, a coupling strength
of the state field with an emitter placed at the field zero is κ ∝ d · E∗ = 0.

For the considered ensemble, it is natural to choose the initial states as the
excited state of a central emitter, |φa⟩ = |e⟩, and the ring eigenstate with m = 0,
|φb⟩ =

∣∣∣ψ(0)
ring

〉
[see equation (26)]. The state |e⟩ obviously has m = 0. On this

basis, the entries of the Hamiltonian (44) are an excited emitter energy ε̃a = − i
2 ,

an excited ring energy ε̃b = − i
2 − 3

4Σ
(0) (R,Np), κ̃ba = −3πc

ω0
Gzz (R,ω0), and

κ̃ab = Npκba [see equations (4), (9), and (20)].
According to (45), these parameters yield the following eigenenergies for

the “dressed” oligomer states withm = 0:

Ẽ± = − i
2
− 3

8
Σ(0) (R,Np)±

3

4
∆, (48)

where ∆ =

√
1
4

[
Σ(0) (R,Np)

]2
+Np

[
4πc
ω0
Gzz (R,ω0)

]2
is a complex energy gap

between the states. The corresponding eigenstates of the oligomer with m = 0

read as

|ψ±⟩ = u± |g⟩⊗Np ⊗ |e⟩+ v±

∣∣∣ψ(0)
ring

〉
⊗ |g⟩ , (49)

where |u+|2 + |v+|2 = |u−|2 + |v−|2 = 1. Note that the other (Np − 1) states of
the oligomer withm ̸= 0 are

∣∣∣ψ(m)
ring

〉
⊗ |g⟩ where

∣∣∣ψ(m)
ring

〉
is a state (26).

One can also find η± for the considered oligomer from equation (47) and
substitute it into equation (46) to obtain u± and v± excitation amplitudes. Their
physical meaning is the following: 1√

Np

v±eimφi is the excitation amplitude of an
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symmetric
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Figure 12 – High-Q singly excited state withm = 0. (a) Illustration of
mechanism (44) of the high-Q state formation in oligomer composed of a central

emitter (subsystem A) and a ring (subsystem B). The oligomer supports
symmetric and anti-symmetric (high-Q) states (49). (b) (Logarithmic scale)
Dependence of normalized Q-factor of states shown in (a) on the separation

between emitters a/λ0. The collective Q-factor is calculated as
Q/Q0 = (−2 Im[µ])−1 where µ = −i/2 for a central emitter (gray), µ is given
by eq. (20) withm = 0 for the ring state (orange), µ is given by eq. (48) for

anti-symmetric (green) and symmetric (violet) states. (c) The frequency detuning
of the states, ∆ω

γ0
≡ ω−ω0

γ0
= Re[µ]. (d) The absolute values of excitation

amplitudes of a ring (v±) and central emitter (u±) for symmetric and
anti-symmetric states (49). (c) The phase shifts for amplitudes are defined as

arg(u+)− arg(v+) (violet) and arg(u+)− arg(v−) (green)

emitter in a ring, and u± is the excitation amplitude of a central emitter [see fig-
ure 12(a)]. Moreover, the phase shift between u− and v− is close to π whereas that
is almost zero for u+ and v+ [see figure 12(e) for Np = 6]. Hence, the “+” (resp.
“-”) subscript corresponds to a symmetric (resp. an anti-symmetric) state

∣∣∣ψ(0)
+

〉
(resp.

∣∣∣ψ(0)
−

〉
) shown in figure 12(a).

Figures 12(c) and 12(b) show the normalized Q-factors and frequency de-
tunings of initial

∣∣∣φ(0)
s

〉
, and oligomer

∣∣∣ψ(0)
±

〉
states for Np = 6. One can see
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the frequency and Q-factor of the symmetric state approach those of a single ring
because excitation is mostly localized at the ring rather than at a central emitter

|u+|√
Np|v+|

≲ 2 [see figure 12(d)]. At the same time, the frequency of the anti-
symmetric state approaches the frequency of a single emitter with the increase
of a because |u−|√

Np|v−|
≳ 2. However, the Q-factor of the anti-symmetric state is

remarkably higher than Q0 and has a maximum Q/Q0 = 292 around a/λ0 = 0.16

when the phase shift between probability amplitudes of ring and emitter excita-
tions equals to π exactly [see figure 12(e)]. This can be explained by the fact that
the radiative losses of dipole emitters are proportional to a square of the mean
dipole moment which is strongly reduced compared to that of a single dipole at
a/λ0 = 0.16 [see figure 12(d)]. Thus, an anti-symmetric state is subradiant for the
considered range of separations a/λ0 ≲ 0.25 while a symmetric state is a superra-
diant one. Moreover, the Q-factor for the anti-symmetric state tends to infinity in
the Dicke limit (a/λ0 → 0) while the Q-factor for the symmetric state approaches
1/N .

To conclude, we can notice that an inner subsystem (central emitter) is most
excited in an anti-symmetric, high-Q state while an excitation prefers to occupy
an outer subsystem (ring) in a symmetric state. A similar situation takes place for
subradiant singly excited and doubly excited states in two-ring structures.

