MuHuCTEpCTBO HAYKH M BbIcIiero oopasosanusi Poccuiickoii @enepannu
OEAEPAJIBHOE TOCYJAPCTBEHHOE ABTOHOMHOE OBPA3OBATEJIBHOE
YYPEXIAEHUE BBICIIIEI'O OBPA3OBAHUA
HAITAOHAJIBHBIN UCCJIEJTOBATEJILCKUA YHUBEPCUTET UTMO
ITMO University

BbBIITYCKHASA KBAJIMOUKAIIMOHHAS PABOTA
GRADUATION THESIS

CyOmn3ny4yarejbHbIe AByX4aCTHYHbIC BO30YK/IeHUsI B aHCMA0/I151X KBAHTOBBIX JMUTTEPOB /
Doubly Excited Subradiant States in Ensembles of Quantum Emitters

Oo0yuaromuiics / Student Yerumenko Hukura AnekceeBud
@axyasTer/uHcTuTyT/KIacTep/ Faculty/Institute/Cluster ¢pusndeckuii gpaxynbreT
I'pynna/Group 7242761

Hanpagsiienne noaroroBku/ Subject area 12.04.03 ®otonuka u ontonHpopMaTHKa
Oopa3oBareabHas nporpamma / Educational program Texunueckas ¢usuka / Physics and
engineering 2021

SAspik peanu3zannu OII / Language of the educational program Pycckuii, AHmumicKkuii
Craryc OII / Status of educational program MOII

KBanudpuxkauus/ Degree level Maructp

PykoBoautess BKP/ Thesis supervisor IlerpoB Muxaun Uropesuu, PhD, ¢uznko-
Maremaruieckue Hayku, YauBepcuter UTMO, dusnyeckuii pakynsreT, cTapiuinii HayqIHbIH
COTPYAHHUK

OOyuatommuiicst/Student JlokyMeHT
MO CaH
YceTtumeHnko
Hukwnra YcTuMeHko
AnexkceeBuu Hwuxura
24.05.2023 AnexceeBud
(211. moamucsk/ signature) (®amunus U.0./ name
and surname)
PykoBogutens BKP/ JoxymeHT
Thesis supervisor [MOITHUCAaH
et M
Hropesny ITerpoB Muxani
24.05.2023 HropeBuy

(a11. moamuck/ signature) (®amunus U.0./ name
and surname)



MuHuCTEpCTBO HAYKH M BbIcIiero oopasosanusi Poccuiickoii @enepannu
OEAEPAJIBHOE TOCYJAPCTBEHHOE ABTOHOMHOE OBPA3OBATEJIBHOE
YYPEXIAEHUE BBICIIIEI'O OBPA3OBAHUA
HAITAOHAJIBHBIN UCCJIEJTOBATEJILCKUA YHUBEPCUTET UTMO
ITMO University

3AJAHUE HA BBIITYCKHYIO KBAJIMOUKAIIMOHHYIO PABOTY /
OBJECTIVES FOR A GRADUATION THESIS

Oo0yyaromuiics / Student Yctumenko Hukura AnekceeBuu

®daxyasTer/uHcTuTyT/KIacTep/ Faculty/Institute/Cluster pusndeckuii gpaxynbreT
I'pynna/Group 7242761

Hanpagsiienne noaroroBku/ Subject area 12.04.03 ®otonuka u ontonHpopMaTHKa
Oo6pa3zoBaresnbHast nporpamma / Educational program Texnuueckas ¢usuka / Physics and
engineering 2021

SAspik peanu3zannu OII / Language of the educational program Pycckuii, AHmumicKkuii
Crartyc OII / Status of educational program MOII

KBanudpuxkauus/ Degree level Maructp

Tema BKP/ Thesis topic CyOusmyuarenbHble BYX4acTHYHbBIE BO30YXKICHHS B aHCMaOIsAX
KBaHTOBBIX SMUTTEepoB / Doubly excited subradiant states in ensembles of quantum emitters
PykoBonutens BKP/ Thesis supervisor IlerpoB Muxaun HWropesuu, PhD, ¢usuxo-
maremaruueckue Hayku, YHuBepcutreT MTMO, ¢usuueckuil ¢axyibTeT, CTapIIUil Hay4HBIH
COTPYIHUK

OcHoBHBIC BONIPOCHI, MoAIexamue paspadorke / Key issues to be analyzed

Goal and tasks of the project:

Goal: investigation and development of subradiant doubly excited states in small ensembles of
quantum emitters

Tasks:

1. Analytical description of singly and doubly excited eigenstates of ring ensembles.

2. Investigation of the mechanism of two-mode interaction for the suppression of one- and two-
photon emission of collective states.

3. Numerical modeling of singly and doubly excited eigenstates. Optimization of two-photon
emission rate. 4. Simulation of two-photon amplitude in the far-field regime.

Content of the thesis (list of key issues to be analyzed):

1. Introduction

2. Theoretical description of ensembles of quantum emitters.

2.1. Effective Hamiltonian of dipole-dipole interaction in free space.
2.2. Singly and doubly excited collective states. Derivation of the effective Schrodinger equations
from the Lindblad equation.

3. Eigenstates of a single ring of emitters

3.1. Singly excited eigenstates and eigenenergies.

3.2. Projection of quasi-angular momentum of the state.

3.3. Doubly excited eigenstates. Relation with the singly excited states.
3.4. Collective emission rates of a small single ring.

4. Subradiant eigenstates of ring ensembles.



4.1. Mechanism of subradiance for small ensembles: two-mode interaction.

4.2. An example of m = 0.

4.3. Scattering of Bessel beam by ring ensemble.

4.3. Eigenvalue equation for singly excited states in multi-ring structure.

4.4. Subradiant states with the non-zeroth projection of quasi-angular momentum.
4.5. Far-field radiation patterns. Multipolar expansion.

4.6. Doubly excited subradiant states.

4.7. Far-field two-photon amplitude.

Conclusion.

Recommended materials and sourcebooks for completion of thesis:

Reitz M., Sommer C., Genes C. Cooperative quantum phenomena in light-matter platforms
//PRX Quantum. — 2022. — Vol. 3. — Ne. 1. —p. 010201.

Solntsev A. S., Agarwal G. S., Kivshar Y. S. Metasurfaces for quantum photonics //Nature
Photonics. — 2021. — Vol. 15. — No. 5. — p. 327-336.

Asenjo-Garcia A. et al. Exponential improvement in photon storage fidelities using subradiance
and “selective radiance” in atomic arrays //Physical Review X. — 2017. — Vol. 7. — Ne. 3. — p.
031024.

Cremer J. et al. Polarization control of radiation and energy flow in dipole-coupled nanorings
//New Journal of Physics. — 2020. — Vol. 22. — Ne. 8. — p. 083052.

Kornovan D. F. et al. High-Q localized states in finite arrays of subwavelength resonators /ACS
Photonics. —2021. — Vol. 8. — Ne. 12. —p. 3627-3632.

Hara Boigauu 3apanus / Assignment issued on: 15.01.2023
Cpoxk npeacrapienusi roroBoii BKP / Deadline for final edition of the thesis 20.05.2023
Xapakrepucruka tembl BKP / Description of thesis subject (topic)

Tema B o0acTu (pyHaAaMeHTANbHBIX HcciaenoBanuii / Subject of fundamental research: ga /
yes

COITTACOBAHO / AGREED:

PyxoBogurens BKP/ JlokymeHT

Thesis supervisor MTOATHCAH
ITerpoB Muxani
UropeBuy
10.03.2023 [lerpoB Muxaun

Hropesnu
(311. moANuCh)

3aanne MpUHSI K JlokymeHT

ucnonHennto/ Objectives MIOJIITMCAH

assumed BY VeTUMEHKO
Huxkwura YCTUMEHKO
AJekceeBud Hukwura
17.03.2023 AnekceeBud




PyxoBoaurens OIl/ Head
of educational program

(311. moAnuch)

JlokymeHT
NOJHCaH

bemnos I1aBen
AnekcaH/IpoBUY

24.05.2023

benos [TaBen
AnekcaHIpoBUY

(911. moAnucCh)



MuHuCTEpCTBO HAYKH M BbIcIiero oopasosanusi Poccuiickoii @enepannu
OEAEPAJIBHOE TOCYJAPCTBEHHOE ABTOHOMHOE OBPA3OBATEJIBHOE
YYPEXIAEHUE BBICIIIEI'O OBPA3OBAHUA
HAITAOHAJIBHBIN UCCJIEJTOBATEJILCKUA YHUBEPCUTET UTMO
ITMO University

AHHOTALUS
BBIITYCKHOM KBAJIM®UKAIIMOHHOMN PABOTHI
SUMMARY OF A GRADUATION THESIS

Ooyuaromuiics / Student Yctumenko Hukura AnekceeBud
daxyabTer/uHcTuTyT/KAacTep/ Faculty/Institute/Cluster ¢pusznueckuii hakynpreT
I'pynna/Group Z42761

Hanpagsisienne noaroroBku/ Subject area 12.04.03 ®otonnka n onTonHpOpMaTHKa
Oo6pa3oBareabHas nporpamma / Educational program Texauueckas ¢usuka / Physics and
engineering 2021

SA3bik peanuzannu OII / Language of the educational program Pycckuii, AHrmumiickuii
Craryc OII / Status of educational program MOII

Ksanuduxkanus/ Degree level Maructp

Tema BKP/ Thesis topic CyOousyuarenabHble TBYX4aCTHUHBIC BO30YXK/IEHUS B aHCMAOIIsIX
KBaHTOBBIX SMHUTTEpOB / Doubly Excited Subradiant States in Ensembles of Quantum Emitters
PykoBoautess BKP/ Thesis supervisor IlerpoB Muxaun Uropesuu, PhD, ¢uznko-
Maremaruieckue Hayku, YauBepcuter UTMO, dusnyeckuii pakynsreT, cTapiuinii HayqIHbIH
COTPYAHHUK

XAPAKTEPUCTHUKA BBIITYCKHOM KBAJIU®UKAIIMOHHON PABOTHI
DESCRIPTION OF THE GRADUATION THESIS

eanb nccnenosanns / Research goal

Pa3zButne cyOuzimydarenbHbIX (BBICOKOAOOPOTHBIX) OTHO- M IByX4aCTHYHBIX BO30YKIICHUMN C
YIJIOBBIM MOMEHTOM B aHCAMOJISIX IByXypOBHEBBIX SMUTTepoB \ Development of singly and
doubly excited subradiant (high-Q) eigenstates with angular momentum in ensembles of two-
level emitters

3anauu, pemaemsbie B BKP / Research tasks

1) Pa3BuTh TeopeTHyeckuii aHanmu3 COOCTBEHHBIX COCTOSHUI OTUTOMEPOB C CHMMETpHUEH
OTHOCHTEJBHO IOBOPOTA B INTIOCKOCTH HA OCHOBE 3¢ dexTnBHOTO ypaBHenus Llpenunrepa u
TEOPHH IPYIIL; 2) UCCIEJOBAHUE OTHOYACTUUHBIX BBICOKOJJOOPOTHBIX BO30YKICHHI C YIIIOBBIM
MOMEHTOM U MeXaHHW3Ma MX (POPMHUPOBAHUS; 3) UCCICAOBAHHE ABYXYACTHUHBIX
BBICOKOZIOOPOTHBIX BO30YK/IEHUI M UX CBSI3b C OTHOYACTHYHBIMU BBICOKOZOOPOTHBIMU
BO30Yy>K/I€HUAMHU, BKIItouas npasuia oroopa. \ 1) Develop theoretical analysis of eigenstates in
oligomers with in-plane rotational symmetry based on effective Schrodinger equation and group
theory; 2) investigation of singly excited high-Q states with angular momentum and mechanism
of their formation; 3) investigation of doubly excited high-Q states and their mapping to singly
excited high-Q states including selection rules.

Kparkas xapakTepucTKa noJry4eHHbIX pe3yabTaToB / Short summary of results/findings
B paGore nccnenyrorcs cyOusnydarenbHble (BBICOKOJ0OpOTHBIE) onHoyacTuuHble (OY) u
nByxyactuanble (JJH) Bo3OyXIeHHS C YIIIOBBIM MOMEHTOM (M) B aHCAMOJISIX IByXYPOBHEBBIX



JUTIOJIHBIX SMUTTEPOB, KOTOPbIE MOTYT XpaHUTh BO30YKIEHHS B BUJIE KOTEPEHTHBIX
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a sHeprus sToro JIH Bo30ykaeHust ¢ m = 3 ABIAETCS CYMMOM HEpruii BEICOKOA00pOoTHRIX OY
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INTRODUCTION

Artificial ensembles of ordered two-level systems — quantum emitters — sup-
port collective excitations stored in coherent collective states of dipole-coupled
emitters. Such ensembles can significantly enhance light-matter interaction and
photon storage at the nanoscale [1, 2] which has a great potential for various
quantum applications including metrology [3], memory [4], and computations [5].
However, in free space, the coupling strength between dipole emitters is small rel-
ative to the transition energy of a single emitter (/wy), and such a coupling regime
1s known in the literature as a weak coupling [6]. In the weak coupling regime,
the collective states of atoms, free from absorption due to non-radiative losses, are
susceptible to a decoherence mechanism due to spontaneous emission governed
by the decay rate of the state v. It has been shown that the proper management
of the emitter arrangement allows reaching v < 7y, associated with a subradiant
eigenstate in the ensemble where 7 is the decay rate of a single emitter (its natural
linewidth, or inverse lifetime).

The interest in subradiant states a with large lifetime originates from the clas-
sical work of Robert Dicke [7]. In this work, R. Dicke showed that constructive
interference between atoms leads to a significant increase in their radiation, which
1s known as the superradiance effect. However, R. Dicke also considered the op-
posite effect of destructive interference for a dimer of identical two-level systems
which cannot radiate being in an anti-symmetric (subradiant) state with one exci-
tation. Thus, the collective spontaneous emission of an atomic ensemble can be
significantly suppressed due to destructive interference in a light-mediated inter-
atomic interaction, and the lifetime of stored excitations can be increased. This
effect is known as the subradiance. For a long time, this effect remained a the-
oretical concept [8, 9, 10] until it was experimentally demonstrated for a pair of
trapped 1ons [11] and later for molecules [12] and atomic clouds [13].

