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INTRODUCTION
Acoustic radiation force and torque are fundamental to the field of acoustic

particle manipulation, with applications such as acoustic levitation, sorting, sepa-
ration, and patterning. In these applications, particles of non-spherical shape are
often encountered. Nonetheless, it is customary to neglect the shape of a particle
and treat it as a sphere, for which analytical solution is simple and well established.

Recent theoretical works have demonstrated that geometric asymmetry can
play a significant role in acoustic field-particle interaction, which can lead to inac-
curacies when these effects are ignored, especially for highly non-spherical shapes.
Moreover, these effects may present an additional degree of freedom for acoustic
particle manipulation.

Due to historical reasons, the field of optical particle manipulation is much
more developed. In optics the effects of geometric anisotropy and asymmetry in
general on electromagnetic radiation force have been a subject of in-depth study
over the last decades, and resulted in the discovery of a plethora of interesting
counter-intuitive effects.

It may therefore be possible to draw the analogies behind the fields of
acousto- and optomechanics, and employ theoretical techniques from optics to en-
rich our understanding of the physics in the field of acoustic particle manipulation,
in particular in the subject of acoustic radiation force on geometrically anisotropic
scatterers.
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CHAPTER 1 ACOUSTOMECHANICS AND DIRECTIONAL FORCES
This chapter presents a brief historical overview of the field of acoustome-

chanics, and by introducing a well-studied concept from optomechanics outlines
the basic idea behind this thesis.

1.1 Acoustic Radiation Forces and the application
Acoustic radiation fields are known to carry a well-defined momentum flux

[1]. When a sound wave hits the object, it may transfer part of its momentum to
the object via the mechanisms of scattering, refraction, and absorption, thus, giving
rise to the phenomenon of acoustic radiation force (ARF).

Theoretical investigation of acoustic radiation forces has a long history. The
case of small rigid spherical particles placed in an inviscid compressible fluid was
treated in 1934 in a seminal work by King [2]. This result was later extended by
Yosioka andKawasima to the case of compressible spheres of any size [3], utilizing
spherical wave expansion coefficients. In 1951 Westervelt introduced now com-
monly used momentum stress tensor integration approach [4]. In 1961, Gor’kov
used this method to summarize the results of King and Yosioka [5], introducing
force-field potential in a limit of subwavelength spheres.

Westervelt’s stress-tensor approach was extended for acoustic radiation
torque by Maidanik in 1958 [6]. However, a closed form expression for acous-
tic radiation torque through scattering coefficients was first obtained only in 2011
[7]. Recently the theory of acoustic radiation forces and torques was extended to
the case of viscous fluids [8–10].

Lately the phenomenon of acoustic radiation forces has found implementa-
tion across different fields, in particular in the area of particle manipulation, also
called acoustophoresis. It is used in microfluidic chips for particle sorting, sepa-
ration and patterning [11, 12], acoustic tweezers [13, 14], and acoustic levitation
[15].

Acoustic radiation tweezers, a concept borrowed from optics where the
demonstration of optical tweezing by Ashkin in 1986 [16] was awarded with a
Nobel prize, is a subject of particular interest [17]. Although lacking the manipu-
lation precision of optical tweezers, acoustic tweezers can manipulate particles in a
much wider size range, and owing to their advantages over optical tweezers, such
as better biocompatibility [18], the ability to operate in optically opaque media
and absence of heating, they are now extensively used in life sciences for particle
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manipulation in applications such as diagnostics [19], biological scientific studies
[20], cell corting [21, 22] and many others [23].

1.2 Optomechanics and force directionality
Despite all the recent advances in theory and application of acoustic radiation

forces, some subjects, such as acoustic force directionality, remain poorly inves-
tigated. In acoustophoretic applications particles are normally treated as uniform
spheres, and the effects geometric anisotropy might have on particle mechanical
behaviour are usually ignored, even though some effects, such as acoustic radia-
tion torques on axisymmetric objects and the effects of bianisotropic response were
considered in the recent works [24, 25].

On the subject of directional forces in particular, the adjacent field of op-
tomechanics still has a lot of insight to offer. Optical forces with unusual direc-
tionality have been extensively studied in optics with effects ranging from optical
pulling [26, 27], torques negative with respect to the momentum carried by the
incident wave [28, 29] to various examples of lateral (transverse) forces [30–34].