3.4 Subradiant states with non-zero angular quasi-momentum
The ensemble composed of the ring with a central emitter shown in figure 12

supports a high-Q state with angular quasi-momentum m = 0. However, this
ensemble can not be applied to obtain subradiant states with m ̸= 0 because a
central emitter can not interact with the ring states withm ̸= 0. It motivates us to
consider a different ensemble composed of two concentric rings shown in the inset
of figure 13(b). The rings have the same number of emitters Np but different radii
R1 and R2 > R1. The total number of emitters is N = 2Np. As the initial states∣∣∣φ(m)

a

〉
and

∣∣∣φ(m)
b

〉
, we choose the singly excited eigenstates with the same angular

quasi-momentum m in single rings (26) of radius R1 and R2, respectively. Note
that the states (26) enter the orthogonal irreducible representations for different
angular quasi-momentum m, therefore the states of two rings can interact only if
they have the samem.

In this case, the Hamiltonian (44) matches the matrix (31) for two rings. As
written under (31), ε̃(m)

a and ε̃(m)
b are the energies of an excitation occupying one
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of two non-interacting rings [see equation (20)]. For clarity, we write again the
expressions for ε̃(m)

a and ε̃(m)
b :

ε̃(m)
a = − i

2
− 3

4
Σ(m)(R1, Np), ε̃

(m)
b = − i

2
− 3

4
Σ(m)(R2, Np). (50)

The coupling between rings is symmetric [κ̃(m)
ab = κ̃(m)

ba in (44)] and given by (32).
Inserting (50) and (32) into (45), we obtain the eigenenegies Ẽ (m)

± of the states with
angular quasi-momentum m in a two-ring oligomer. The corresponding eigen-
states of a two-ring oligomer simply read as:∣∣∣ψ(m)

±

〉
= u±

∣∣∣φ(m)
a

〉
︸ ︷︷ ︸
1st ring

⊗ |g⟩⊗Np︸ ︷︷ ︸
2nd ring

+v± |g⟩⊗Np︸ ︷︷ ︸
1st ring

⊗
∣∣∣φ(m)

b

〉
︸ ︷︷ ︸
2nd ring

. (51)

As well as for the case of a ring and a central emitter, the interaction between two
subsystems (rings here) leads to the formation of anti-symmetric, high-Q states but
for all values of angular quasi-momentum m as illustrated in figure 13(a). For a
two-ring structure, 1√

Np

u
(m)
± eimφi and 1√

Np

v
(m)
± eimφi have a meaning of the excita-

tion amplitudes of the i-th emitter in the first and second ring, respectively, within
a symmetric or anti-symmetric state. Note that |u(m)

+ | < |v(m)
+ | for the symmetric

state, and |u(m)
− | > |v(m)

− | for the anti-symmetric state similar to the case of a ring
with a central emitter.

Figures 13(b-c) demonstrate Q-factors for the eigenstates (51) for two rings
ofNp = 6 emitters. For all values of angular quasi-momentumm, we can observe
a good enhancement of the Q-factor for a two-ring oligomer by several orders of
magnitude compared to that for two single, non-interacting rings. We can also see
the peaks of the Q-factor whose positions depend on them and are essentially gov-
erned by the ratio of ring radiiR2/R1 [the latter is covered in more detail in the next
section]. The origin of maxima in the Q-factor, as before, is associated with the
optimal conditions for the destructive interference (phase shift is π) of two emitter
subsystems. Moreover, we show in section 3.7 that this interference leads to the
suppression of low-order radiant multipoles (vector spherical harmonics). The ra-
diation into the far field of high-Q states is associated with high-order multipoles
(hexapoles, 32-poles) although we consider ensembles with pure dipole response.
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(b) m = 0 (c) m = 1

(d) m = 2 (e) m = 3

With interaction
No interaction

With interaction
No interaction

With interaction
No interaction

With interaction
No interaction

+ =

subsystem A subsystem B anti-symmetric, high-Q state

(a) Mechanism

Figure 13 – High-Q, singly excited states with different angular quasi-momentum
m in two-ring oligomer. (a) Mechanism of the formation of the high-Q state
governed by the Hamiltonian (44). The mechanism is shown form = 3. An

excitation mostly occupies an inner ring. (b-d) (Logarithmic scale) Dependence
of Q-factors of rings’ states with differentm on the separation between emitters a

for R2/R1 = 2 [see inset in (a)]. The collective Q-factor is calculated as
Q/Q0 = (−2 Im[µ])−1. The dashed lines show the Q-factors of the states of

non-interacting rings [µ = eq. (50)] while the solid lines are for interacting rings
[µ = eq. (45) with ε̃ = eq. (50) and κ̃ = eq. (32)]

Note that Q-factors in figure 13 approach the Dicke limit at small separations
between emitters as described in section 3.1. The symmetric state withm = 0 has
Q
Q0

= 1
N while other (N − 1) states have Q

Q0
= ∞ in Dicke limit.

The high-Q states allow us to obtain a good enhancement of the field compo-
nentEz, transverse to the structure, in the near field wave zone z ≲ λ0. The electric
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(a) (b)

(c) (d)

Figure 14 –Magnitude and phase distributions of electric field component Ez

generated by high-Q states of two-ring oligomer in z/λ0 = 0.5 plane. The
oligomer is shown in figure 13 with R2/R1 = 2. The electric field is calculated
by equation (52). (a,c) The magnitude of Ez normalized by that of the total

electric field for high-Q states with angular quasi-momentum (a)m = 0, and (b)
m = 1. The separation between the rings a/λ0 is picked such that the states have
a maximum of Q-factor in figures 13(b), and 13(c), respectively. The white dots
indicate the positions of emitters in the z = 0 plane just for clarity. (b,d) The

phase of Ez in units of π for the states with (b)m = 0, and (d)m = 1

field of a collection of electric dipoles can be written via Green’s tensor (16) as

E(r, ω0) =
ω2
0

c2ϵ0

N∑
i=1

Ĝ0 (r− ri, ω0) di, (52)

where {ri}Ni=1 is a set of coordinates of dipoles. In a semi-classical approach, we
can assign a classical dipole moment to i-th emitter by a simple rule di = d × ci

where ci is the excitation amplitude within a singly excited eigenstate, and d is the
emitter transition dipole moment as before.