A further increase in the lifetimes of atomic systems became possible due to
the ordering of atoms into structures of various geometries. Thanks to the active
development of manipulation methods in atomic optics and nano-optomechanics
in recent years, it has become possible to arrange ultracold atoms and other quan-
tum emitters by optical traps into ordered 1D [14], 2D [15, 16], or 3D [17] struc-

tures at near-zero temperature. The subradiant states with one and two excitations



have been reported for periodic one-dimensional chains in free space and near a
waveguide [2, 18, 19, 20, 21, 22, 23], and in two-dimensional arrays [3, 24, 25].

Since the radiation leakage in chains and lattices is primarily from open
boundaries, we investigate in this thesis subradiant states of closed ensembles such
as rings of quantum emitters in free space. The main feature of eigenstates in rings
1s a well-defined integer angular quasi-momentum. To the best of our knowledge,
H. S. Freedhoff for the first time analyzed the radiative properties of singly excited
states of a single ring when N emitters are placed at the NV vertices of a regular
polygon for N = 3 in Ref. [26], and N < 6 in Ref. [27]. In Ref. [25], A. Asenjo-
Garcia et al. reported that the lifetime of singly excited eigenstates of a single ring
for a fixed separation between the emitters growths exponentially with N similar
to whispering gallery modes of disk resonators [28]. In Ref. [29], J. Cremer et al.
found a polynomial scaling with NV of the most subradiant doubly excited state for
a fixed separation between emitters. The reported singly excited subradiant states
have been applied to efficiently transfer an excitation between two rings placed in
one plane [25, 29], to develop a nano-antenna, [30] and a thresholdless laser [31].
In Ref. [32], H.H. Jen et al. studied the scattering of optical beams with different
angular momentum on atomic rings and demonstrated remarkable differences in
their radiation patterns.

As shown in Ref. [33] by M. Moreno-Cardoner et al., the lifetime of the most
long-lived state in a single ring becomes larger than the lifetime of the most long-
lived state in a linear chain with the same parameters only for a quite large number
of emitters N = 40. Therefore, it motivates us to develop mechanisms of radiative
loss suppression for states with angular momentum available for relatively small
ensembles N < 10 — oligomers — with a focus on underexamined doubly excited
states. In this thesis, we suggest a mechanism inspired by the Friedrich-Wintgen
mechanism for two resonant systems (or resonant modes) coupled via free prop-
agating photons (radiation continuum) [34]. This mechanism explains the forma-
tion of high-Q states in optical resonators or their arrays, including rings, known
as quasi-bound states in the continuum [35, 36, 37].

Thus, this thesis is devoted to the development of singly and doubly ex-
cited subradiant eigenstates in oligomers of two-level dipole emitters in free
space [see figure 1(a)]. The oligomers have in-plane rotational symmetry, there-

fore, their eigenstates have angular quasi-momentum. The first chapter presents

10



Schrédinger equation with an effective, non-Hermitian Hamiltonian that should be
solved in order to find the eigenstates of the ensemble. In this formalism, the cou-
pling between emitters is governed by the classical electromagnetic Green’s tensor
at the resonant frequency w, depending only on the positions of emitters.
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Figure 1 — (a) Scheme of the considered structure (oligomer) of quantum emitters
arranged in two concentric rings supporting the eigenstates with angular
quasi-momentum m. For rings of six emitters, m € {0, +1,+2, 3}. The oligomer
is placed in zy-plane. The quantum emitter is a two-level system with resonant
frequency wy, spontaneous emission rate 7, and transition electric dipole
moment d || z. (b) Quality factors (Q-factors) of high-Q singly excited
eigenstates of the oligomer @),,, for all m. () is normalized by Qg = wy /7o and
plotted as a function of separation between emitters a/\y where Ay = 27¢/wy.
The high-Q state with m is the result of the alignment of ring states with the same
m into an anti-symmetric combination, as shown in the inset for m = 3. (¢)
Dependence on the ring parameters (shown in inset) of Q-factor for doubly
excited state with m = 3 such that Q! = Ql_l + Q5 ! where Q;'and Q; Lare
Q-factors of singly excited states from subfigure (b) with m = 1 and m = 2. (d)
Q-factor of this doubly excited state (burgundy dashed curve) and Q-factor of
singly excited states with m = 1 (yellow) and m = 2 (blue) vs a for Ry /Ry = 2.2

In the second chapter, we present singly excited eigenstates of a single

ring of N emitters polarized in a transverse direction and introduce angular quasi-

11



momentum m of the state. We formulate effective equations for finding singly
and doubly excited eigenstates and their spectra in single- and multi-ring struc-
tures. We also derive the number of singly and doubly excited states with angular
quasi-momentum m for single- and multi-ring structures. In particular, it is shown
that one excitation in a single ring can be described by a single amplitude and two
excitations can be described by ~ N /2 amplitudes for a given m. In this chapter,
we also perform a symmetry classification of the eigenstates for a ring of N = 6
emitters using group theory, essentially, we derive the correspondence between
m and the irreducible representation of the symmetry group of a ring C,. The
symmetry classification is used further to obtain selection rules for terms in the
expansion of a doubly excited state over the products of singly excited states. A
necessary and sufficient condition is the presence of an irreducible representation
of a doubly excited state in the product of irreducible representations of singly
excited states. It follows from this that the angular quasi-momentum of a doubly
excited state 1s the sum of the angular quasi-momentum of singly excited states.
In the third chapter, we study the subradiant properties of eigenstates in
ring oligomers. We introduced a mechanism based on the interaction of two sub-
systems of emitters supporting the states with the same symmetry in order to ob-
tain high-Q states. Then we consider an oligomer, composed of a ring and a central
emitter, that supports a high-Q state with only angular quasi-momentum m = 0. In
order to obtain high-Q states with m # 0, we replace a central emitter with a sec-
ond ring of a smaller radius and the same number of emitters shown in figure 1(a).
Both rings support the states with all values of m that can interact and form anti-
symmetric superposition with suppressed radiative losses as shown in figure 1(b).
Moreover, we show that two rings of six emitters support a doubly excited state
with m = 3 such that its Q-factor is a sum of the Q-factor of high-Q singly excited
states withm = land m = 2 (orm = —land m = —2): Q7! = Q;' + Q,".
By varying the ring radii R,/ R; and separation between emitters a/ g as shown in
figure 1(c), we find the optimal parameters maximizing the Q-factor of the doubly
excited state. For the optimal parameters, Q-factors of singly excited states ()1 and
()2 have maxima, therefore the Q-factor of the doubly excited state also has a max-
imum where ) /Qy ~ 110 [see figure 1(d)]. We also show that this doubly excited
state enters B irreducible representation which is contained only in the product

of irreducible representations £ and F, of singly excited states with m; = 1 and

12



ms = 2, although the total angular quasi-momentum of singly excited states with
mo = 1 and mz = 2 is also equal three. The radiative properties of these states are
also studied.
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1 THEORETICAL DESCRIPTION OF QUANTUM EMITTER

ENSEMBLES

1.1 Effective Hamiltonian and spontaneous emission of radiation

Consider a free-space ensemble of N identical quantum emitters of the
hydrogen-like type so that each emitter consists only of nuclei and a single elec-
tron. Assume that the emitters are perfectly trapped around their positions at zero
temperature, therefore one can introduce perfectly defined coordinates of emit-
ters r; without any thermal fluctuations. Let us also suppose that the electron in
the emitter can occupy only two levels, namely ground |g;) and excited |e;) ones,
with an allowed optical transition between them at the resonant frequency wy [see
figure 2(a)]. Here the subscript 7 is introduced only to distinguish emitters. To de-
scribe the absorption and the emission of excitation by an atom, one can define the
ladder operators, 53 = |e;) (g;| the creation operator and 6; = |g;) (e;| the annihi-

lation operator for the i-th emitter [see figure 2(b)]. In this regard, the Hamiltonian

of “free” emitters can be written as f[emitters = % th@r o; where # 1s the Planck
constant. =

From a theoretical point of view, the two-level approximation for emitters
1s attractive because, first, it describes well real optical emitters such as atoms,
ions, quantum dots, dye molecules, and superconducting qubits. Secondly, the
interaction of a two-level system with a quantized electromagnetic field in free
space 1s extensively covered in the literature [6, 38, 39]. Let us present the key
points of this formalism.

Since the size of a quantum emitter is much smaller than the optical wave-
length, the interaction of the emitter with an electromagnetic field can be described
in the dipole approximation. For a two-level system, the operator of the electric
dipole moment is d; = do; + d*o] where d = (g;|d; |e;) is so-called transition
dipole moment that is identical for all emitters. In the dipole approximation, the

exchange of excitations between emitters and electromagnetic modes can be cast

by Tavis-Cummings Hamiltonian Hy = é\f: d; - ]:Z(rz) where ]:Z(rl) is the electric
field operator composed of an infinite set Zozflplane waves in free space [40].

In order to eliminate electromagnetic degrees of freedom, we implement
a standard procedure based on their integration in the Born-Markov approxima-

tion [41, 42]. Note that the Born-Markov approximation is applicable because
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Figure 2 — (a) Two-level approximation for a quantum emitter. (b) The ladder
operators (o' and o), resonant frequency (wy), and dipole moment (d) of the
transition in the two-level system from ground state |g) to excited one |e). (c)
Real and imaginary parts of quasi-resonant coupling strength (4) in units of 7.
The coupling strength g(wy) is plotted for two emitters polarized perpendicular to
the connection axis and separated by a/\g where \y = 2mc/wy (see inset). (d)
The population of the excited state for a single emitter as a function of time. 7 is
the inverse lifetime (natural linewidth) of a single emitter. (¢) Zeeman splitting of
excited level due to an external magnetic field B || e,

the relaxation time of the reservoir (radiation continuum in the vacuum) is zero at
zero temperature [43] and is smaller than the relaxation time of the emitter system.
We will not go here through this formalism in detail, however, we will give an
intuitive explanation of the result written below. By an analogy with a classical
coupled-electric-dipole equation [44, 45], it is natural to suppose that an emitter o,
is driven by a quantized field at position r; which is rescattered by other emitters
and depends only their positions via electromagnetic Green’s tensor G(r;, r;,w)
[see section 1.4]. Indeed, both the classical and quantized fields should satisfy the
same wave equation [see equation (12) below]. Moreover, the emitters are actu-
ally atoms with a very narrow linewidth of the response, hence, the dependence of
Green’s tensor can be approximated as G(r;, r;, w) ~ G(r;, r;, wy) —quasi-resonant

or Markov approximation.
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Thus, a quantized electromagnetic field can be written via the replacement
of classical dipole moments by their quantum counterparts d, — d; which in the

absence of an external field reads [42]:

A~

s N
W A .
E'(r,w) = —6022 E G(r,r;,wp) - d 5, (1)
i=1

where c is the speed of light in vacuum, ¢, is the vacuum dielectric permittivity.
The superscript | indicates positive frequency components w > 0.

If we formally substitute (1) into the light-matter interaction Hamiltonian

. N oo
Hine = > d;-E(r;), we can expect to obtain the following effective, non-Hermitian
i=1

R . R N N
Hamiltonian Hegr = Hemitters + Hint = D hw()&g Gi+ > i (wo)&;r & ;, where the
i=1 ig=1
2 A~
coupling strength between emitters g;;(wp) = —;;—godT - G(r;, rj,wp) - d.

Further, one will consider only the emitters with the orientation of d along z

axis, perpendicular to xy plane containing the emitters. In this case, the coupling
w2|d\2
C0260

strength turns to g;;(wy) = — G (|r; — rj| , wo) with G, the element of free-
space Green’s tensor (16) depending only on the relative distance between emitters
|r; — r;| for the transverse polarization of d. Note that the real part of g;; is the
strength of coherent coupling between dipoles via the exchange of photons whereas
the imaginary part of g;; is the rate of dissipative coupling. Figure 2(c) shows
the real and imaginary parts of g;; for a case of two transverse emitters separated
by the length a. One can see the oscillatory behavior of coupling strength with
the increase of a, therefore, the radiative properties of emitter ensembles strongly
depend on the ensemble geometry.

It is important to take the limit of g;; for a/\¢ — 0 corresponding to g;;.
One can see in figure 2(c) that Re|g;;] is divergent at a/)\g — 0, however, it is
just a limitation of the dipole-dipole coupling model for small separations. This
issue can be overcome by the Green’s function renormalization yielding a finite
Relg;;] called the Lamb shift [46]. The Lamb shift is typically much smaller than
wo [47], and we assume that it is already incorporated in the definition of wy. It is
more interesting to take a look at Im[g;;] which remains finite. One can obtain it
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as Im[g;;] = —% where

2
il
3mhciey

(2)

70

We note that 7, has a meaning of the doubled imaginary part of complex energy
(its natural linewidth) for a single emitter 7 (wo — i%). One can write the evo-
lution of the probability amplitude for the emitter in the excited state at ¢ = 0 as
ce(t) = e i (wo=iB)t, Hence, 7y is also the decay rate of the excited state popu-
lation P,(t) = \ce(t)\2

free-space electromagnetic modes [see figure 2(d)]. In literature, such a regime

= ¢! due to the losses of energy via the radiation into

of light-matter interaction is called a weak coupling [6]. In the presented model,
a weak coupling manifests itself in the magnitude of coupling strength (4). One
can see in figure 2(c) that | Re[g;;]|, | Im[g;;]| ~ Ayy < hwy for atomic emitters
(0/2m ~ 10 MHz, wy/2m ~ 300 THz [25]). It also justifies the use of quasi-
resonant approximation for the coupling strength.