Figure 1 – Demonstration of optical lift effect [35]. The net force F and torque T
depend on the attack angle α. Light is propagating on the z axis, lateral force is in
the direction x, and can be both positive (a) and negative (b), depending on the

main direction of light refraction and reflection

Particular example of a lateral force effect is the effect of optical lift [35,
36] demonstrated in Figure 1, which is a geometric optical effect that can be rudi-
mentary explained via directional refraction and reflection of the incident field by
geometrically anisotropic object, with force on the particle being directed against
the direction of momentum carried away by light. This configuration can be stable
for particular attack angles and can be used for such applications as light-driven
space propulsion [37].

9



.
Figure 2 – a) - Real valued scalar (Ψ) and vector (M , N ) spherical harmonics
[44]. b) - Demonstration of asymmetric radiation pattern emerging from

multipole interference, resulting in lateral force in z-direction [43]

Most often, however, these effects are considered in optics in the Mie scat-
tering regime [38], where the scattered field can conveniently be analyzed using
the multipole decomposition into spherical harmonics. In Figure 2 a) one can see
first n = 0..2 real valued scalar and vector spherical harmonics. This tool allows to
graphically explain the physical origin behind the appearance of directional forces
being the result of asymmetric radiation pattern and arising from the interference
of different multipole moments in the expansion [39, 40]. This effect was first
considered by Kerker in his pioneering work [41], and was recently discovered in
acoustics as well [42]. In Figure 2 b) one can see the application of this method for
analysis of the emergence of lateral z-directed force from interference of magnetic
and electric multipole moments [43].

1.3 Geometric anisotropy and Willis’ Coupling
Most of the effects described above are connected with geometric anisotropy

of the particle. A more general way to explain the appearance of directional force
effects is mirror symmetry breaking [45]. Indeed, if there is no mirror symmetry
breaking, there can be in principle no preferred lateral direction for the radiation
force. Another way to understand it is by looking at Figure 3 a). If there exists a
lateral force F⊥, then if we apply mirror transformation the force should become
Fmirrored⊥ = −F⊥. However, since the entire setup is not changed in any way under
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transformation, the forces should be equal Fmirrored⊥ = F⊥, immediately leading
to the requirement F⊥ = 0. In Figure 3 b), c), d) you can see how introducing
chirality to a particle and placing it next to a substrate breaks mirror symmetry and
induces a lateral optical force [32].

Figure 3 – (a), (b), (c), (d) - Lateral force emerging due to the symmetry
breaking. Figure adapted from [32]

Symmetry breaking in general leads to emergence of directional scattering
phenomenon described in the previous subsection. By manipulating symmetry of
our problem, we can control multipole content of the scattered field, thus giving
rise to the phenomenon of directional forces. In optics this can be achieved by
manipulating the geometric symmetry of a particle [46], putting a scatterer next to
a substrate or interface [47, 48], via polarization [43, 49] or spatial asymmetry of
the incident field [50].

Another effect of symmetry reduction is the coupling of multipoles in the
scattering decomposition of the particle [51]. It happens due to the fact any struc-
ture possesses less symmetry than a sphere, so the amount of eigenmodes in it is
reduced, and different multipoles, which each constitute an eigenmode of a sphere
end up in one mode of a structure. It is known [52] that for structures possessing
inversion symmetry, such coupling only happens for multipoles of the same in-
version symmetry (odd or even). When the inversion symmetry of a structure is
broken, the coupling betweenmultipoles of different symmetry under the inversion
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transformation becomes possible. In electromagnetics, this phenomenon is known
as (generalized) bianisotropy [53], and can be used for designing structures with
electromagnetic coupling [54]. In acoustics the bianisotropic response bears the
name of Willis’ coupling, and is a subject of extensive study, in particular in the
field of acoustic metamaterials [55–57]. Recently, the possible effects of Willis’
coupling on acoustic radiation forces and torques for structures lacking inversion
symmetry were studied by Sepehrirahnama et al. [25, 58].

1.4 Research proposal
Based on the analysis of published literature, one can conclude that the ef-

fects of scatterer anisotropy on appearance of the lateral force in acoustics have
not been fully shown and identified.