Figure (14) shows the amplitude and the phase of Ez generated by high-Q
states with m = 0 and m = 1 in two rings with a/λ0 such that Q-factors of the
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states have maxima in figures 13(c) and 13(d). One can see that the states demon-
strate remarkably different field profiles. The field of m = 0 state in figure 14(a)
has an axial symmetry with maxima and minima of the field due to the interference
of fields generated by rings. Moreover, the field phase for m = 0 continuously
varies from 0 to 2π along a radial direction [see figure 14(b)]. For m = 1, a non-
zero angular quasi-momentummanifests itself as a vortex for the field strength and
the phase [see figures 14(c) and 14(d)]. Moreover, the state with m = 1 has zero
field at the center of rings whereas the state withm = 0 has a field maxima at this
point.

3.5 Doubly excited subradiant states
The discussed above physical mechanism based on the interaction of two

emitter subsystems can be applied to obtaining subradiance of doubly excited states
with non-zero angular momentum. A two-ring structure shown in figure 13 has
two independent parameters such as the ratio of ring radii R2/R1, and separation
between emitters a/λ0. Since a singly excited state with m = 3 has the highest
Q-factor among all singly excited states in a two-ring oligomer [see figure 13], let
us maximize the Q-factor of a doubly excited state withm = 3 by varying R2/R1

and a/λ0. Figure 15 shows the Q-factor of the most subradiant doubly excited
state withm = 3 calculated for two rings by equation (11) taking into account the
symmetry of the states as discussed in section 2.6. One can see an enhancement of
Q by two orders of magnitude compared toQ0 for R2/R1 = 2.2 and a/λ0 = 0.16.

In order to interpret obtained optimal parameters, let us model dou-

bly excited eigenstates with m = 3,
∣∣Ψ(m)

〉
=

N∑
i=1

N∑
j=i+1

cij |eiej⟩ where

|eiej⟩ = σ̂†i σ̂
†
j |g⟩

⊗N . We recall that double excitation amplitudes obey the Pauli
principle cii = 0, and reciprocity cij = cji [see section 1.3]. As discussed in
section 2.3, a doubly excited state can be expanded into a sum of products of
singly excited states

∣∣Ψ(m)
〉
=

∑
m1,m2

vm1,m2

∣∣ψ(m1)
〉 ∣∣ψ(m2)

〉
where vm1,m2

̸= 0 for

m1 +m2 = m mod Np where Np is the number of emitters per ring. Figure 16
shows maps with amplitudes cij and vm1,m2

of four doubly excited states
∣∣∣Ψ(3)

s

〉
with m = 3 in a two-ring oligomer with optimal parameters R2/R1 = 2.2 and
a/λ0 = 0.16. The states should be analyzed together since they have the same sym-
metry, i.e. enter the same irreducible representation of theC6v group. As written in

51



100

101

102
Q/Q0

1

23

4

5 6

7

89

10

11 12

Figure 15 – Q-factor of
∣∣∣Ψ(3)

1

〉
the subradiant doubly excited state with angular

quasi-momentumm = 3 as function of R2/R1 and a/λ0. The collective Q-factor
is normalized by the Q-factor of a single emitter resonance Q0. The inset shows

two rings of six emitters with the enumeration of emitters

section 2.5, the states withm = 3 are transformed by one-dimensional irreducible
representations. Obviously, the states presented in figure 16 cannot enter A1 and
A2 representations because these representations preserve the state under rotations
[see figure 6(c)]. Indeed, let us take a look at the maps with absolute values and
phases of amplitudes cij , for example, in figures 16(a) and 16(b) for

∣∣∣Ψ(3)
1

〉
state.

As shown in figure 6(a), a rotation of rings by π/3 angle around z-axis permutes
the indices so that non-zero amplitude c23 corresponds to amplitude c12 before the
rotation. Since the state has m = 3, then c23 = c12eim

π
3 = −c12 as illustrated fig-

ures 16(a) and 16(b). Thus, the states in figure 16 can enter B1 or B2 irreducible
representations [see figure 6(c)]. In order to finally identify, let us consider the
symmetry of the states under reflection with respect to the axis intersecting the
emitters [σd in figure 6(b)]. After this reflection, c12 → c16. From figure 16(b),
we can find that c16 = −c12, therefore the state is anti-symmetric with respect to
σd and enters B1 irreducible representation [see figure 6(c)]. It can be shown that
other states

∣∣∣Ψ(3)
2

〉
,
∣∣∣Ψ(3)

3

〉
, and

∣∣∣Ψ(3)
4

〉
also enter the same representationB1. Note

that two rings have ten doubly excited eigenstates with m = 3 [see (42)]. The
discussed here eigenstates enter B1 irreducible representation, while the other six
states enter different representationB2 and consequently do not interact with these
four due to having different symmetry.