To sum up, one can consider a quantum emitter as a two-level system with
the resonant frequency wy, the dissipation rate 7y, and interacting with the electro-
magnetic field as an electric dipole d. Let us discuss the possibility of obtaining
two distinct isolated levels in a realistic atom. It should be noted that atoms ex-
hibit numerous energy levels characterized by fine and hyperfine structures. For
the sake of simplicity, let us consider an atom with a single electron residing in
a nuclear potential that possesses spherical symmetry. This model represents the
simplest yet realistic depiction of hydrogen-like atoms. Within this model, there
1s allowed electric dipole transition from the ground level (1s) to the excited level
(2p). However, this transition exhibits a three-fold degeneracy with respect to the
polarization of the transition dipole moment, namely out-of-plane e, and two in-
plane e, = F (e, £ ie,) ones, which can be excited by a linearly or circularly
polarized light [see figure 2(e)]. The degeneracy can be eliminated by an external,
strong magnetic field B which induces the Zeeman splitting of the atomic levels

such that | B| > v, where p is the magnetic moment of an atom [see figure 2(e)].
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In a weak coupling regime, the ensemble of /V identical dipole emitters can

be described by the following effective Hamiltonian:

N N N

2 0N At A ~ At A

Hegr = Zh (w0—15> gUi+Zzgij(W0)0—jO—ja 3)
i=1 i=1 j=1,

where a quasi-resonant, normalized coupling strength for transverse emittersd || e,

1s given by:

~ i\ W 3me
Gij(wo) = gis{0) = _w_OGZZ (Jr; — 1), wo)- 4)

1.2 Effective Schrodinger equation

Following the emergence of the basics of the theory concerning the in-
teraction between two-level systems and the electromagnetic reservoir (vacuum)
modes, it becomes possible to explore the characteristics exhibited by the eigen-
states of collections of two-level systems. The eigenstates along with the corre-
sponding eigenenergies of effective Hamiltonian (3) can be found from effective

Schrodinger equation:

Hege|9)) = € [9) ()

where |1} is the collective eigenstate of the system, and ¢ is the complex eigenen-
ergy that can be writtenine = 7 (w — 1%) form. Here the real part w is the angular
frequency of the eigenstate while the imaginary part /2 defines the collective de-
cay rate of the state.

We need to make also an important remark about the eigenstates [¢) of (5).
For a single emitter, the excited state |¢) with energy 7 (wo — i%) 1s a solution
of equation (5). Let us assume that the emitter occupies this state at ¢ = 0. Since
the probability P,.(¢) decays with time [see figure 2(d)], then, strictly speaking,
the ket-vector |e) can be associated with the emitter only at ¢ = 0. To study the
rigorous dynamics of the system for ¢ > 0, it is necessary to solve the Lindblad
equation for the density matrix of the emitter subsystem. Nevertheless, we can

call the state |e) as the eigenstate of the system at ¢ = (. Hence, since our primary
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interest is the spectrum of an ensemble but not its time evolution, we can will solve
equation (5) instead of the Lindblad equation.
To conclude this subsection, let us mention that, for numerical diago-

nalization of H., it is convenient to do the following transformation of (3):

~ A 1 /- - . . .
Heye — Hep = ﬂ (Heff — hwol ) In this regard, Schrédinger equation (5)
0

should be rewritten as

A e — hw
Hege|[Y)) = —— |9,
firyo
H‘(—/
&
N N : N N (6)
Hefr = Zh <—§) o167 + Z Zﬁz‘j(WO)&J@A
J#i

where ¢ the shifted and normalized eigenenergy is introduced. After applying this
transformation the calculated spectrum does not depend on particular numerical
values of wy, and ;.

1.3 Singly and doubly excited collective states

We can note that effective Hamiltonian (3) preserves the total number of
excitations in the system. Thus, the whole infinite-dimensional Hilbert space H of
states of the system can be decomposed into a series of subspaces (manifolds) as

follows
H=Ho+Hi+Ho+Hs+ ...+ Hn, (7)

where H,, is the subspace corresponding to the case of n excitations in the system,
N 1is the total number of emitters. For the last term in the expansion, n = N be-
cause /N two-level emitters cannot contain more than /V excitations. The proper
analogy for this expansion is the space of quantum oscillator eigenstates: The
eigenstates are characterized by the number n.
To understand the physical meaning of expansion terms H,,, let us consider
several cases of different n numbers of excitations.
a) n = 0: There are no excitations in the system, therefore all the /V emitters

occupy the ground state. Thus, H, the subspace consists only of one state
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b)

G) = [g)® = 19) ®lg) ® ... ® |g) with a zero energy usually referred to

N times
in the literature as a ground state of the ensemble;

n = 1: There is a single excitation in the system. In this case, H; the

subspace consists of /V states that can be written in the following way
N
) = Z cile) (8)
i=1

with |e;) = &7 |g)®" being the basis state with only i-th atomic emitter
excited, while the rest are in the ground state [see figure 3]. Let us plug (8)
into Schrodinger equation (6). This anzats yields a set of /V linear algebraic
equations on single-excitation probability amplitudes ¢; of excitation on ¢-th

emitter:

. N
~ 1 -
fe; = it ;gijwo)cj, )
j#i
with the eigenenergy ¢ defined by (6), and g;;(wo) given by (4).
n = 2: The doubly excited state is

N N
W) = Z Z cij |eie;j) (10)

i=1 j=i+1

where |e;e;) = &7 &; 19" is the state with excited both i- and j-th atomic
emitters [see figure 3]. The limits in sums are taken because of two fol-
lowing facts. The considered emitters have only two energy levels, there-
fore two excitations cannot be located at the same emitter, then ¢ £ j. The
emitters and excitations are identical , hence double-excitation probability
amplitude 1s symmetric ¢;; = c¢;;. Combining these two properties of ¢;;,
one can consider only the amplitudes with ¢+ > j. Thus, for a system of N
dipole emitters, the total amount of doubly excited eigenstates is M

N(N —1)

which can be obtained by solving the following system of linear
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equations:

&:Cij = —iCZ‘j + Z gkj(wo)cik + Z gik(wO)ij. (11)

k>i k<j

Note that here and further capital ¥ is used to distinguish doubly excited
kets from singly excited ones.

d) n > 2: The dimension of H, equals to the binomial coefficient

N!
CNy = —————. It is easy to verify using this formula that dim H, =
n!(N —n)!
N(N -1
l,dim H; = N, and dim Hy = %
State Basis Wave function
Singl : =
in o o _
exci?eyd S ey | [¥) = Z ci |ei)
. v i=1

Doubl N X

ou > i . B

exoiteé \/:\/ —~ leie5) W) = Z Z cij leiej)
° 1 ‘\?) i=1 ]:’L+1

Figure 3 — Summary on a basis and wave functions for singly excited and doubly
excited eigenstates of the Hamiltonian (3)

Thus, the collective states of ensembles of quantum emitters can be classi-
fied, first of all, by the number of involved atomic (matter) excitations. As one can
see, a growth of the excitation number significantly increases the dimensionality of
the eigenvalue problem. This thesis focuses only on the cases of n = 1 and n = 2
excitations in order to limit the numerical effort. For singly and doubly excited
eigenstates, we can calculate the eigenstates and eigenenergies as right-column
eigenvectors and eigenvalues of equations (9) and (11), respectively.

1.4 Green’s tensor in free space

The coupling strength between emitters (4) as well as the collective effects
in their ensembles are governed by Green’s tensor of the wave equation for the

electromagnetic field.
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In the frequency domain, the electromagnetic wave equation is written
as [44]

2 2

V x V x E (r,w) — ¢ (r,w) = E (r,w) = —

2 28251)(r7u0 ) (12)

where V is the nabla operator, € (r, w) is the dielectric permittivity depending on
the coordinate r and frequency w, and E (r,w) is the classical electric field.

For a point dipole source located at r’ point, the polarization vector is
P (r,t) = dé (r — r') e ! with d the electric dipole moment and J (r — r’) three-
dimensional Dirac delta function. After replacing the right-hand side of (12) with
the polarization in the dipole approximation P (r,w) = dd (r — r’), equation (12)
transforms to the following one:

w? w?
V><VxE(r,w)—e(r,w);E(r,w):—dé(r—r’). (13)

6002
A particular solution of this equation (so-called scattered field) can be formally

written as

UJ2

E(r,w)= G(rr w)-d, (14)

€oc?
which is electric field generated by an electric dipole.
Green’s tensor obeys the following equation:

UJ2

V XV xG((rrw) —e(rw) E(A}(r,r’,w) —5(r—r)1, (15)
where T is 3 x 3 identity matrix. Note that, in the above equation, the nabla
operator V differentiates with respect to the r variable. For the case of free
space, one should set € (r,w) = 1 in equation (15). In this case, the solution is

G (r,r,w) = Gy (R,w) with R = r — r/ where

. eihft il I i3 3 YR®R
Ruw) = LI P+ (-1
Go (R, ) 4WR{< IR k2R2) +< kR+k2R2> R? }

(16)
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with R = |R|, £k = w/c the wavenumber, R ® R the dyadic (tensor) product of
radius-vector R with itself [44].

In the presence of nanostructure or other non-homogeneous environments,
Green’s function involves not only a free space part but also a scattered component
G = Go + ésca that can modify both the resonant frequency wy and the emission
rate y of a single emitter.

In this chapter, we introduced effective Schrodinger equation with non-
Hermitian Hamiltonian describing the coupling between dipole emitters in free
space and eigenstates in Born-Markov approximation. In particular, one- and two-

excitation manifolds were considered.
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2 EIGENSTATES OF A SINGLE RING AND MULTIRING

ENSEMBLES OF EMITTERS

Chapters 2 and 3 are devoted to the modeling of eigenstates of single- and
multi-ring structures as well as to the investigation of their subradiant properties.

2.1 The single excitation spectrum of a ring. Angular

quasi-momentum

Using the formalism from Chapter 1, let us first find singly excited eigen-
states of a single ring of NV, emitters located in free space. The ring is shown
schematically in Figure 4. Let us also assume that all emitters have the trans-
versely oriented transition dipole moments d || e.. The ring is located in xy-plane
such as its center coincides with the origin of the Cartesian coordinate system. The
emitters are placed at the vertices of a regular polygon with NV, edges. In this case,

the radius vector of the position for i-th emitter in a ring is
r; = R(cos;, sing;, 07, i= 1..N,, (17)

where R is the ring radius, and ¢; = (i — 1)27 /N, is the angular coordinate of i-th
emitter. Thus, the distance between neighboring emitters in the ring is the same for
all emitters and equals ¢ = 2R sin (7/N,). Since the spectrum and eigenstates are

the subjects of our interests, there are no external electromagnetic or other fields.

“\. ___R___i// \ -
N TER. ()

9)

Figure 4 — Scheme of a single ring of N, two-level dipole emitters placed in
xy-plane (N, = 6 here). The emitters with subwavelength separation distance a
are arranged in a regular equilateral polygon along a circle of radius R. The
angular coordinate of i-th emitters is shown as ¢; = 27(i — 1)/N,. The
parameters of two-level emitters are the same as in figure 1

To calculate the single excitation spectrum of a ring of emitters shown in
figure 4, we use equation (9). Since a ring of dipoles preserves rotational sym-
metry along z-axis (Cy, , point symmetry group), the eigenstates of a ring can

be described by the angular quasi-momentum m [29, 33]. The meaning of m is
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the following: for the state of a ring with the angular quasi-momentum m, the
phase shift between the amplitudes of neighboring emitters c¢;,; and ¢; equals
Ap(m) = 2mm/N,. The prefix “quasi” in the name of the m indicates that it
is determined up to the number of emitters in a ring NV, because the values of an-
gular quasi-momentum m and (m +nNN,), where n is an integer, correspond to the
same phase shifts Ap(m + nN,) = Ap(m) + 27n, hence the identical physical
states of the system. The direct analogy for the angular quasi-momentum for the
systems with rotational symmetry is the quasi-wavevector or Bloch wavevector
for the systems with translational symmetry which is defined up to the recipro-
cal lattice vector. Furthermore, one can introduce ‘“the first Brillouin zone” of
values for the m as a set {0,£1,%2,...,+£ (N, —2) /2, N,,/2} for even N, or
{0, £1, %2, ..., £ (N, — 2) /2, £ (N, — 1) /2} for odd N,,.

The number of states for different parities of m is summarized in figure 5.
Note that, for even N, the maximum angular quasi-momentum with opposite sign
m = —N,/2 corresponds to the same phase shift of Ay (m = £N,/2) = 7 be-
tween neighboring emitters and, consequently, the same state. For convenience,

we choose a positive sign m = N, /2.

Number N, is even Np is odd
of values
N, . N, . N. 1
of m 7]0 is even 71) is odd w is even (pi;) is odd
even m & & (Np — 1) M
2 2 2 2
- N, N, (N, + 1) (N, 1)
2 2 2 2

Figure 5 — Number of eigenstates with even or odd angular quasi-momentum m
(rows) for different parities of [V, number of emitters in a ring (columns). Note
that the sum of the values in each column equals the total number of singly
excited eigenstates [V,

Thus, the spectrum of a ring can be calculated using the following ansatz for
the excitation amplitudes ¢;:

c; = c(m)eim‘pi, (18)
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where ¢ is the analog of periodic Bloch amplitude for aring. After inserting (18)

in equation (9), one obtains a set of energies of NV, singly excited eigenstates for a

ring:
8ring - _2 Z 2z |I'1 rll wo) ( )
or equivalently
m) _ _1_3ym)
ring _5 - ZE (R7 Np) ) (20)

where ¥.(") (R, N,) is the dipole sum for the state with the angular quasi-

momentum m in a ring of radius 12 and of IV, emitters:

4
2 (R, N,) ”CZGZZ (Ir1 — 13| , wo)e ™. 1)

For a ring of N, = 6 emitters and the separation between neighboring emitters a,

the dipole sums are

=" (R, N, = 6) = 8506 {G“ (a.w) cos <?)

or\ 1 (22)
+G., <\/§a,w0> Ccos (m—> + §GZZ (2a,wp) cos (Wm)] :

3

One can notice that dipole sums (22) for N, = 6 emitters are symmetric with
respect to a sign of m that can be shown for any number of emitters NV,,. Thus, the
exchange of a quasi-momentum sign m < —m conserves energy " = (=),
Hence, the ring eigenstates [see equation (26)] are doubly degenerate except for
two cases. The state with m = 0 is non-degenerate for any V,,, and the state with
m = N,/2 has also no degeneracy for even N,,.

Equation (6) implies that a set of dimensional energies (™ can be obtained
from a set of dimensionless eigenvalues £ as follows

g™ = By + Firyp x 7Y (23)

r1ng ring*
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(m)
On the other hand, (™ = A (Wr(::g) — i%) , therefore one obtains the frequency
of the collective ring state as
m 370 m
wr(ing) = Wo — T Re [Z( ) (R7 Np)} ) (24)
and its collective decay rate as
m 3 m
A — 5o + % Im [2< )(R, Np)} | (25)

Thus, the resonant frequency and emission rate of the emitter can be modified not
only by the presence of a non-homogenous environment but also by the collective
emitter-emitter interactions via the real and imaginary parts of the dipole sum,
respectively.