In Figure 4 one of the simplest configurations to obtain mirror-symmetry
breaking with respect to the direction of incident field is visualized. The symmetry
breaking here happens as a combination of a geometric anisotropy of a particle
and oblique wave incidence. Geometrically this is also equivalent to rotating an
ellipsoid with respect to the incident field. In optics such a system can lead to stable

Figure 4 – Demonstration of mirror symmetry breaking by rotating an anisotropic
particle with respect to incident field.

lateral propulsion as discussed before in Section 1.2. It can, thus, be expected that
even such a simple geometry must support lateral force effects.

The goal of this work therefore is develop a model for theoretical investiga-
tion of acoustic radiation forces and torques on subwavelength ellipsoidal particles
in order to predict the existence, and physically explain the origin of lateral forces
emerging due to mirror symmetry breaking due to obliquely incident field.
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As one the simplest cases of geometric anisotropy, acoustic radiation forces
on spheroids and ellipsoids have drawn some attention in the literature. The
first analytical expression for acoustic radiation force on a spheroid was given
by Marston et al. [59]. It was limited to small rigid spheroids in a standing wave
and only supported axial orientation of the particle. Silva and co-authors extended
this result for rigid particles for waves with arbitrary incidence and wavefront, by
performing spheroidal wave function expansion in dipole approximation [60–63].

In the works by Jerome et al. [64, 65] a theory allowing calculation of
the force and torque on compressible spheroids of any size is developed. The
spheroidal function expansion is carried out, and matched with spherical wave
expansion in the far field. The matrix equations for spheroidal expansion coeffi-
cients can then be solved numerically, and utilized to calculate acoustic radiation
force. Because of this matching requirement, this method is hard to use for theo-
retical investigation and is thus more suitable for numerical calculations of ARF
on spheroids.

Conclusions on Chapter 1
There has been, therefore, no fully analytical model developed to describe

acoustic radiation force and torque on compressible ellipsoids and spheroids to
date. Moreover, in the above mentioned works the effects of directional force
propulsion due to geometrical anisotropy were never studied in detail. We pos-
tulate that by employing the multipole analysis as it is used in optics, we might
be able to uncover new physics in the acoustomechanical behaviour of anisotropic
particles.
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CHAPTER 2 THEORETICAL INTRODUCTION TO THE LINEAR
ACOUSTICS

Let us give a short overview of the fundamental equations of the linear acous-
tics [66]. We will start from the basic approximations and end up with a general
description of calculation of the force and torque acting on an arbitrary particle.

2.1 Master equations
The acoustic radiation forces arise as a consequence of interaction of acous-

tic pressure waves incident on the particle. Since in this work we only focus on in-
viscid fluid media, the consideration will be limited to longitudinal pressure fields
only.

In a compressible inviscid fluid the propagation of such acoustic fields is
fully described by the Euler and continuity equations, which can be obtained from
the Navier-Stokes equations if heat conduction and viscosity effects are ignored
[67–69]:

ρ0∂tv = −∇p, (1)

β0∂tp = −∇ · v, (2)

p = c2sρ,

where ρ0, β0, cs are the density, compressibility and speed of sound of the media,
v is the velocity field, and p is the pressure field. This set of coupled differential
equations is generally nonlinear, and difficult to solve analytically. The commonly
used strategy is to solve them approximately by employing perturbation theory:

p = p0 + p1 + p2,

ρ = ρ0 + ρ1 + ρ2, (3)

v = 0+ v1 + v2,

where p0 and ρ0 are the static pressure and density of the propagation medium,
and p1,2, ρ1,2, v1,2 are the first and the second perturbations in the static fields
respectively. Here, we also have assumed that the amplitude of displacement of
the individual molecules is negligibly small compared to the wavelength. Also, the
average speed of the single molecules in the fluid is much smaller than the sound
velocity.