Figure 16 also shows the eigenvalues Ẽ (3)
s of doubly excited states with

m = 3 for R2/R1 = 2.2 and a/λ0 = 0.16. The state
∣∣∣Ψ(3)

1

〉
is subradiant

52



1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.5

1

1.5

2

0-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+ -10

-8

-6

-4

-2

0

0

0.5

1

1.5

2

0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 +

0-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 +

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.5

1

1.5

2

-10

-8

-6

-4

-2

0

0

0.5

1

1.5

20-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 + 0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 +

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.5

1

1.5

2

-10

-8

-6

-4

-2

0

0

0.5

1

1.5

20-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 +

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12 0

0.5

1

1.5

2

-10

-8

-6

-4

-2

0

0

0.5

1

1.5

20-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0-
0+
1-
1+

-1-
-1+
2-
2+

-2-
-2+
3-
3+

0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 + 0 - 0 + 1 - 1 +
-1

-
-1

+ 2 - 2 +
-2

-
-2

+ 3 - 3 +

(a)

(c)

(b)

(d)

(i)

(k)

(j)

(l)

(e)

(g)

(f)

(h)

(n)

(p)

(m)

(o)
0 - 0 + 1 - 1 +

-1
-

-1
+ 2 - 2 +

-2
-

-2
+ 3 - 3 +

Figure 16 – Maps of excitation amplitudes cij and expansion coefficients vm1,m2

for doubly excited states withm = 3 in two rings
∣∣∣Ψ(3)

s

〉
where s = 1,2,3,4 [see

equation (53)]. The rings of six emitters have R2/R1 = 2.2 and a/λ0 = 0.16
corresponding to the maximum of Q-factor in figure 15. Ẽs are the

eigenvalues (54) of shown states for these parameters of rings. The indices i and
j enumerate the emitters such that a set of indices {1,2,...,6} is for the inner ring
(ring A), and {7,8,...,12} is for the outer ring (ring B) as shown in figure 15. The
indicesm1 andm2 denote the angular quasi-momentum of singly excited states
with the subscript ± corresponding to symmetric or anti-symmetric state (51)

with Q/Q0 = (−2 Im[Ẽ ])−1 ≈ 110. There are also one radiant state
∣∣∣Ψ(3)

2

〉
with

Q/Q0 ≈ 1.25, and two superradiant states
∣∣∣Ψ(3)

3

〉
,
∣∣∣Ψ(3)

4

〉
with Q/Q0 ≈ 0.35 and

Q/Q0 ≈ 0.27, respectively. As well as for the singly excited states in two rings,
themost subradiant doubly excited state

∣∣∣Ψ(3)
1

〉
is mostly localized on the inner ring

rather than on two rings or on the outer ring [see figure 17(a)] while, for the most
radiant state

∣∣∣Ψ(3)
4

〉
, excitations occupy an outer ring. The states with intermediate

losses
∣∣∣Ψ(3)

2

〉
and

∣∣∣Ψ(3)
3

〉
are localized between the rings. Using expansions over
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products of singly excited states in figures 16, we can write doubly excited states
ordered by increasing radiative losses as∣∣∣Ψ(3)

1

〉
=

i√
2

(∣∣∣ψ(+1)
−

〉 ∣∣∣ψ(+2)
−

〉
+
∣∣∣ψ(+2)

−

〉 ∣∣∣ψ(+1)
−

〉)
− i√

2

(∣∣∣ψ(−1)
−

〉 ∣∣∣ψ(−2)
−

〉
+
∣∣∣ψ(−2)

−

〉 ∣∣∣ψ(−1)
−

〉)
,

∣∣∣Ψ(3)
2

〉
=

i√
2

(∣∣∣ψ(+1)
−

〉 ∣∣∣ψ(+2)
+

〉
+
∣∣∣ψ(+2)

+

〉 ∣∣∣ψ(+1)
−

〉)
− i√

2

(∣∣∣ψ(−1)
−

〉 ∣∣∣ψ(−2)
+

〉
+
∣∣∣ψ(−2)

+

〉 ∣∣∣ψ(−1)
−

〉)
,

(53)

∣∣∣Ψ(3)
3

〉
=

i√
2

(∣∣∣ψ(+1)
+

〉 ∣∣∣ψ(+2)
−

〉
+
∣∣∣ψ(+2)

−

〉 ∣∣∣ψ(+1)
+

〉)
− i√

2

(∣∣∣ψ(−1)
+

〉 ∣∣∣ψ(−2)
−

〉
+
∣∣∣ψ(−2)

−

〉 ∣∣∣ψ(−1)
+

〉)
,

∣∣∣Ψ(3)
4

〉
=

i√
2

(∣∣∣ψ(+1)
+

〉 ∣∣∣ψ(+2)
+

〉
+
∣∣∣ψ(+2)

+

〉 ∣∣∣ψ(+1)
+

〉)
− i√

2

(∣∣∣ψ(−1)
+

〉 ∣∣∣ψ(−2)
+

〉
+
∣∣∣ψ(−2)

+

〉 ∣∣∣ψ(−1)
+

〉)
,

where
∣∣∣ψ(m)

±

〉
is symmetric/anti-symmetric singly excited states of a two-ring

oligomer (51). Thus, doubly excited states (53) are composed of products of singly
excited states with onlym1 = ±1 andm2 = ±2. It is interesting to note that there
are no contributions of products of singly excited states withm1 = 0 andm2 = 3

although m1 + m2 = m = 3. This can be easily understood by analyzing the
products of irreducible representations of the C6v symmetry group (29). The irre-
ducible representation B1 of states (53) only enters expansion of product E1 ×E2

corresponding to singly excited states with m = ±1 and m = ±2. However, the
product of irreducible representations A1 × B2 for states with m = 0 and m = 3

equals a different irreducible representation B2.
Acting with the Hamiltonian (3) on the states (53), we obtain the following

expressions for the energies of doubly excited states via the energies of singly
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excited states in two rings:

Ẽ (3)
1 = Ẽ (1)

− + Ẽ (2)
− ,

Ẽ (3)
2 = Ẽ (1)

− + Ẽ (2)
+ ,

Ẽ (3)
3 = Ẽ (1)

+ + Ẽ (2)
− ,

Ẽ (3)
4 = Ẽ (1)

+ + Ẽ (2)
+ .