Eigenenergies (20) correspond to the set of singly excited eigenstates
NP
]w(m)> = Y ¢ le;) with ¢; the excitation probability amplitudes (18). In order
i=1
to find (™ in equation (18), let us remind the expression for the total probability
N,

p
to find an excitation on the ring. The total probability expression S |¢;|* = 1 im-
i=1

plies that ¢ =

1 . : : . .
\/ﬁ for a single ring, therefore one can write the singly excited
p

eigenstates as

e;) - (26)

(m) 1S
mN el
Vi) = >
Recall that |e;) = &;r 19V is the state where the excitation is fully localized at
i-th emitter.

2.2 Relation between angular quasi-momentum and irreducible

representation

Let us look at how the ring states (26) are transformed under the rotation of
a ring in zy-plane by ¢’ = 27/ N,, angle around z axis in the clockwise direction.
It is shown in figure 6(a) for a ring of N, = 6 emitters when ¢’ = 7/3. One can
associate this operation with an operator of rotation }?(gp’ ). Note that such a rotation

does the following permutation of indices of excitation amplitudes i — i’ = (i+1)
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mod N, [see figure 6(a)]. Hence, the matrix of fm’(gp’ ) in the basis of singly excited
states {|ei>}£i”1 has the following entries: R;;(¢’) = §; for {i,j} € {1..N,} where
d;; 1s the Kronecker delta. From equation (18), it follows that ¢;; = eime'c..
Hence, one can write the action of }?(gp’ ) operator on eigenstates (26) as follows

R(¢)

¢(m)> — oimy’ ‘w(m)> . (27)

Thus, the rotation operator R and effective Hamiltonian ﬁ[ off are diagonalizable
in the same basis (26) with the eigenvalue sets {e"™¢'} and {£"™)}, respectively.
This is reflected in a fact that the operators commute ﬁ] efffi = }A%ﬁ[ off-

Note that the operation of rotation of a ring by ¢ = 27/N,, angle is in-
cluded in transformations from the symmetry group of the ring of transverse emit-
ters C'y, . The structure is converted into itself after symmetry transformations
consisting of rotations and reflections. For example, the symmetry group of a ring
of six emitters Cg, consists of the rotation by 7 /3 angle around the =z axis denoted
in group theory as C(z) [see figure 6(a)], the rotation C'3(z) by 27 /3 angle, the
rotation C5(z) by 7 angle, and two reflections o, and o, relative to y and x axis,
respectively, as shown in figure 6(b). All operators corresponding to these trans-

formations can be diagonalized in the same basis W(m)> of eigenstates of H off-

Therefore, the Hamiltonian H off commutes with all transformations of the sym-
metry group of the ring structures. Then the transformations from the symmetry
group do not change the Hamiltonian (3) since they do not change the structure.

Here we can notice a deep connection of physics with group theory formu-
lated by so-called Wigner’s theorem. In simple words, this theorem can be formu-
lated for Schrédinger equation (5) as follows. If the Hamiltonian remains invariant
under transformations from the symmetry group, the eigenstates of such a Hamil-
tonian (3), which are solutions of the Schrodinger equation (5), are transformed
by irreducible representations of the symmetry group. Thus, the symmetry of the
eigenstate under transformations from the symmetry group is determined by the
symmetry of the corresponding irreducible representation of the group.

Let us turn back to the example of a ring of six emitters with Cf, sym-
metry group. Figure 6(c) presents a character table for Cg, group with sym-
metry transformations and irreducible representations of the group. The irre-

ducible representations are essentially the matrices acting on a column of functions
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4/ 32 ® 2\1 _ 5/ '4z ® 3\2 Irrep| m Real part |Imaginary part
N/ Nl il o T\/T\T\T o0,
(b) 1 |
/‘Z® 4 2o \ B,1) 3 LT/L\li\T \/\\/\
N %
(c) — = L/+\f : \/T\T\
C. | E [2C|2C@| Cya) | 30, | 30, | | (2)+1¢\f/ 777777 b—g
A | +1 +1 +1 +1 +1 +1 1 L/*\R /l\l\
AN 1 | +1 | +1 | +1 | -1 | -1 i *\f/T \T\T/
B(M | +1 | -1 | +1 | -1 | #1 | 1 ~ T\/*\¢\T A&
B | +1 | -1 | 1| 4| -1 |+ E2(2)+\¢/ 777777 P—q
E@| +2 | +1 | 1| 2 ] 0 0 B T\/+\¢\T \/T\i\
E@| +2 | -1 | -1 ] +2 ] 0 0 b—a " $—a

Figure 6 — (a) Altering of emitter indices after rotating the ring around z-axis by
angle 27/ N,. (b) Reflection of the ring with respect to the axis passing between
atoms (left) and through atoms (right). (c¢) Table of characters for Cf,, symmetry
group. The columns contain symmetry transformations, the rows correspond to
irreducible representations with their dimensions in brackets. The cells show the
trace (character) of irreducible representations for a given transformation. (d)
Correspondence of the angular quasi-momentum m of singly excited states of a
ring (26) for N, = 6 to the irreducible representations (irreps) of the symmetry
group of the ring (C§,). The arrows show the real part o< cos(m¢) and the
imaginary part o sin(my) of the states. For clarity, the values with the same
magnitude, but with different signs, are highlighted by different colors

(cos(mep), sin(mgp))T under symmetry transformations, and the character is a trace
of such a matrix. Let us identify the irreducible representations for the singly ex-
cited eigenstates (26) for a ring of six emitters. The excitation amplitudes of ring
eigenstates (26) have real part o< cos(myp;), and imaginary part o sin(me;) where
;i = (1—1)7/3 as shown in figure 6(d). It is obvious that the imaginary part is zero
for m = 0 and m = 3, therefore these states should enter one-dimensional repre-
sentations. For the states entering one-dimensional irreducible representations, we
just need to multiply a state by a character in order to obtain a transformed state.
The state with m = 0 has a homogenous distribution of amplitudes, therefore it re-
mains the same under the symmetry transformations and enters trivial irreducible

representation A; [see figure 6(c)]. The state with m = 3 is symmetric for the re-
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flection o, [see figure 6(b)], therefore it enters By representation [see figure 6(c)].
The modes with m = 41 and m = =£2 have non-zero real and imaginary parts.
Hence, they enter two-dimensional representations, F; or Es, and they are dou-
ble degenerate [cf. equation (20)]. For these states, the real and imaginary parts
have opposite symmetry with respect to the reflections, therefore they have zeros
at corresponding cells in figure 6(c). Hence, let us take a look at the rotation by
7 around the z-axis Cy(z). The irreducible representations £ and Es are 2 x 2
diagonal matrices for this rotation, therefore negative character (trace) “-2” corre-
sponds to both anti-symmetric real and imaginary parts while the positive character
“+2” 1s for both symmetric real and imaginary parts. The real and imaginary parts
of states with m = 41 (resp. m = +2) are both anti-symmetric (resp. symmetric)
with respect to this rotation, therefore the states with m = +1 (resp. m = +£2)
enter F; (resp. F») irreducible representation.

Thus, singly excited states of a ring of six emitters enter irreducible repre-
sentations A, Bs, F, and E,. Note that doubly excited states can enter other
irreducible representations [see section 3.5].

2.3 Selection rules for expansions of doubly excited states

The symmetry analysis presented in section 2.2 can be helpful for the se-
lection of non-zero coefficients in the expansion of doubly excited states over the
products of singly excited states. For a doubly excited state ’ \IJ(m)> with the defined

angular quasi-momentum m, such an expansion can be written as follows

‘\11<m>> = Vo,

mi,m2

w(ml)> ’w(mz)> : (28)

where ‘w(m1)> and }w(m2)> are singly excited states with angular quasi-momentum
my and ma, respectively. Expansion coefficients v,,, ,,, can be considered as am-
plitudes of doubly excited state |\If(m)> in reciprocal space of momentum as well
as amplitudes c;; describe this state in direct space of coordinates.

In the general case, a coefficient vy, ,,,, 1s not equal to zero if the irreducible
representation of doubly excited state |\I!(m>> is included in the expansion over the
irreducible representations of the product of irreducible representations of ’1/)(m1)>
and |w(m2)> singly excited states.

Let us consider an example of C, symmetry group and write down expan-

sions for all products of irreducible representations of singly excited eigenstates of
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the ring [see figure 6(d)]:

A x Ay = Ay
A1 X By = B,
Ay x By = Ey,
Ay X By = B,
By x By = Ay, (29)
By x By = Ep,
By x Ey = Ey,

Fy x By = Ay + Ay + B,
E1><E2:B1+BQ+E17
EQXE2:A1+A2+E17

where x is the product of representations. For instance, assume that a doubly
excited state ‘\If(m)> is transformed according to the irreducible representation
Bs. Thus, it can be composed of products of singly excited states entering A;
and B, representations, or £ and F, representations. Otherwise, the coefficients

y(m) > , transformed

according to the representation B, has angular quasi-moment m = 3 and can be

Um, my, = 0 for products of other singly excited states. Hence,

obtained from pairs of the states with angular quasi-momentum m; = 0 (A;) and
me = 3 (Bs), or my = 1 (1) and mge = 2 (Es), or m; = —1 (E7) and my = —2
(E5). Thus, one can conclude that the sum of the angular quasi-momentum of
singly excited states (m; + ms) should be equal to the angular quasi-momentum
of doubly excited state m. Hence, we obtain a weaker condition: The coeffi-
cient vy, m, can be zero or not if m; + my = m mod N, but v, ,», = 0 for
m1 4+ mg #m mod N,

In conclusion of this section, let us note that v,,, ,,, coefficients in the most
general case can be calculated as a solution of a system of linear equations Cv = v
where v 1s a column vector of v,,, ,,, coefficients of length N 2 and v is a column
vector of amplitudes ¢;; of doubly excited state ‘\I!(m)> including ¢;; = 0, and ¢j;
(recall that ¢;; = ¢;;). Entries of N x N matrix C are defined as a product of
amplitudes ¢; X c; from |,¢(m1)> and |,¢(m2)> singly excited states, respectively.

The desired coefficients can be formally written as v = C 'vy. Note that the

31



matrix C always has a non-zero determinant because it is composed of products of
amplitudes of orthogonal states.

2.4 Remark on the numerical calculation of degenerate eigenstates

The symmetry analysis is also helpful for the numerical calculation of the
eigenstates of Hamiltonian (3). The eigenvalue problem can be solved, for ex-
ample, in Matlab using the eig function. However, this method has a disadvan-
tage regarding the calculation of degenerate eigenstates. Let W(m)> and W(*m)>
be the “true” degenerate eigenstates with defined angular quasi-momentum m
and —m. The numerical method, however, returns us their linear combinations
(a |¢(m)> +b |w(_m)>) with a and b being the complex coefficients. These com-
binations are also the eigenstates of the Hamiltonian (3) but their angular quasi-
momentum is not defined. How to overcome this difficulty?

One can employ transformations from the symmetry group of the struc-
ture. Choose a non-trivial transformation P being a rotation or reflection from
the symmetry group. Introduce a matrix V" whose columns are the right eigenvec-
tors for both operators H off and P. We also define diagonal matrices Dy and Dp
as Dy = Y‘lfl otV and Dp = V1PV with the diagonal entries being eigen-
values of H off and ]5, respectively. If we calculate numerically the eigenvalues
Dy and eigenvectors V' directly from the diagonalization of H off, We meet the
problem mentioned above. However, we can first diagonalize the following op-
erator (1::[ off 1 rﬁ) with r being a random real number. It can be noticed that
this operator has the same eigenvectors V' but a different spectrum (Dy + rD)).
However, if we obtain the “true” eigenvectors V', we can calculate eigenenergies
Dy =V 'H offV . Note that this method can be applied for rigorous numerical
calculation of both singly and doubly excited states.

2.5 The single excitation spectrum of a multi-ring structure

Section 2.1 describes how to analytically calculate a single excitation spec-
trum and corresponding eigenstates of a ring with /V,, emitters using the knowledge
about the rotational symmetry of the structure. This helps to instantly obtain all
N, singly excited eigenstates energies with an angular quasi-momentum by calcu-
lating the dipole sums (21) for positive values of m instead of diagonalizing the
N, x N, matrix.

This section considers structures of IV, # 1 concentric rings of N, dipole

emitters with {R; }jV: , Tadii placed in xy-plane. Thus, the total number of emit-
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ters in the system is N = N, x N,. An example of the geometry is illustrated

schematically in figure 7.

2. Anzats 3. Diagonalization
G=cmem (m (m)

S (m) im(pita)t i m] s
e =g e e L ) | = E) ()
i G = C:_(;m)eim“gf Cg,m) C:-Em)

Figure 7 — A general approach to calculating the singly excited eigenstates with a

defined angular quasi-momentum m for NV, concentric rings (N, = 3 here). Each

ring has N, identical emitters (/V,, = 6 here). First of all, we need to initialize the
rings with their radii R; and initial angle of rotation «;. Secondly, use the

following anzats for the excitation amplitudes ¢; (;_1)n, = cﬁm)eim(‘”“‘i ) (with
¢ =1..Np, and j = 1..N,) and construct the matrix (31) for each m. Finally,
solve the eigenvalue problem and obtain the spectrum {:‘:’ (m)} with eigenvectors
of excitation eigenstates {cg.m)}

Let us denote the probability amplitudes for a single excitation by two
subindices ¢;(j_1)n,. The first subindex enumerates the emitters of a certain ring
i = 1..N, as in Section 2.1, while the second subindex corresponds to the ring with
j = 1..N,. To calculate the single excitation spectrum, we use equation (9) with
the anzats similar to (18):

Cit(j~1)N, = Cﬁm)eim(%a]’), j=1.N; (30)

where ¢; = (i — 1)27/N,, «; is the initial angle of rotation of the j-th ring in

xy plane, and cﬁm) is the excitation amplitude describing the j-th ring in an eigen-

state with quasi-momentum m [see figure 7]. A ket-vector for the corresponding
eigenstate is written as \zp<m>> = Zjvzl Zfﬁ’l Cit(j—1)N, €i+(j—1)N,.>-

As we can notice, a key difference from a single ring case is N, unknown
N,
j=
new anzats in (9) and employing the ring dipole sums defined in equation (21),

amplitudes {c§m)} , instead of one for a certain value of m. After inserting this

we obtain a system of equations to find NV, right eigenstates of (5) with the quasi-
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momentum m as:

5:2? éQm %37; . %2?& 02m _ glm) 02m (31)
(m) - (m) m (m) (m) (m)

- ~ (m) ~
XN, *2N, 3N, -+ EN, Cn, Cn,

)

M (m)

where the diagonal entries of the introduced matrix are defined according to (20)

and (21) as éﬁﬂl) = —% — EE(m)(Rj N,), the energies of the excitation located

only at j-th ring without the interaction with other rings. The non-diagonal entries

are defined as normalized inter-ring coupling strengths

N,
3mc . ~
~ 1mm(o;—a; 1MYy,
Ml = _w_e (ca=a;) E e’ Gzz(‘rH—(j—l)NT — Ipt(-1)N, Mo)- (32)
0
n=1

For the definition of GG, see equation (16). In order to denote the eigenvalues of
the multi-ring structure, we use the letter £ instead of €. It will be useful further to
distinguish the eigenvalues of multi-ring structures from the eigenvalues (20) of a
single ring.