14



2.2 Exact calculation of the force and torque
The most universal approach to calculating force, which works for particles

of any shape, is given by integrating the tensor of momentum flux Π̂ over some
surface enclosed around the particle:

Fi =

∫
∂S

dSΠijnj =

∫
∂S

dS (pδij + ρvivj)nj, (4)

where Π̂ and can be derived via momentum conservation law [67]. Wewill assume
harmonic time dependence for all first perturbation fields throughout the work:

(p, v) = Re
[
(p, v)e−iωt

]
. (5)

Then force Eq. (4), averaged over a period, cannot be expressed through
first order perturbation fields only, because when inserted into equation all the
first order terms average out to zero. Time averaged values are calculated in the
following way:

⟨AiAj⟩ =
1

2
Re

[
AiA

∗
j

]
. (6)

Acoustic radiation force is, thus, a second-order effect, and the time-
averaged tensor becomes ⟨Πij⟩ = ⟨p2⟩δij + ρ⟨v1iv1j⟩. However second order field
p2 can be expressed as ⟨p2⟩ = 1

2β0⟨p
2
1⟩ − 1

2ρ0⟨v1
2⟩ [69], which reduces the consid-

eration to the first order fields only. Finally, the expression for the force becomes:

⟨Fi⟩ =
∫
∂S

dS

([
1

2
β0⟨p2⟩ −

1

2
ρ0⟨v2⟩

]
δji + ρ0⟨vivj⟩

)
nj. (7)

In order to analyze dynamics of particles of non-spherical shape, acoustic radia-
tion torque should also be considered [24]. Similarly to acoustic radiation force,
acoustic radiation torque is calculated by integrating the flux of angular momentum
[7, 6]. The tensor of angular momentum flux is defined through the components
of momentum flux as ⟨Mji⟩ = ϵiklrk⟨Πlj⟩ (M̂ = r× ⟨Π̂⟩). The expression for the
torque can be written as follows:

⟨Ti⟩ =
∫
∂S

dS ϵiklrk⟨Πlj⟩nj. (8)
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2.3 Force expression for subwavelength particles
The expressions Eq. (7), (8) are valid for particles of any size and shape.

However, to gain theoretical insight it is often useful to obtain simple analytical
expressions. Using the approach from optics [70], we decompose total field outside
the particle as the sum of incident and scattered fields as pictured in Figure 5.

Figure 5 – Sketch of a particle submerged in an inviscid compressible fluid,
illuminated with a monochromatic time-harmonic field. Acoustic radiation force
can be evaluated by stress-tensor integration over any surface around the particle.

Field decomposition p = pinc + psc into incident and scattered field is
demonstrated

(p, v) = (pin, vin) + (psc, vsc). (9)

After substituting this decomposition into the formula for the force (7), there
appear three types of terms in the decomposition of the stress tensor: Π̂inc, which
includes only the incident field, and is integrated to zero because there is no change
of momentum due to propagation of a wave in free space; Π̂mix which includes
terms which have both incident and scattered field; and Π̂self which describe the
self-interaction of the scattered field:

F =

∫
∂S

dS
[
Π̂inc + Π̂mix + Π̂self

]
. (10)

For the further convenience, one can decompose the scattered field overmul-
tipole moments and integrate the partial fields over the enclosing surface. The
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idea behind multipole expansion was discussed in Section 1.2. Expansion of the
monochromatic pressure field with wavenumber k, scattered by the particle of
characteristic size a into the complex spherical harmonics reads as follows [71]:

psc(r, ϕ, θ) =
∞∑

n=−∞

− l∑
m=l

AmnRn(kr)Y
m
n (ϕ, θ), (11)

where Amn are the expansion coefficients, Rn are the radial (Hankel or Bessel)
functions, and Y m

n are the spherical functions of degree n and azimuthal number
m.

For particles small comparing to the wavelength ka ≪ 1 it is enough to
consider two first spherical harmonics with degree n = 0, 1, monopole and dipole
[72], which amplitudes have a linear dependence in volume [69] of the particle, and
scale as ∝ ka3. The field in the form of monopole harmonic describes a solution
of a sound field radiated by a uniformly pulsating sphere, while dipole moment
harmonic represents field radiated by a sphere oscillating in one direction around
a point [71].