(54)

1 exc @ m = 2 [E2]
1 exc @ m = 1 [E1]
2 exc @ m = 3 [B1]

(a) (b)
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Figure 17 – (a) Frequency detuning ∆ω
γ0

≡ ωs−ω0

γ0
= Re[Ẽs] of doubly excited states

in two rings (53) withm = 3 for R2/R1 = 2.2. The dot size is proportional to the
decay rate γs

γ0
= −2 Im[Ẽs] where Ẽs is given by eq. (54). The inset schematically

shows the largest amplitudes cij for doubly excited state
∣∣∣Ψ(3)

1

〉
obtained from

figures 16(a,b). (b) Q-factors of doubly excited states (53) withm = 3 (burgundy
dashed curves), singly excited states (51) withm = 1 (orange solid curves), and
m = 2 (blue solid curves). Q-factors are calculated via the corresponding decay

rates Q/Q0 ≈ γ0/γ since ∆ω ≪ ω0

Now we can explain the maximum of the Q-factor of the state
∣∣∣Ψ(3)

1

〉
in

figure 15 for parameters R2/R1 = 2.2 and a/λ0 = 0.16 of two rings. Figure 17(a)
shows the frequency detuning of doubly excited states by dots of size proportional
to the decay rate of the state. Figure 17(b) shows the Q-factors for doubly excited
states (53) with m = 3 and singly excited states (51) with m = 1 and m = 2.
Since the energiy (54) of the considered doubly excited states

∣∣∣Ψ(3)
1

〉
is just the

sum of energies of subradiant singly excited states with m = 1 and m = 2, then
the decay rates of these states are connected as follows γ(3)1 = γ

(1)
− + γ

(2)
− . Hence,

the Q-factor of the doubly excited state Q(3)
1 , such that

1

Q
(3)
1

=
1

Q
(1)
−

+
1

Q
(2)
−
, has
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the maximum because the Q-factors of singly excited states Q(1)
− , Q(2)

− also have
maxima at a/λ0 = 0.16 [see figure 17(b)].

We want to draw attention to the fact that one ring also supports a doubly
excited state with m = 3, such that its irreducible representation is B1 and its
energy is the sum of energies of singly excited states in one ring with m = 1 and
m = 2: ε̃ = ε̃(1) + ε̃(2) where ε̃(m) given by (20) for one ring. However, the Q-
factor of this state is relatively smallQ(3)/Q0 ∼ 1 as shown in figure 10(b) because
Q(3) ≈ Q(1) in one ring whereas Q(1)/Q0 ∼ 1 as shown in figure 10(a). If we add
a second ring to the system, the singly excited states withm = 1 in two rings can
be anti-symmetric or symmetric Q(1) → Q

(1)
− , Q

(1)
+ . The anti-symmetric state has

a large Q-factor Q(1)
− /Q0 ≫ 1, therefore, the doubly excited in two rings

∣∣∣Ψ(3)
1

〉
such that Q(3) ≈ Q

(1)
− also has a large Q-factor. Thus, the interaction between two

rings decreases the radiative losses of the states in both singly- and two-excitation
manifolds.

3.6 Far-field radiation patterns of singly excited states
This section studies radiation patterns of the singly excited, high-Q states

with m = 1 and m = 2 shown in figure 17(b). The total power radiated in the
far field wave zone r ≫ λ0 by a dipole ensemble can be written through the time-
averaged Poynting vector ⟨S⟩ as

P =

∫
4π

r2⟨S⟩ · n dΩ. (55)

The integration is carried out over a total solid angle
∫
4π

dΩ =
2π∫
0

dφ
π∫
0

dθ sin θ for a

sphere of radius r ≫ λ and center at the origin of the Cartesian coordinate system.
n = (cos θ cosφ, cos θ sinφ, sin θ) is a unit vector normal to this spherical surface.
The spherical angles θ andφ are defined according to figure 18(a). Let us introduce
p(θ, φ) = r2⟨S⟩ · n as a power radiated into a unite solid angle dΩ given by unite
vector n as shown in figure 18(a). p(θ, φ) determines a radiation pattern of the
system and depends on a radial component of ⟨S⟩ = 1

2
Re (EFF ×H∗

FF)where only
far-field terms of generated electric EFF and magnetic HFF fields contribute to the
outgoing radiation. For an electric dipole,HFF = cϵ0n×EFF [44]. Moreover, EFF,
HFF, and n are orthogonal to each other in the far field r ≫ λ0 [see figure 18(a)],
then ⟨S⟩ = 1