A general scheme for the efficient diagonalization of equation (9) for multi-
ring structures is illustrated in figure 30. After this, we obtain a set of /V, eigen-
values and eigenstates for each m. In section 3.2, eigenvalue problem (31) will be
solved analytically for NV, = 2 rings and will be demonstrated that the interaction
between two states with the same m leads to the formation of subradiant states
with a larger Q-factor.

To sum up, in order to calculate a single excitation spectrum of /V,. concentric
rings, namely N = N, x N, states with all possible values of angular quasi-
momentum, one needs to diagonalize N, x N, matrix for each positive m instead
of the diagonalization of N x N matrix representing the total Hamiltonian (3).

2.6 Doubly excited eigenstates

In sections 2.1 and 2.5, equations for calculating the single excitation spec-
trum of ring structures, namely (9) and (31), are formulated and investigated. This
section is devoted to the analysis of the double excitation spectrum when states of

a system are described by ket-vector (10). In this case, the study becomes more
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complicated than for a single excitation case due to a significant dimensionality
growth from N to N(N — 1)/2 for N emitters. However, in order to gain an un-
derstanding of doubly excited states with the angular quasi-momentum, one can
formulate a general approach to obtain a double excitation spectrum illustrated by
a relatively simple example of a ring of N = N, = 6 emitters shown in figure 4.

As well as for singly excited eigenstates, the doubly excited eigenstates of a
ring can be distinguished by the angular quasi-momentum m taking the same val-
ues as for a single excitation case [see section 2.1]. Hence, the double excitation
amplitudes can be connected to each other by a relationship similar to (18). Thus,
the whole set of double excitation amplitudes can be reduced to a set of “inde-
pendent” amplitudes that differ not only by a phase factor """ but also differ in
absolute value. Here m is the state angular quasi-momentum, n is an integer and
¢ =21/ N,.

Let us first consider an example of a ring of NV, = 6 emitters [see figure 4].
As discussed in section 2.2, rotation of a ring by ¢’ = 27/ N, angle around z axis
converts the double excitation amplitudes as c;; — €™ cy;» where i/ = (i + 1)
mod N, and j' = (j+1) mod N, [see figure 6(a)]. Thus, taking into account the
symmetry of amplitudes ¢;; = c¢;; and their transformation upon the ring rotation,
a whole set of N,,(NV, — 1)/2 = 15 amplitudes ¢;; for a ring of IV, = 6 emitters is

reduced to three following sets:

S1 = {12, a3, 34, Cu5, Cr6, C16 };
Sy = {6137 C24, C35, C46, C15, 026}; (33)

Sy = {c14, Co5, C36 }-

: / . / . /
Note that cy3 = €™ ¢, c31 = €y = e ¢y, for the first set Si;
. / . / . /
coy = €3, 35 = ey = e'?™¥ ¢35 for the second set S5, and so on
I __
[¢" =7/3].

Hence, the doubly excited eigenstates of a ring of six emitters are determined
only by three amplitudes {c19, c13, c14}, while the singly excited eigenstates in a
ring are determined only by one amplitude ¢; (see section 2.1). Thus, the number
of doubly excited eigenstates with a certain value of angular quasi-momentum m

equals three or less for a ring of N, = 6 emitters. In order to clarify the latter point,
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let us note that ¢c14 = 0 for values of m = +1 and m = 3. Indeed, ¢yy = €™ ¢,
then c1q = €3 ¢y or 14 (€*™% — 1) = 0 implies two possible cases:
o ¢3¢ _ 1 = 0, then 3my’ = 2mwn where n is integer. After inserting
¢’ = /3, one can obtain that m = 2n is an even integer number;
e otherwise, for odd m = (2n + 1), the amplitude is ¢4 = 0.

Hence, it 1s proven that ¢4 = co5 = ¢3¢ = 0 for m = 4+1 and m = 3 values of
angular quasi-momentum.

Thus, one ring of six emitters supports Ny = 3 doubly excited states with
m = 0, N1 = 2 states with m = +1, N_; = 2 states withm = —1, N, = 3
states with m = +2, N_o = 3 states with m = —2, and N3 = 2 states with m = 3.
The total number of states is 3 x 2 + 3 x 3 = 15 for a ring of [V, = 6 emitters as
it should be according to the formula w

After dividing the amplitudes into sets, we can derive the effective eigen-
value equations for doubly excited states similar to the single excitation case (31).
Looking at Schrodinger equation for double excitation amplitudes (11), one can
notice that the amplitude c¢;; is coupled via Green’s tesnor (16) only to the ampli-
tudes for which one of the indices — ¢ or 7 —remains the same. Hence, the amplitude
c12 1s coupled only to co3 and ¢4 amplitudes from S set; to c;3, Ca4, €15, and cog
amplitudes from S5 set; and to cy4, and co5 amplitudes from S5 set. Taking into
account the phase relationship between the amplitudes for each set, one can write

the equation for cq9:

gmeyy = (—i + g1z + §26€i5m¢/) C12
+ (§23 + G148 4 Gose M - §16€i5m¢) C13 (34)
+ (§24 + §15eim¢) C14,
where §;;(wy) is given by (4). In a similar way, we can write the equations for ¢;3

and c14 amplitudes and obtain the eigenvalue equation for doubly excited states in

a compact matrix form as follows:

My My Mis C12 C12
Moy Moy Mos cs | =" s |, (35)
M3y Msy Mss C14 C14
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where
. ~ : / - . /
My = —i + G13e"™7 + Goge'™"?
~ ~ : ! ~ 4 / ~ 5 !
My = gog + G1ae™™? + gose™"? + G1ee’™"?,
Mz = Gos + Grse™
- )
~ ~ imy’ ~ 12mey’ ~ i5me’
My = Gog + G127 + g1a€™"? 4 G367,
. ~ 12me’ ~ idmey’
My = —i + G157 + G357, (36)
~ ~  _i2mo’
M3 = g3a + Guee’™"?,
~ ~ 2 ! ~ : ! ~ : !
M3y = Gog + G13€7™ + G156 + Guee™™™
o~ ~ imy’ ~ 13me’ ~ i4my’
M3y = gaa + G127 + gr1ge™"" + guse™"?,
Ms33 = —1

with ¢’ = 7 /3 being the angular separation for a ring of six emitters. Moreover,
equation (35) can be used for m = 0 and m = +2. However for m = +1 and

m = 3, it can be simplified to the following equation since c;4 = 0 for these values

My M
11 12 C12 _ g(m) C12 . 37)
My Moy 13 €13

Equations (35) and (37) are used in section 3.1 for the calculation of the spectrum of

of m:

doubly excited states and investigation of subradiant states in a ring of six emitters.

One can generalize this approach for a ring of NV, emitters. A set of
Ny(N, — 1)/2 double excitation amplitudes can be reduced for even N, to
(N,/2 — 1) sets of N,, doubly excited amplitudes each and one set of N,,/2 ampli-
tudes as follows

S1 = {012, €23, C34, ---s CN,—1,N, ,CNP,1}
Sy = {c13, ca4, €35, - 1,1, CN, 2}
(38)
SNP/2—1 = {01,Np/2, C2,N,/2+15 C3)N, /2425 +-+s CN,, /2—2,N,,—1; CNP/2—1,N,,},

SN,,/2 = {CLN,,/2+17 C2,N,/2+25 C3,N,/2+3) --+s CN, /2—1,N,—1; CN,,/Q,N,,}-
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Note that ¢;; = ¢;;. Moreover, the amplitudes in .S N, /2 set equal to zero for odd

m since a condition %mg@’ = 27n should be satisfied for Sy, /» set because its
dimension is not N, but N,,/2 (see a proof above for IV, = 6).

For odd N,, the amplitudes can be divided into the following (N, — 1)/2
sets of NV, amplitudes:

S1 = {01270237034, -++s CN,—1,N, ,CNp,1}

So = {c13, Coa, C35, ... ~1,1,CN, 2}

5(N,,-1)/2 = {01,(Np+1)/2, C2,(N,+3)/25 C3,(N,+5)/25 -++» CN,—1,(N,—3) /25 CNP,(Np—l)/Q}-
(39)

The number of sets is equal to the number of doubly excited states [V, for each m
in a ring of emitters. Figure 8§ summarizes the values of IV, for different parities of
angular quasi-momentum m and the number of emitters /N, in a ring. For arbitrary

N,, one can get equations similar to (35) using the same approach.

Number N, is even N, is odd
of states N_ ~ N
(m is fixed) Tp is even 7]0 is odd Ny +1) 2+ D) is even @ +1) 2+ D is odd
even m & & (Np — 1) (Np — 1)
2 2 2 9
odd m &_1 &_1 (Np — 1) (Np — 1)
2 2 2 2

Figure 8 — Number of doubly excited eigenstates N, in a single ring of N,
emitters [V, for the fixed value of angular quasi-momentum m depending on the
parity of m (rows) and N,, (columns)

Let us consider the most general case of /V, rings with the same number of
emitters /V,,. For simplicity, we first determine the number of doubly excited states
N, with each angular quasi-momentum m in N, = 2 rings of N, = 6 emitters
[see figure 9]. First of all, two excitations can occupy one of the rings, being in a
state with angular quasi-momentum m. The number of states with m for one ring

N,, 1s given in figure 8. For two rings, we need to multiply this number by two.
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Figure 9 — Enumeration of emitters for /V,, = 2 concentric rings of N, = 6
emitters

For even m, there are six sets of amplitudes:

S1 = {c12, c23, €34, Ca5, C56, Ci6 }
Sy = {0137 C24, C35, C46, C15, 026};
Sy = {c14, o5, C36 };
Y
(40)
Sy = {0787 Cg9, €9.10, C10,11, C11,12, 012,7};
Sy = {0797 C8.10, €9,11, C10,12, C11,7, C12,8};

Se = {c7,10,C8,11,Co12}-

Thus, two rings support at least 6 doubly excited states with each even m (m = 0,
m = 2, m = —2). Foreachodd m (m = 1, m = —1, m = 3), there are at least
4 states because the amplitudes in sets S5 and S5 are zero. However, these are not
all possibilities for placing two excitations on two rings. A first excitation can also
occupy the inner ring while the second one occupies the outer ring yielding to the
following six sets of amplitudes and six states for each m:

S7 = {c17, €28, €39, C4,10, C5,11, C12,6 |

Ss = {c1s, €29, €310, Ca11, C512, C67};

So = {c19, €210, 3,11, C4,12, C57, Co3 };
(41)

Sio = {01,10, €211, C3,12, C47, C58, 069};

S = {61,11, C2,12, €37, €48, C69, C7,10};

Sia = {01712, Ca7, €38, C49, C5.10, 06,11}-

Thus, two rings of six emitters support 66 doubly excited states. In particular,
Ny = 12 doubly excited states with m = 0, N,; = 10 states with m = +1,
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N_; = 10 states with m = —1, N,o = 12 states with m = 42, N_o = 12 states
with m = —2, and N3 = 10 states with m = 3.
Using a similar approach, we can find the number of doubly excited states

N,,, with a certain angular quasi-momentum m for even NN, as

N, N.(N,—1)

N, x —++———=x N, even m,
N, — (42)
” N NN, — 1
NTX(TPI)—F%XNP odd m.

For odd N,, the value of Ny, is

x N, (43)

for even and odd m.

In this chapter, we considered singly and doubly excited eigenstates in ring
structures of transverse emitters. Due to the rotational symmetry of the system, we
can introduce the angular quasi-momentum m describing the phase shift between
emitters. This helped us to reduce the dimensionality of the eigenvalue problem to
N, for a single-excitation manifold in [V, concentric rings of /N, emitters. For two
excitations, the dimensionality is given by (42) for even IV, and by (43) for odd NV,,.
Moreover, we studied the change of ring eigenstates under transformations from
the symmetry group of the structure. We provided a correspondence between the
value of m and irreducible representations of symmetry group Cj, for six emitters.
The same approach can be applied to any number of emitters. The correspondence
of the ring states to certain irreducible representations determines nonzero terms in
the expansion of a doubly excited state over the products of singly excited states.
It also strictly shows that the angular quasi-momentum of the doubly excited state

is equal to the sum of the angular quasi-momentum of singly excited states.
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3 SUBRADIANT EIGENSTATES OF RING OLIGOMERS

This chapter applies formalism developed in chapter 2 to model singly and
doubly excited eigenstates of a single ring and ring oligomers. The main aim of
the chapter is the investigation of subradiant eigenstates (with a large lifetime) and
the mechanisms of their formation.