2
cϵ0 |EFF|2 n is always oriented along n.
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Figure 18 – (a) Scheme with the coordinates system for calculating angular
dependence of far-field radiation. The green arrows show components of electric
Eθ and magnetic Hφ far fields of a single dipole polarized along z-axis (red

arrow). (b) Normalized radiation pattern (57) for a single oscillating dipole along
z. (c,d) Normalized radiation patterns (57) for high-Q states withm = 1 and
m = 2 from figure 17(b). The rings have R2/R1 = 2.2 and a/λ0 = 0.16 when

both states have the highest Q-factor in figure 17(b). In diagrams (b-d), θ angle is
plotted along the radial direction and φ is along the angular direction. Note that
the radiation patterns are symmetric with respect to the exchange θ → π − θ

since the structures are placed in the xy plane

In order to calculate EFF from equation (52), we write down the far field
Green’s function Ĝ0(r− ri, ω0) [see (16)]:

ĜFF
0 (r− ri, ω0) =

eik0r−ik0n·ri
4πr

(
Î − n⊗ n

)
, (56)

where n ≡ r/r. In order to obtain this, we used |r− ri| ≈ r− r · ri/r = r− n · ri.
Hence, the electric far field can be expressed as EFF = eik0r

r f(n) where

f(n) = − ω2
0

c2ϵ0
sin θ
4π

N∑
i=1

e−ik0n·ridi is the scattering amplitude for dipole emitters polar-
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ized in z-direction di = d× ci. Thus, the radiation pattern is fully determined by
the scattering amplitude p(θ, φ) =

1

2
cϵ0 |f(n)|2 and does not depend on the sphere

radius r. For the obtained dipole scattering amplitude f(n), the radiation pattern of
a dipole ensemble is finally written as

p(θ, φ) = P0 ×
3

32π
sin2 θ

∣∣∣∣∣
N∑
i=1

e−ik0n·rici

∣∣∣∣∣
2

, (57)

where P0 = ħω0 × γ0 is a total radiated power by a single dipole with γ0 given
by (2):

P0 =
ω4
0|d|2

3πc3ϵ0
. (58)

Note that P0 does not contain the Planck constant in its denominator in contrast to
the decay rate γ0 because P0 can be derived in classical electrodynamics while γ0
has a quantum origin.

Figure 18(b) shows the radiation pattern for a single dipole along z-axis [see
figure 18(a)] calculated from equation (57), p(ϑ, φ)/P0 ∝ sin2 θ. Figures 18(c)
and 18(d) show the radiation patterns for anti-symmetric, singly excited eigenstates
withm = 1 andm = 2, respectively, from figure 17(b) when the states experience
maxima of Q-factor. Note that the radiation patterns presented in figures 18(b-d)
are symmetric with respect to the exchange θ → π − θ since the structures are
placed in the xy plane. One can see a strong modification of the states’ radiation
patterns relative to a single dipole radiation pattern. The state with m = 1 also
radiates into θ ∈ [π/6, π/3]and θ ∈ [2π/3, 5π/6] ranges for any φ. The state with
m = 2mostly radiates into θ ≈ π/2 as a single dipole at the anglesφi = (i−1)π/3

of emitters’ angles while the radiation pattern exhibits a “vortex”. The maximum
of p(θ, φ)/P0 for states with m = 1 and m = 2 is approximately one and two
orders of magnitude smaller than for a single dipole.

3.7 Multipole expansion
A complicated view of the radiation patterns in figures 18(c) and 18(d) can

be justified by a quite reach multipole content of the scattered field (52). In order
to perform the multipole expansion of the radiated field, let us introduce electric
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N and magneticM vector spherical harmonics (VSH) [48]:

M(s)
j,n(r, ω) = ∇×

[
rz(s)j (kr)Yj,n(θ, φ)

]
,

N(s)
j,n(r, ω) =

c

ω
∇×M(s)

j,n(r, ω),
(59)

where ∇ is the nabla operator, j is a total angular momentum (j = 1 - dipole,
j = 2 - quadrupole, j = 3 - octupole, and so on), n is the projection of j on z-axis,
Yj,n(θ, φ) is a scalar spherical harmonics (∝ einφ). The superscript (s) takes values
s = 1 or s = 3 such that z(1)j (kr) ≡ jj(kr) is the spherical Bessel function of order
j, z(3)j (kr) ≡ hj(kr) is the first-kind spherical Hankel function of order j.

Free-space Green’s function (16) can be expressed via VSHs as

Ĝ0 (r− r′, ω) = −er ⊗ er
k2

δ (r− r′) + ik
+∞∑
j=1

+j∑
n=−j

1

j(j + 1)
×M

(1)
j,n(r, ω)⊗M(3)

j,−n(r′, ω) + N(1)
j,n(r, ω)⊗ N(3)

j,−n(r′, ω), if r > r′,

M(3)
j,n(r, ω)⊗M(1)

j,−n(r′, ω) + N(3)
j,n(r, ω)⊗ N(1)

j,−n(r′, ω), if r < r′,

(60)

where k = ω/c, ⊗ is the dyadic product between two vectors, er is the unit vector
of radial direction.

In the far field, the distance between a field calculation point and the dipoles’
coordinate is very large r ≫ ri, hence we need to choose the first option for the
expansion of Green’s function. Inserting (60) in (52), we obtain the following VSH
expansion of the far field radiated by dipoles:

E(r, ω0) =
ω3
0

c3ϵ0

+∞∑
j=1

+j∑
n=−j

N∑
i=1

(
a
(i)
j,n

iN(1)
j,n(r, ω0)√
j(j + 1)

+ b
(i)
j,n

iM(1)
j,n(r, ω0)√
j(j + 1)

)
, (61)

where the expansion coefficients are

a
(i)
j,n =

1√
j(j + 1)

N(3)
j,−n(ri, ω) · di,

b
(i)
j,n =

1√
j(j + 1)

M(3)
j,−n(ri, ω) · di.

(62)

Let us insert (61) in (55). Taking into account the orthogonality conditions
between VSHs and emitter identity (recall that di = d × ci), integration in (55)
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can be evaluated that leads to the following expression for a total radiated power
normalized by (58):

P

P0
=

3

2

+∞∑
j=1

+j∑
n=−j

(
|aj,n|2 + |bj,n|2

)
, (63)

where aj,n =
N∑
i=1

a
(i)
j,n, bj,n =

N∑
i=1

b
(i)
j,n. In order to obtain (63), we need to calculate

the integrals like
∫
r2[N×M] · n dΩ ∝ k−2

0 .
Let us draw a few conclusions about equation (63). First of all, it equals the

ratio of decay rates,
P

P0
=

γ

γ0
since P = ħω0 × γ for one excitation stored in the

ensemble. Secondly, |aj,n|2 and |bj,n|2 quantities show the contribution of electric
and magnetic VSH with (j,n) to the radiation. Thirdly, all the VSHs contribute to
the radiation independently because the interference terms like a∗j,nbj,n, b∗j,naj,n are
absent in (63). This is in agreement with the equation for the scattered power of a
single particle of spherical shape within Mie theory [49].

electric
hexapole magnetic

octupole

magnetic
hexapole

electric
32-pole

(a) (b)

(c) (d)

Figure 19 – Multipole expansion (63) for high-Q singly excited states with (a,b)
m = 1 and (c, d)m = 2 of two rings. The ring radii are R2/R1 = 2.2 and the
separation between emitters is a/λ0 = 0.16 corresponding to maxima of
Q-factors of the states in figure 17(b). The coefficients are calculated by

equation (62) and presented on a logarithmic scale. The multipoles (VSHs)
providing dominant contributions are highlighted
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Figures 19(a,b) and figures 19(c,d) show the multipole contributions of
VSHs to the radiated power for the subradiant, singly-excited states with m = 1

and m = 2, respectively. One can see that only the VSHs with n mod 6 = m

contribute to the radiation because the symmetry of the VSH should coincide with
the symmetry of the state according to (62). The interference between different
multipoles leads to complicated radiation patterns in figure 18. The subradiant
properties of the states are due to the fact that the low-order multipoles are almost
suppressed, while the main contribution to the radiation is given by higher-order
multipoles. It is known that the higher the order of the multipole, the lower the
amount of radiated power. One can see in figures 19(a,b) that the electric hexapole
and magnetic octupole mainly contribute to the state with m = 1. As shown in
figure 17(b), the state withm = 2 has a higher Q-factor than the state withm = 1

since the higher-order multipoles (electric 32-pole, and magnetic hexapole) mainly
contribute to this state [see figures 19(c,d)].

(a) (b)

(c) (d)

electric
quadrupole

magnetic
dipole

electric
octupole

magnetic
quadrupole

Figure 20 – The same as in figure 19 but the excitation amplitudes of rings u(m)
−

and v(m)
− are assumed to be in phase

Suppression of high-order multipoles for high-Q states in the two-ring struc-
ture can be justified by a presence of π phase shift between the excitation ampli-
tudes u(m)

− and v(m)
− of the rings. Figure 20 shows the multipole expansion for the

states when two rings are in a phase that corresponds to the symmetric states. In
this case, the symmetric states can be approximated in the far field by two radiat-
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ing multipoles such as an electric quadrupole and a magnetic dipole for the state
withm = 1, an electric octupole and magnetic quadrupole for the state with ,= 2.
The decrease in the order of the main multipole contributions compared to the case
in figure 19 indicates an increase in the radiative losses of symmetric states [see
figure 17(b)].

3.8 Far-field two-photon amplitude
In the previous sections, we modeled radiation patterns and their multipole

expansion for singly excited, high-Q states withm = 1 andm = 2. Recall that the
most subradiant doubly excited statewithm = 3 is a product of these singly excited
states [according to figure 16]. In this section, we study the radiative directivity of
the doubly excited state

∣∣∣Ψ(3)
1

〉
.

For the doubly excited state, instead of the radiated power |Ψ⟩, we will cal-
culate a spatial two-photon amplitude [22]:

g2(ra, rb) =

∑
α,β

⟨Ψ|Êβ(rb)Êα(ra)Ê†
α(ra)Ê

†
β(rb)|Ψ⟩∑

α,β

⟨Ψ|Êβ(rb)Ê†
β(rb)|Ψ⟩⟨Ψ|Êα(ra)Ê†

α(ra)|Ψ⟩
, (64)

where {α, β} = {x,y,z}, Eα(r) is the electric field operator (1) creating a photon
at point r with polarization in α-direction, ra and rb are the coordinates of two
detectors [see figure 21(a)]. The electric field operator is calculated using the far
field Green’s function (56), therefore, in the far field limit r ≫ λ0, equation (64)
does not depend on |ra|, |rb| upon the normalization.