3.1 Subradiance of a small single ring

First of all, let us model singly and doubly excited eigenstates with various
values of angular quasi-momentum m of a single ring of /V,, = 6 identical emit-

ters shown in figure 4. We recall that the obtained normalized and shifted complex
w(m) — wo) ™)
—i
N Y0 270
[see equation (6)]. The ratio ¢y = =0 defines a quality factor (Q-factor) of a
Y

eigenvalue of the eigenstate with m can be written as (™) = (

0
single emitter resonance. In order to characterize the resonances of collective
(m)
: . W
states, one can introduce the collective Q-factor as Q™ = Ok In order to
Y

simplify the analysis, let us notice that the frequency detuning of collective state
]w(m) — wo‘ < wy since wy K 7 for atomic resonances. Thus, one can define

approximately a ratio of the collective state’s Q-factor to the single emitter’s Q-

(m) -1

factor as ~ <%> . The latter ratio of decay rates can be extracted from
0 Y

(m)

70
Figures 10(a) and 10(b) show the ratio of Q-factors

analytically or numerically calculated eigenvalues as = —2Im(&(™)),

(m)

for singly and
doubly excited eigenstates, respectively, as functions of norrnalizoed separation be-
tween emitters a [see inset in figure 10(b)]. The eigenenergies for singly excited
states are calculated using equation (20) with analytically derived dipole sum (22)
whereas the spectrum of doubly excited states is calculated from equation (35) for

even m = 0, + 2, and from equation (37) for odd m = £1,3. In figure 10(a) one

Q(m) Q(m) Q(m)

can see that ~ 1 form = +1, and — > 1 for

< 1form =0,
0 0 0
m = 42 and m = 3 in the considered range of separations a/\g < 0.25. The

(m)
Qo
> 1 are subradiant (high-Q) states.

states with

Q(m)

Qo
We can see also in figure 10(a) that the larger m, the higher the Q-factor of the

< 1 are called superradiant (low-Q) states whereas the states

with

state. This can be explained as follows. A ring excitation in the state ‘¢(m)> can be
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Figure 10 — (Logarithmic scale) Quality factors (Q-factors) of eigenstates in a
ring of [V, = 6 as a function of separation between emitters normalized by the
resonant wavelength of a single emitter resonance [see inset in (b)]. The curves
in both subfigures are colored depending on the value of angular
quasi-momentum m [see legend in (a)]. The emitters are polarized perpendicular
to the ring plane. The collective Q-factor is normalized by that of a single emitter
Qo. Q/Qo = (—21Im[&])~! where ¢ is calculated from (20) for singly excited
states (a), and from (35) for doubly excited states (b) in a single ring. The dipole
sums for a ring of six emitters are calculated in (22). Kets in (b) highlight doubly
excited states with the highest and lowest Q-factor

considered as a quasi-particle with a wavenumber Z—’g = ﬁ [25, 29]. Therefore,
suppression of radiative losses of the states is due to a mismatch between k,, and
wavenumber in free space kj and the former growth with m.

Moreover, if separation a /Ao decreases, Q-factors increase for m # 0 but the
Q-factor of m = 0 eigenstate decreases [see figure 10(a)]. Note that the collective
decay rates v approach the Dicke limit for a /A0 — 0 [7]. In this limit, the
separation between the emitters is so small that their interaction can be considered
to be infinitely strong. This, in turn, for the case of N, transverse dipoles leads
to the appearance of (N, — 1) collective states with v = 0 (() = o0), and one
superradiant state with v = Nyy (Q = (Qo/N,). The first case of infinite Q-
factors corresponds to m # 0 whereas the second case is the state with m = 0.

In accordance with figure 10(b), adding a second excitation to the ring can
help to increase the Q-factors of states with a small quasi-momentum, namely
m = 0 and m = =1, by several orders of magnitude. Indeed, the state with

m = 0 becomes the most subradiant for the case of two excitations. This state is
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denoted as ‘\IISO)> in figure 10(b). It is also interesting to compare )m§°)> with the

most superradiant state, also with m = 0, denoted as ‘\Iféo)> in figure 10(b).
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Figure 11 — Maps for doubly excited states with m = 0 from figure 10(b) with the
highest and lowest Q-factor (the corresponding eigenvalues are written on top of
the figure). The ring is composed of NV, = 6 emitters separated by a/\y = 0.16.
(a) Probabilities |c;;|? of the double excitation of i-th and j-th emitter. Note that

cii = 0 but ¢j; = ¢;;. (b) The phase of amplitudes ¢;; in units of 7. (c, d)
Coefficients {v;,, m, } of expansion of doubly excited state over the products of
singly excited states with angular quasi-momentum m; and my (28). The
coefficients are calculated using the method described in section 2.3. The
absolute values of vy, ,,, are shown in (¢), and their phases in units of 7 are
shown in (d). There are only nonzero coefficients such that (1 + ms)

mod 6 = 0. (e-h) The same but for low-Q state ‘\Iléo>>

Figures 11(a)-(d) and 11(e)-(h) contain all the information about ‘m§0>> and
’\11§0>> states for a/\g = 0.16, respectively. Figures 11(c) and 11(g) show the

expansion coefficients v,,, »,, of doubly excited states MO) > and (qf;0>> over the

products of singly excited states W(ml)> |¢('m2)> [see section 2.3]. One can see
that subradiant singly excited states with m; = mo = 3 mostly contribute to
subradiant ’\11§°>> [see figures 10(a) and 11(c)] whereas the highest contribution

to superradiant ‘\Pgo)> is given by m; = my = 0 term with the highest radiative

losses [see figures 10(a) and 11(g)]. Note that in figures 11(c) and 11(g) vy, m, 7# 0
such that (m1 +m2) =0 mod 6.
Thus, it is possible to reach higher Q-factors for low m by going from a

single excitation manifold to a double excitation one. Nevertheless, the Q-factor
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of the most subradiant singly excited state is higher than the Q-factor of the most
subradiant doubly excited state.

In the next section, we introduce a general approach for obtaining high-Q
states for all values m in single and double excitation manifolds based on the cou-
pling of modes in two subsystems with the same symmetry.

3.2 Mechanism of subradiant state formation

We consider an oligomer consisting of two open subsystems of emitters (A
and B). We denote the initial singly excited states of subsystems without interaction
(Ho) as |¢,) and |@,) with complex eigenenergies read as &, = (% — 1%)
where s = a,b. Assume that |p,) and |p;) have the same symmetry, i.e. enter
the same irreducible representation. Now let us introduce the interaction between
the states through the continuum of free space modes (radiation continuum) 1%
depending on the system’s parameters. One can formally write down the 2 x 2

Hamiltonian describing the whole system as

- ~a O 0 ~a
A= ")+ ) (44)
0 Ep Hpa 0

Hy v

where z,, and 3, are the coupling strengths. The eigenenergies of “dressed”

eigenstates of H can be easily found as

.1
Ex=3 [éa &+ \/ (5, — &)° + 45@,)%] . (45)

The corresponding “dressed” eigenstates are

1 1
o >:<“*>=—( ) (46)
Y RN AR

where

1
2524

Ny = — [c‘fa — & F \/(5a — &)’ + 45%5%@] : (47)

As shown further, the radiative decay rate of a “dressed” state y_ o< Im {g’}
can be significantly decreased compared to that of a single emitter and single rings
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due to destructive interference of |p;) states (subsystems A and B) in radiation to
the continuum.

3.3 An example of m = 0 with a central emitter

First, let us consider a simple example of the formation of a high-Q state with
m = ( via the mechanism (44) in an oligomer of emitters. Figure 12(a) presents
an oligomer composed of a ring of /V,, emitters and one emitter placed at the ring
center coinciding with the origin of Cartesian coordinate systems. A total number
of singly excited eigenstates, in this case, is N = N, + 1.

Note that a central emitter can interact only with the ring state having m = 0.
Indeed, the electric field strength of the state (26) with m # 0 is zero at the ring
center due to a symmetry reason (see also figure 14), therefore, a coupling strength
of the state field with an emitter placed at the field zero is »c o d - E* = 0.

For the considered ensemble, it is natural to choose the initial states as the
excited state of a central emitter, |p,) = |e), and the ring eigenstate with m = 0,
lop) = @D(O) > [see equation (26)]. The state |e) obviously has m = 0. On this

ring
basis, the entries of the Hamiltonian (44) are an excited emitter energy £, = —

3
an excited ring energy &, = —% — %Z(O) (R, N,), 3, = —%Gm (R,wp), and
g = Ny, [see equations (4), (9), and (20)].

According to (45), these parameters yield the following eigenenergies for

the “dressed” oligomer states with m = 0:

i i 3 3
= —— —3xO(R,N)+ A 4
g:i: 9 8 (Ra p) 4 ’ ( 8)

2
where A = \/i (2O (R, Np)]2 +N, {%CGZZ (R, wo)} is a complex energy gap
between the states. The corresponding eigenstates of the oligomer with m = 0

read as

() = us |9)* ® Je) + s

bine) ©19) (49)

where |uy|? + [vy|* = Ju_|* + |v_|* = 1. Note that the other (N, — 1) states of
the oligomer with m # 0 are ’zp(m)> ® |g) where ¢(m)> is a state (26).

ring ring

One can also find 7. for the considered oligomer from equation (47) and

substitute it into equation (46) to obtain u+ and vy excitation amplitudes. Their
1

VoA

45

physical meaning is the following: vie'™ is the excitation amplitude of an
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Figure 12 — High-Q singly excited state with m = 0. (a) [llustration of
mechanism (44) of the high-Q state formation in oligomer composed of a central
emitter (subsystem A) and a ring (subsystem B). The oligomer supports
symmetric and anti-symmetric (high-Q) states (49). (b) (Logarithmic scale)
Dependence of normalized Q-factor of states shown in (a) on the separation
between emitters a/\. The collective Q-factor is calculated as
Q/Qo = (—2Im[u])~! where u = —i/2 for a central emitter (gray), p is given
by eq. (20) with m = 0 for the ring state (orange), i is given by eq. (48) for
anti-symmetric (green) and symmetric (violet) states. (c) The frequency detuning
of the states, % = % = Re|u|. (d) The absolute values of excitation
amplitudes of a ring (v ) and central emitter (u.) for symmetric and
anti-symmetric states (49). (c¢) The phase shifts for amplitudes are defined as

arg(u. ) — arg(vy ) (violet) and arg(u. ) — arg(v_) (green)

emitter in a ring, and w4 is the excitation amplitude of a central emitter [see fig-
ure 12(a)]. Moreover, the phase shift between u_ and v_ is close to m whereas that
is almost zero for u and v, [see figure 12(e) for IV, = 6]. Hence, the “+” (resp.

(132

) subscript corresponds to a symmetric (resp. an anti-symmetric) state ’w$)>

(resp. ‘@D@>) shown in figure 12(a).
Figures 12(c) and 12(b) show the normalized Q-factors and frequency de-

tunings of initial gp§°>>, and oligomer ‘¢$ )> states for V, = 6. One can see
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the frequency and Q-factor of the symmetric state approach those of a single ring
because excitation i1s mostly localized at the ring rather than at a central emitter
el < 2 [see figure 12(d)]. At the same time, the frequency of the anti-
A% Np|vg|

symmetric state approaches the frequency of a single emitter with the increase
W 2 2. However, the Q-factor of the anti-symmetric state is

D v_
remarkably higher than @)y and has a maximum @) /Qy = 292 around a/\; = 0.16

when the phase shift between probability amplitudes of ring and emitter excita-

of a because

tions equals to 7 exactly [see figure 12(e)]. This can be explained by the fact that
the radiative losses of dipole emitters are proportional to a square of the mean
dipole moment which is strongly reduced compared to that of a single dipole at
a/Ao = 0.16 [see figure 12(d)]. Thus, an anti-symmetric state is subradiant for the
considered range of separations a/\g < 0.25 while a symmetric state is a superra-
diant one. Moreover, the Q-factor for the anti-symmetric state tends to infinity in
the Dicke limit (a/Ag — 0) while the Q-factor for the symmetric state approaches
1/N.

To conclude, we can notice that an inner subsystem (central emitter) is most
excited in an anti-symmetric, high-Q state while an excitation prefers to occupy
an outer subsystem (ring) in a symmetric state. A similar situation takes place for
subradiant singly excited and doubly excited states in two-ring structures.

3.4 Subradiant states with non-zero angular quasi-momentum

The ensemble composed of the ring with a central emitter shown in figure 12
supports a high-Q state with angular quasi-momentum m = 0. However, this
ensemble can not be applied to obtain subradiant states with m # 0 because a
central emitter can not interact with the ring states with m # 0. It motivates us to
consider a different ensemble composed of two concentric rings shown in the inset
of figure 13(b). The rings have the same number of emitters /N, but different radii
Ry and Ry > R;. The total number of emitters is N = 2.NV,,. As the initial states
’apém)> and ’apém)>, we choose the singly excited eigenstates with the same angular
quasi-momentum m in single rings (26) of radius R; and R,, respectively. Note
that the states (26) enter the orthogonal irreducible representations for different
angular quasi-momentum m, therefore the states of two rings can interact only if
they have the same m.

In this case, the Hamiltonian (44) matches the matrix (31) for two rings. As

) (m)

written under (31), éﬁ[” and £, are the energies of an excitation occupying one
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of two non-interacting rings [see equation (20)]. For clarity, we write again the

expressions for 2™ and él()m):

i3 i Bem
5( ):___ZE( )(Rth)) 61() ):___ZE( )(R27Np)' (50)

The coupling between rings is symmetric [ > ((ZZL) = %égﬂ in (44)] and given by (32).
Inserting (50) and (32) into (45), we obtain the eigenenegies gj([m) of the states with
angular quasi-momentum m in a two-ring oligomer. The corresponding eigen-

states of a two-ring oligomer simply read as:

W) = us ) @19) ™ s |9y @ [ ™) (51)
150 2" ring 1% ring nd
ring 2" ring

As well as for the case of a ring and a central emitter, the interaction between two
subsystems (rings here) leads to the formation of anti-symmetric, high-Q states but

for all values of angular quasi-momentum m as illustrated in figure 13(a). For a

two-ring structure, #Nuim) e and #Nvim)
p p

tion amplitudes of the i-th emitter in the first and second ring, respectively, within

e'?i have a meaning of the excita-

a symmetric or anti-symmetric state. Note that |u$n)\ < \vim)] for the symmetric
state, and |u(_m)| > \v(_m)\ for the anti-symmetric state similar to the case of a ring
with a central emitter.