Figure 21 shows two-photon amplitude (64) of high-Q state with m = 3

for two geometries of detectors. In the first case of figures 21(a,b), both detectors
are placed at the same point and revolve around the rings. In the second one of
figures 21(c,d), one of the detectors is fixed above the rings while the second one
revolves. From the comparison of figures 21(b) and 21(d), we can conclude that
the highest probability is the emission of photons in the same direction of θ ≈ 75◦

and φ = 30◦,90◦,150◦,210◦,270◦,330◦ rather than in different directions. For these
angles, the two-photon amplitude g2 > 1 so demonstrates bunching.

In this chapter, we presented a mechanism that allows us to achieve the
higher quality factors of singly and doubly excited states with angular quasi-
momentum compared to the quality factors of the states in a single ring. We con-
sidered oligomers of quantum emitters supporting two singly excited states with
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Figure 21 – (a,c) Detection schemes of two-photon emission for high-Q doubly
excited state

∣∣∣Ψ(3)
1

〉
in figure 16(a). (b,d) The calculated two-photon far field

amplitude (64) for detection schemes (a) and (c), respectively. In diagrams (b)
and (d), θ angle is plotted along the radial direction and φ is along the angular
direction. Note that the radiation patterns are symmetric with respect to the

exchange θ → π − θ since the structures are placed in the xy plane

the same symmetry supported by subsystems of the oligomer. By optimizing the
parameters of the oligomer, we achieve a regime of destructive interference be-
tween the states when the phase shift between them is close to π. In this regime,
we observed maxima of the quality factors of singly excited states with m = 0

in the ring with a central emitter, and with all m in two concentric rings. It was
shown that the high-Q states with angular quasi-momentum allow not only mod-
ifying far-field radiation patterns but also localizing and enhancing the transverse
near fields. We performed the multipole expansion of far-field radiation of high-Q
states in two rings and demonstrated that a high Q-factor is justified by the cancel-
lation of low-order radiating multipole contributions due to the destructive inter-
ference between the rings. In the constructive interference regime, on the contrary,
low-order multipoles dominate in the far field.
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We showed that two rings of six emitters support not only high-Q singly ex-
cited states but also high-Q doubly excited states. We focused on the four doubly
excited states with m = 3 and entering B1 irreducible representation of C6v sym-
metry group. This irreducible representation enters only the product of irreducible
representations E1 and E2 of singly excited states with m = ±1 and m = ±2.
Therefore, the energies of these doubly excited states with m = 3 are sums of
energies of singly excited states with m = ±1 and m = ±2. Hence, there is a
doubly excited state with m = 3 such that its energy is the sum of energies of
high-Q states with m = ±1 and m = ±2. We found the optimal ring parame-
ters such that the doubly excited state with m = 3 and singly excited states with
m = ±1 and m = ±2 simultaneously have the maxima of Q-factors. We calcu-
lated the two-photon far-field amplitude of this doubly excited state and showed
that this state demonstrates bunching in certain directions for the symmetric detec-
tion configuration.
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CONCLUSION
In this thesis, we investigated subradiant (high-Q) singly and doubly excited

states in quantum emitter ensembles (oligomers) with in-plane rotational symme-
try. We clarified the mechanism of the formation of high-Q singly and doubly
excited states with angular quasi-momentum m. This mechanism is based on the
destructive interference of subsystems of emitter coupled via propagating photons
in free space. The basic properties of these states were investigated. The main
results of the work are highlighted below:

a) We formulated the effective equations that allow us to find singly and doubly
excited eigenstates in the system of concentric rings of emitters for eachm.

b) We derived the number of doubly excited eigenstates in the system of con-
centric rings of emitters for eachm.

c) We showed which irreducible representations of the symmetry C6v group
include singly excited states of a ring of six emitters.

d) The selection rule for contributions of products of singly excited states into
a doubly excited state is formulated: the irreducible representation of the
doubly excited state should enter the product of irreducible representations
of singly excited states.

e) To achieve subradiant states, we consider oligomers that can be viewed as
comprising two subsystems of emitters. The interaction between subsys-
tems’ states possessing the same symmetry (having the samem in our case)
results in the formation of symmetric and anti-symmetric states, which also
retain the initial states’ symmetry. The anti-symmetric state has a large Q-
factor compared to that of a single emitter for separations between emitters
a/λ0 ≲ 0.25 because the phase shift between excitation amplitudes of sub-
systems is close to π leading to the suppression of low-order multipole con-
tributions into the far-field radiation. It is shown that a ring with a central
emitter supports a high-Q singly excited state withm = 0 (Qmax/Q0 ∼ 102).
Moreover, two concentric rings with the same number of emitters sup-
port high-Q singly excited states with all values of m possible for one ring
(Qmax/Q0 ∼ 102−104). In the high-Q state, an excitation occupies an inner
subsystem, whereas, in the low-Q state, it occupies an outer subsystem.

f) Two rings of six emitters support ten states with angular quasi-momentum
m = 3 where four states enter the irreducible representation B1 of the sym-
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metry group C6v. These states are pairs of excitations with m = 1 and
m = 2 (orm = −1 andm = −2) being in the symmetric or anti-symmetric
states. It was shown that the energies of these doubly excited states are
the sums of energies of singly excited states with m = 1 and m = 2 (or
m = −1 and m = −2). If both excitations are in the anti-symmetric states
and have maxima of their Q-factors for certain parameters of the rings, the
doubly excited state also has a maximum of the Q-factor for these parame-
ters. Moreover, this state is the most subradiant doubly excited state in two
rings (Qmax/Q0 ∼ 102). In the high-Q doubly excited state, two excitations
mainly occupy the inner ring of emitters.
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