Figures 13(b-c) demonstrate Q-factors for the eigenstates (51) for two rings
of N, = 6 emitters. For all values of angular quasi-momentum m, we can observe
a good enhancement of the Q-factor for a two-ring oligomer by several orders of
magnitude compared to that for two single, non-interacting rings. We can also see
the peaks of the Q-factor whose positions depend on the m and are essentially gov-
erned by the ratio of ring radii R,/ Ry [the latter is covered in more detail in the next
section]. The origin of maxima in the Q-factor, as before, is associated with the
optimal conditions for the destructive interference (phase shift is ) of two emitter
subsystems. Moreover, we show in section 3.7 that this interference leads to the
suppression of low-order radiant multipoles (vector spherical harmonics). The ra-
diation into the far field of high-Q states is associated with high-order multipoles

(hexapoles, 32-poles) although we consider ensembles with pure dipole response.
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Figure 13 — High-Q, singly excited states with different angular quasi-momentum
m in two-ring oligomer. (a) Mechanism of the formation of the high-Q state
governed by the Hamiltonian (44). The mechanism is shown for m = 3. An

excitation mostly occupies an inner ring. (b-d) (Logarithmic scale) Dependence

of Q-factors of rings’ states with different m on the separation between emitters a

for Ry/ Ry = 2 [see inset in (a)]. The collective Q-factor is calculated as
@Q/Qo = (—2Im[u])~L. The dashed lines show the Q-factors of the states of
non-interacting rings [p = eq. (50)] while the solid lines are for interacting rings
[+ =eq. (45) with € = eq. (50) and 3 = eq. (32)]

Note that Q-factors in figure 13 approach the Dicke limit at small separations
between emitters as described in section 3.1. The symmetric state with m = 0 has
g =~ L while other (N — 1) states have % = oo 1n Dicke limit.

The high-Q states allow us to obtain a good enhancement of the field compo-

nent F/,, transverse to the structure, in the near field wave zone z < \g. The electric
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Figure 14 — Magnitude and phase distributions of electric field component E,
generated by high-Q states of two-ring oligomer in z/ o = 0.5 plane. The
oligomer is shown in figure 13 with Ry/R; = 2. The electric field is calculated
by equation (52). (a,c) The magnitude of £, normalized by that of the total
electric field for high-Q states with angular quasi-momentum (a) m = 0, and (b)
m = 1. The separation between the rings a /) is picked such that the states have
a maximum of Q-factor in figures 13(b), and 13(c), respectively. The white dots
indicate the positions of emitters in the z = 0 plane just for clarity. (b,d) The
phase of E, in units of 7 for the states with (b) m = 0, and (d)m =1

field of a collection of electric dipoles can be written via Green’s tensor (16) as

9 N
w ~

E ==L N "Gy (r—r;w)d;, 52

(1, 0) = gy 2 Go(r = riven) (52

where {r;}¥, is a set of coordinates of dipoles. In a semi-classical approach, we

can assign a classwal dipole moment to i-th emitter by a simple ruled; = d X ¢;
where ¢; is the excitation amplitude within a singly excited eigenstate, and d is the
emitter transition dipole moment as before.

Figure (14) shows the amplitude and the phase of E, generated by high-Q
states with m = 0 and m = 1 in two rings with a/)\q such that Q-factors of the
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states have maxima in figures 13(c) and 13(d). One can see that the states demon-
strate remarkably different field profiles. The field of m = 0 state in figure 14(a)
has an axial symmetry with maxima and minima of the field due to the interference
of fields generated by rings. Moreover, the field phase for m = 0 continuously
varies from 0 to 27 along a radial direction [see figure 14(b)]. For m = 1, a non-
zero angular quasi-momentum manifests itself as a vortex for the field strength and
the phase [see figures 14(c) and 14(d)]. Moreover, the state with m = 1 has zero
field at the center of rings whereas the state with m = 0 has a field maxima at this
point.

3.5 Doubly excited subradiant states

The discussed above physical mechanism based on the interaction of two
emitter subsystems can be applied to obtaining subradiance of doubly excited states
with non-zero angular momentum. A two-ring structure shown in figure 13 has
two independent parameters such as the ratio of ring radii R»/R;, and separation
between emitters a/)\g. Since a singly excited state with m = 3 has the highest
Q-factor among all singly excited states in a two-ring oligomer [see figure 13], let
us maximize the Q-factor of a doubly excited state with m = 3 by varying Ry/R;
and a/)\. Figure 15 shows the Q-factor of the most subradiant doubly excited
state with m = 3 calculated for two rings by equation (11) taking into account the
symmetry of the states as discussed in section 2.6. One can see an enhancement of
() by two orders of magnitude compared to () for Ry /Ry = 2.2 and a/\y = 0.16.

In order to interpret obtained optimal parameters, let us model dou-

N N
\If(m)> = Z Z Cij|€iej> where

i=1 j=i+1

bly excited eigenstates with m = 3,

leiej) = &1 6;{ 19)®". We recall that double excitation amplitudes obey the Pauli
principle ¢; = 0, and reciprocity c¢;; = cj; [see section 1.3]. As discussed in
section 2.3, a doubly excited state can be expanded into a sum of products of
singly excited states ‘\P(m)> = > Unym, ]zp<m1>> W(m2)> where vy, m, 7 0 for

my +my = m mod N, Wheremjl\};nzis the number of emitters per ring. Figure 16
shows maps with amplitudes c¢;; and v,,, ,,, of four doubly excited states ‘\IJS’)>
with m = 3 in a two-ring oligomer with optimal parameters Ry/R; = 2.2 and
a/ Xy = 0.16. The states should be analyzed together since they have the same sym-

metry, i.e. enter the same irreducible representation of the C, group. As written in
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Figure 15 — Q-factor of ’\1153)> the subradiant doubly excited state with angular

quasi-momentum m = 3 as function of Ry/R; and a/)\g. The collective Q-factor
is normalized by the Q-factor of a single emitter resonance (). The inset shows
two rings of six emitters with the enumeration of emitters

section 2.5, the states with m = 3 are transformed by one-dimensional irreducible
representations. Obviously, the states presented in figure 16 cannot enter A; and
A, representations because these representations preserve the state under rotations
[see figure 6(c)]. Indeed, let us take a look at the maps with absolute values and
phases of amplitudes c;;, for example, in figures 16(a) and 16(b) for ‘\D§3>> state.
As shown in figure 6(a), a rotation of rings by 7 /3 angle around z-axis permutes
the indices so that non-zero amplitude co3 corresponds to amplitude c;2 before the
rotation. Since the state has m = 3, then cy3 = ¢12€'™3 = —¢q5 as illustrated fig-
ures 16(a) and 16(b). Thus, the states in figure 16 can enter By or B irreducible
representations [see figure 6(c)]. In order to finally identify, let us consider the
symmetry of the states under reflection with respect to the axis intersecting the
emitters [0y in figure 6(b)]. After this reflection, cjo — c16. From figure 16(b),
we can find that c;4 = —c;9, therefore the state is anti-symmetric with respect to
o4 and enters B irreducible representation [see figure 6(c)]. It can be shown that
other states ‘\1153)>,
that two rings have ten doubly excited eigenstates with m = 3 [see (42)]. The

\I/i(f)>, and ‘\Iff)> also enter the same representation B;. Note

discussed here eigenstates enter 3 irreducible representation, while the other six
states enter different representation By and consequently do not interact with these
four due to having different symmetry.

Figure 16 also shows the eigenvalues 55(3) of doubly excited states with
m = 3 for Ry/R;y = 2.2 and a/)\y = 0.16. The state ‘\1153)> is subradiant
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Figure 16 — Maps of excitation amplitudes c¢;; and expansion coefficients v, .,
for doubly excited states with m = 3 in two rings ‘xpf’)> where s = 1,2,3,4 [see

equation (53)]. The rings of six emitters have Ry /Ry = 2.2 and a/)\g = 0.16
corresponding to the maximum of Q-factor in figure 15. &; are the
eigenvalues (54) of shown states for these parameters of rings. The indices ¢ and
j enumerate the emitters such that a set of indices {1,2,...,6} is for the inner ring
(ring A), and {7,8,...,12} is for the outer ring (ring B) as shown in figure 15. The
indices m, and mq denote the angular quasi-momentum of singly excited states
with the subscript 1 corresponding to symmetric or anti-symmetric state (51)

with Q/Qo = (—2Im[€])~" ~ 110. There are also one radiant state ‘\ng)> with

Q/Qo ~ 1.25, and two superradiant states ’\Ifég)>, ‘\Iff)> with Q/Qo ~ 0.35 and
Q/Qo ~ 0.27, respectively. As well as for the singly excited states in two rings,
the most subradiant doubly excited state ‘ \Ilg?’) > is mostly localized on the inner ring
rather than on two rings or on the outer ring [see figure 17(a)] while, for the most

radiant state ‘\Iff)>, excitations occupy an outer ring. The states with intermediate

losses ‘\1153)> and ’\IJég)> are localized between the rings. Using expansions over
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products of singly excited states in figures 16, we can write doubly excited states

ordered by increasing radiative losses as

) = (7)) ) )
SRR,

(33)

) - ()7} i)
S ) ).

)= G (o) i) i) o)
W) o)+ ) o))

where ‘wim)> is symmetric/anti-symmetric singly excited states of a two-ring
oligomer (51). Thus, doubly excited states (53) are composed of products of singly
excited states with only m; = +1 and my = £2. It is interesting to note that there
are no contributions of products of singly excited states with m; = 0 and mo = 3
although m; + mos = m = 3. This can be easily understood by analyzing the
products of irreducible representations of the Cg, symmetry group (29). The irre-
ducible representation B; of states (53) only enters expansion of product £; X FEs
corresponding to singly excited states with m = +1 and m = +2. However, the
product of irreducible representations A; x B, for states with m = 0 and m = 3
equals a different irreducible representation Bs.

Acting with the Hamiltonian (3) on the states (53), we obtain the following

expressions for the energies of doubly excited states via the energies of singly
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excited states in two rings:

D = g 4 g0
& =€V 4 €7, (54)
OO
(a) ®),, |
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Figure 17 — (a) Frequency detuning % = = = Re [€5] of doubly excited states
in two rings (53) with m = 3 for Ry /R, = 2.2. The dot size is proportional to the
decay rate % = —21Im|&,] where & is given by eq. (54). The inset schematically

shows the largest amplitudes c¢;; for doubly excited state ‘\1153)> obtained from

figures 16(a,b). (b) Q-factors of doubly excited states (53) with m = 3 (burgundy

dashed curves), singly excited states (51) with m = 1 (orange solid curves), and

m = 2 (blue solid curves). Q-factors are calculated via the corresponding decay
rates Q/Qo ~ /7 since Aw < wy

Now we can explain the maximum of the Q-factor of the state ‘\1153)> in

figure 15 for parameters Ry/ Ry = 2.2 and a/\g = 0.16 of two rings. Figure 17(a)
shows the frequency detuning of doubly excited states by dots of size proportional
to the decay rate of the state. Figure 17(b) shows the Q-factors for doubly excited
states (53) with m = 3 and singly excited states (51) with m = 1 and m = 2.
Since the energiy (54) of the considered doubly excited states ‘\I/§3>> 1s just the
sum of energies of subradiant singly excited states with m = 1 and m = 2, then

the decay rates of these states are connected as follows %3) = fy(f) + 7(72). Hence,

1
the Q-factor of the doubly excited state Qf’), such that 3 = 0 + @ has
@ QY QF
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the maximum because the Q-factors of singly excited states Q<_1 ), Q(_Q) also have
maxima at a/\y = 0.16 [see figure 17(b)].

We want to draw attention to the fact that one ring also supports a doubly
excited state with m = 3, such that its irreducible representation is By and its
energy is the sum of energies of singly excited states in one ring with m = 1 and
m = 2: & = M) 4 2 where &™) given by (20) for one ring. However, the Q-
factor of this state is relatively small Q®® /Qy ~ 1 as shown in figure 10(b) because
Q® ~ QW in one ring whereas Q) /Qy ~ 1 as shown in figure 10(a). If we add
a second ring to the system, the singly excited states with m = 1 in two rings can
be anti-symmetric or symmetric Q(!) — Q(_l), Q(j). The anti-symmetric state has
a large Q-factor Q(_l)/ Qo > 1, therefore, the doubly excited in two rings ‘\I’§3>>

such that Q©®) ~ Q(_l) also has a large Q-factor. Thus, the interaction between two
rings decreases the radiative losses of the states in both singly- and two-excitation
manifolds.

3.6 Far-field radiation patterns of singly excited states

This section studies radiation patterns of the singly excited, high-Q states
with m = 1 and m = 2 shown in figure 17(b). The total power radiated in the
far field wave zone > )\ by a dipole ensemble can be written through the time-
averaged Poynting vector (S) as

P = /7“2(8} -n dQ. (55)
dr
27 T
The integration is carried out over a total solid angle [ dQ2 = [ dy [ dfsin6 fora

4 0 0
sphere of radius > A and center at the origin of the Cartesian coordinate system.

n = (cos # cos p, cos # sin p, sin §) is a unit vector normal to this spherical surface.
The spherical angles 6 and  are defined according to figure 18(a). Let us introduce
p(0,0) = r?(S) - n as a power radiated into a unite solid angle df? given by unite

vector n as shown in figure 18(a). p(#,p) determines a radiation pattern of the

system and depends on a radial component of (S) = 5 Re (Epr x Hjp) where only
far-field terms of generated electric Egp and magnetic Hgr fields contribute to the
outgoing radiation. For an electric dipole, Hgp = cegn X Egp [44]. Moreover, Egp,
Hgg, and n are orthogonal to each other in the far field r > A [see figure 18(a)],

then (S) = 5C€0 |Egr|” n is always oriented along n.
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Figure 18 — (a) Scheme with the coordinates system for calculating angular
dependence of far-field radiation. The green arrows show components of electric
Ejy and magnetic H,, far fields of a single dipole polarized along z-axis (red
arrow). (b) Normalized radiation pattern (57) for a single oscillating dipole along
z. (¢,d) Normalized radiation patterns (57) for high-Q states with m = 1 and
m = 2 from figure 17(b). The rings have Ry/R; = 2.2 and a/\y = 0.16 when
both states have the highest Q-factor in figure 17(b). In diagrams (b-d), 6 angle is
plotted along the radial direction and ¢ is along the angular direction. Note that
the radiation patterns are symmetric with respect to the exchange 6 — m — 6
since the structures are placed in the zy plane

In order to calculate Egr from equation (52), we write down the far field
Green’s function Go(r —1;,wp) [see (16)]:

A FF eik‘or—ik;onri .
G, (r—r;w :—<I—n®n>, 56
{F(r = ri,0) = —— (56)
where n = r/r. In order to obtain this, weused |[r —r;| < r—r-r;/r =r—n-r;.
Hence, the electric far field can be expressed as Epp = e”:)Tf(n) where

2 . N .
f(n) = —C‘;’—SO% 21 e ~honrid; is the scattering amplitude for dipole emitters polar-
1=
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1zed in z-direction d; = d X ¢;. Thus, the radiation pattern is fully determined by

1
the scattering amplitude p(0, ¢) = 5 C€0 If(n)|* and does not depend on the sphere
radius r. For the obtained dipole scattering amplitude f(n), the radiation pattern of

a dipole ensemble is finally written as

2
: (57)

N

E :e—lkon-ricz_

3 .
p(l,p) = By X 32—7Tsm29 2

where Py = hwy X 7y 1s a total radiated power by a single dipole with ~, given
by (2):

o lar
3mcdey

(58)

Note that F; does not contain the Planck constant in its denominator in contrast to
the decay rate vy, because F can be derived in classical electrodynamics while v
has a quantum origin.

Figure 18(b) shows the radiation pattern for a single dipole along z-axis [see
figure 18(a)] calculated from equation (57), p(¥9, ¢)/Py o sin®6. Figures 18(c)
and 18(d) show the radiation patterns for anti-symmetric, singly excited eigenstates
with m = 1 and m = 2, respectively, from figure 17(b) when the states experience
maxima of Q-factor. Note that the radiation patterns presented in figures 18(b-d)
are symmetric with respect to the exchange # — m — 6 since the structures are
placed in the xy plane. One can see a strong modification of the states’ radiation
patterns relative to a single dipole radiation pattern. The state with m = 1 also
radiates into 6§ € [r/6,7/3]and 6 € [27/3, 57 /6] ranges for any . The state with
m = 2 mostly radiates into # =~ 7/2 as a single dipole at the angles ¢; = (i—1)7/3
of emitters’ angles while the radiation pattern exhibits a “vortex”. The maximum
of p(0, p)/ Py for states with m = 1 and m = 2 is approximately one and two
orders of magnitude smaller than for a single dipole.

3.7 Multipole expansion

A complicated view of the radiation patterns in figures 18(c) and 18(d) can
be justified by a quite reach multipole content of the scattered field (52). In order
to perform the multipole expansion of the radiated field, let us introduce electric
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N and magnetic M vector spherical harmonics (VSH) [48]:

MU (rw) = ¥ x [r2 (k) Y500, |
(5 c (5 )
N, (rw) = ;V X Mm(r, w),

where V is the nabla operator, j is a total angular momentum (5 = 1 - dipole,

j = 2 -quadrupole, j = 3 - octupole, and so on), n is the projection of j on z-axis,

Y n(8, p) is a scalar spherical harmonics (o< e!"?). The superscript (*) takes values

s = 1 ors = 3 such that z§1> (kr) = j;(kr) is the spherical Bessel function of order

7, z](-g)(kr) = h;(kr) is the first-kind spherical Hankel function of order j.
Free-space Green’s function (16) can be expressed via VSHs as

+oo +j
GO (l’—r/,w) . eT}?er
1 n=
(1) (3) (v (1) i?,) , a (60)
Mjm(r’ CU) ® Mj,—n<r 7(“')) + Nj,n<r7 w) X Nj,—n(r ,CL)), ifr>r
(3) (1 (3) (1 :
Mj,n(r7 CU) ® Mj,—n(r/7 CU) + Nj,n(r7 w) ® Nj,—n(rlv w)a ifr <r

where k = w/c, ® is the dyadic product between two vectors, e, is the unit vector
of radial direction.

In the far field, the distance between a field calculation point and the dipoles’
coordinate is very large » > r;, hence we need to choose the first option for the
expansion of Green’s function. Inserting (60) in (52), we obtain the following VSH
expansion of the far field radiated by dipoles:

3+°° +J )rw .iM(.)rw
E(r,w) = -0 ZZZ( 0) b(fi—".’”(’ “)>, (61)
Ceoj i \/ (j+1 Vi +1)

where the expansion coefficients are

; 1

a§7)1 - fNS?)ln(riaw) -d;,
| jG+1 7 62)
i 1

= — = MY (r,0) - d;.

Let us insert (61) in (55). Taking into account the orthogonality conditions
between VSHs and emitter identity (recall that d; = d X ¢;), integration in (55)
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can be evaluated that leads to the following expression for a total radiated power

normalized by (58):

+oo +J

_:‘Z Z (‘“ﬂﬂ

Jj=1n=—j

+[bial”) (63)

where a;, Z ay i n, bjn = Z bj -, In order to obtain (63), we need to calculate

the integrals hke [ r?IN x M] n dQ o k2.
Let us draw a few conclusions about equation (63). First of all, it equals the

. P : L .
ratio of decay rates, o= J since P = hwy X - for one excitation stored in the
0 70

ensemble. Secondly, |a;,|* and |b;,|* quantities show the contribution of electric
and magnetic VSH with (j,n) to the radiation. Thirdly, all the VSHs contribute to
the radiation independently because the interference terms like a 7 = nbins b;‘ njn are

absent in (63). This is in agreement with the equation for the scattered power of a
single particle of spherical shape within Mie theory [49].
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Figure 19 — Multipole expansion (63) for high-Q singly excited states with (a,b)
m = 1 and (c, d) m = 2 of two rings. The ring radii are Ry/R; = 2.2 and the
separation between emitters is a/\y = 0.16 corresponding to maxima of
Q-factors of the states in figure 17(b). The coefficients are calculated by
equation (62) and presented on a logarithmic scale. The multipoles (VSHs)
providing dominant contributions are highlighted
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Figures 19(a,b) and figures 19(c,d) show the multipole contributions of
VSHs to the radiated power for the subradiant, singly-excited states with m = 1
and m = 2, respectively. One can see that only the VSHs with n mod 6 = m
contribute to the radiation because the symmetry of the VSH should coincide with
the symmetry of the state according to (62). The interference between different
multipoles leads to complicated radiation patterns in figure 18. The subradiant
properties of the states are due to the fact that the low-order multipoles are almost
suppressed, while the main contribution to the radiation is given by higher-order
multipoles. It is known that the higher the order of the multipole, the lower the
amount of radiated power. One can see in figures 19(a,b) that the electric hexapole
and magnetic octupole mainly contribute to the state with m = 1. As shown in
figure 17(b), the state with m = 2 has a higher Q-factor than the state with m =1
since the higher-order multipoles (electric 32-pole, and magnetic hexapole) mainly
contribute to this state [see figures 19(c,d)].
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Figure 20 — The same as in figure 19 but the excitation amplitudes of rings u

)

and v™ are assumed to be in phase

Suppression of high-order multipoles for high-Q states in the two-ring struc-
ture can be justified by a presence of 7 phase shift between the excitation ampli-

(_m) and U(_m)

tudes u of the rings. Figure 20 shows the multipole expansion for the
states when two rings are in a phase that corresponds to the symmetric states. In

this case, the symmetric states can be approximated in the far field by two radiat-
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ing multipoles such as an electric quadrupole and a magnetic dipole for the state
with m = 1, an electric octupole and magnetic quadrupole for the state with , = 2.
The decrease in the order of the main multipole contributions compared to the case
in figure 19 indicates an increase in the radiative losses of symmetric states [see
figure 17(b)].

3.8 Far-field two-photon amplitude

In the previous sections, we modeled radiation patterns and their multipole
expansion for singly excited, high-Q states with m = 1 and m = 2. Recall that the
most subradiant doubly excited state with m = 3 is a product of these singly excited
states [according to figure 16]. In this section, we study the radiative directivity of
the doubly excited state ’\IJ§3)>.

For the doubly excited state, instead of the radiated power |¥), we will cal-
culate a spatial two-photon amplitude [22]:

> (W[ E5(rs) Ba (ra) B (o) Ef (1) | ¥)

—— . (64)
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.

go (ra7 rb) —

= —+
—~
-
=
-
S
~
—
S
>
=
Y
-
IS
N——
o —
—~
-
IS
-
S
~

where {a, B} = {x,y,2}, E,(r) is the electric field operator (1) creating a photon
at point r with polarization in «a-direction, r, and r; are the coordinates of two
detectors [see figure 21(a)]. The electric field operator is calculated using the far
field Green’s function (56), therefore, in the far field limit » > )\, equation (64)
does not depend on |r,|, [ry| upon the normalization.

Figure 21 shows two-photon amplitude (64) of high-Q state with m = 3
for two geometries of detectors. In the first case of figures 21(a,b), both detectors
are placed at the same point and revolve around the rings. In the second one of
figures 21(c,d), one of the detectors is fixed above the rings while the second one
revolves. From the comparison of figures 21(b) and 21(d), we can conclude that
the highest probability is the emission of photons in the same direction of § ~ 75°
and ¢ = 30°,90°,150°,210°,270°,330° rather than in different directions. For these
angles, the two-photon amplitude g» > 1 so demonstrates bunching.

In this chapter, we presented a mechanism that allows us to achieve the
higher quality factors of singly and doubly excited states with angular quasi-
momentum compared to the quality factors of the states in a single ring. We con-

sidered oligomers of quantum emitters supporting two singly excited states with
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(b) 2exc@m=3

Figure 21 — (a,c) Detection schemes of two-photon emission for high-Q doubly
excited state ‘\Ifg?’)> in figure 16(a). (b,d) The calculated two-photon far field

amplitude (64) for detection schemes (a) and (c), respectively. In diagrams (b)
and (d), 6 angle is plotted along the radial direction and ¢ is along the angular
direction. Note that the radiation patterns are symmetric with respect to the
exchange § — 7 — 0 since the structures are placed in the xy plane

the same symmetry supported by subsystems of the oligomer. By optimizing the
parameters of the oligomer, we achieve a regime of destructive interference be-
tween the states when the phase shift between them is close to 7. In this regime,
we observed maxima of the quality factors of singly excited states with m = 0
in the ring with a central emitter, and with all m in two concentric rings. It was
shown that the high-Q states with angular quasi-momentum allow not only mod-
ifying far-field radiation patterns but also localizing and enhancing the transverse
near fields. We performed the multipole expansion of far-field radiation of high-Q
states in two rings and demonstrated that a high Q-factor is justified by the cancel-
lation of low-order radiating multipole contributions due to the destructive inter-
ference between the rings. In the constructive interference regime, on the contrary,

low-order multipoles dominate in the far field.
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We showed that two rings of six emitters support not only high-Q singly ex-
cited states but also high-Q doubly excited states. We focused on the four doubly
excited states with m = 3 and entering B; irreducible representation of Cj,, sym-
metry group. This irreducible representation enters only the product of irreducible
representations F; and F5 of singly excited states with m = +1 and m = +2.
Therefore, the energies of these doubly excited states with m = 3 are sums of
energies of singly excited states with m = +1 and m = +£2. Hence, there is a
doubly excited state with m = 3 such that its energy is the sum of energies of
high-Q states with m = +1 and m = 4+2. We found the optimal ring parame-
ters such that the doubly excited state with m = 3 and singly excited states with
m = 41 and m = £2 simultaneously have the maxima of Q-factors. We calcu-
lated the two-photon far-field amplitude of this doubly excited state and showed
that this state demonstrates bunching in certain directions for the symmetric detec-

tion configuration.
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CONCLUSION
In this thesis, we investigated subradiant (high-Q) singly and doubly excited

states in quantum emitter ensembles (oligomers) with in-plane rotational symme-

try. We clarified the mechanism of the formation of high-Q singly and doubly

excited states with angular quasi-momentum m. This mechanism is based on the

destructive interference of subsystems of emitter coupled via propagating photons

in free space. The basic properties of these states were investigated. The main

results of the work are highlighted below:

a)

b)

c)

d)

We formulated the effective equations that allow us to find singly and doubly
excited eigenstates in the system of concentric rings of emitters for each m.
We derived the number of doubly excited eigenstates in the system of con-
centric rings of emitters for each m.

We showed which irreducible representations of the symmetry Cy, group
include singly excited states of a ring of six emitters.

The selection rule for contributions of products of singly excited states into
a doubly excited state is formulated: the irreducible representation of the
doubly excited state should enter the product of irreducible representations
of singly excited states.

To achieve subradiant states, we consider oligomers that can be viewed as
comprising two subsystems of emitters. The interaction between subsys-
tems’ states possessing the same symmetry (having the same m in our case)
results in the formation of symmetric and anti-symmetric states, which also
retain the initial states’ symmetry. The anti-symmetric state has a large Q-
factor compared to that of a single emitter for separations between emitters
a/Ay < 0.25 because the phase shift between excitation amplitudes of sub-
systems is close to 7 leading to the suppression of low-order multipole con-
tributions into the far-field radiation. It is shown that a ring with a central
emitter supports a high-Q singly excited state with m = 0 (Qmax/Qo ~ 10?).
Moreover, two concentric rings with the same number of emitters sup-
port high-Q singly excited states with all values of m possible for one ring
(Qmax/Qo ~ 10? — 10%). In the high-Q state, an excitation occupies an inner
subsystem, whereas, in the low-Q state, it occupies an outer subsystem.
Two rings of six emitters support ten states with angular quasi-momentum

m = 3 where four states enter the irreducible representation 5; of the sym-
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metry group Cg,. These states are pairs of excitations with m = 1 and
m = 2 (or m = —1 and m = —2) being in the symmetric or anti-symmetric
states. It was shown that the energies of these doubly excited states are
the sums of energies of singly excited states with m = 1 and m = 2 (or
m = —1 and m = —2). If both excitations are in the anti-symmetric states
and have maxima of their Q-factors for certain parameters of the rings, the
doubly excited state also has a maximum of the Q-factor for these parame-
ters. Moreover, this state is the most subradiant doubly excited state in two
rings (Qmax/Qo ~ 10?). In the high-Q doubly excited state, two excitations

mainly occupy the inner ring of emitters.
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