Fields scattered by multipole moments located at r0 are well-known in the
literature and can be expressed as follows [73]:

pM(r) = −iρckMG(r, r0), (12)

pD(r) = −iρck(D · ∇r0)G(r, r0), (13)

where M,D are the monopole and dipole strength respectively, and G is the
Green’s function a free three-dimensional space [74]:

G =
eik|r−r0|

4π|r− r0|
. (14)

The pressure fields then are:

pM = −iρckM
eikr

4πr
, (15)

pD = −iρck(D · n)ikr − 1

4πr2
eikr. (16)
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And the velocity fields (from Eq. (1)):

vM =
1

iωρ
∇pM

spher.
=

1

iωρ

 ∂r
1
r∂θ
1

r sin θ∂ϕ

 pM =
M

4π
n
1− ikr

r2
eikr, (17)

vD =
1

iωρ
∇pD = − eikr

4πr3

(
D [(ikr − 1]− n(D · n)

[
(kr)2 + 3ikr − 3

])
, (18)

where n = r/r.
Like in optics [75], the mixed terms Π̂mix from Eq. 10 can be integrated in

the near field with the help of gradient expansion of incident field near the position
of particle and only retaining the near field parts of Eq.(15), (16), (17), (18). The
resulting expression is well-known in the literature [69, 25, 72] and can be written
in the following form:

F = −1

2
Re

[
i

ω
M ∗∇p − ρD∗ · (∇)v

]
= FM + FD. (19)

You can see that the expression for force obtained from integrating the Π̂mix part
of tensor mathematically breaks down into two terms, FM and FD, which describe
the interaction of incident field with induced monopole and dipole moments. The
physical nature of this interaction will be uncovered further in this chapter.

The scattered field self-action Π̂self terms are, conversely, mostly neglected
[69, 25] due to the fact that they have ∝ (ka)6 characteristic size dependence.
In this work we aim to demonstrate that taking these terms into consideration is
necessary to correctly predict the dynamic behaviour of anisotropic particles. Let
us write the integral expression for this Fself force correction:

F self
i = −

∫
∂S

dS ⟨Πself
ij ⟩nj = −

∫
∂S

dS

(
[
β

2
⟨ps⟩2 −

ρ

2
⟨vs2⟩]δij + ρ⟨vsi vsj⟩

)
nj.

(20)
It is easier to integrate these terms in the far field, when the the stress-tensor

integral, Eq.(20), has a simple form [4]:

F self
i = − lim

R→∞

∫
∂S

dS ρ⟨vsi vsj⟩nj = −ρ

2
Re

∫
∂S∞

dS v∗si vsjnj. (21)
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In the far field the expressions only retain the 1/r terms (or taking the limit
kr → ∞):

vM
FF
= −i

M

4π

k

r
eikrn, (22)

vD
FF
=

eikr

4πr3
(kr)2n(D · n) = eikr

4πr
k2n(D · n). (23)

The scattered velocity field is the sum of monopole and dipole fields

vsc = vM + vD. (24)

We substitute it into Eq.(21):

F self
i = −ρ

2
Re

∫
∂S∞

dS (v∗iM + v∗iD )(v
j
M + vjD)nj =

= −ρ

2
Re

∫
∂S∞

dS v∗iM(v
j
Mnj) + v∗iD (v

j
Mnj) + v∗iM(v

j
Dnj) + v∗iD (v

j
Dnj). (25)

And then proceed by turning to solid angle integration
∫
dS = r2

∫
4π dΩ,

and after making use of the following identities:∫
4π

dΩni = 0,

∫
4π

dΩninj =
4π

3
δij,

∫
4π

dΩninjnk = 0, (26)

the first and last terms of Eq.(25) integrate to zero:∫
∂S∞

dS v∗iM(v
j
Mnj) ∼

∫
4π

dΩninjnj = 0, (27)∫
∂S∞

dS v∗iD (v
j
Dnj) ∼

∫
4π

dΩninlnknjnj =

∫
4π

dΩninlnk = 0. (28)

The middle terms contain ninknjnj = nink in the integrand:

r2
∫
4π

dΩ v∗iD (v
j
Mnj) =

1

4π
k2 (−i)

M

4π
k

∫
4π

dΩniD
∗
knk =

= −i
k3

(4π)2
M

4π

3
D∗

i = −i
k3

12π
MD∗

i , (29)

r2
∫
4π

dΩ v∗iM(v
j
Dnj) =

1

4π
k2 (+i)

M ∗

4π
k

∫
4π

dΩniDknk =
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= i
k3

(4π)2
M ∗ 4π

3
Di = i

k3

12π
M ∗Di. (30)

Taking real part of the integrated terms yields final integral expression:

F self
i = −ρ

2
Re

[
−i

k3

12π
MD∗

i + i
k3

12π
M ∗Di

]
= − ρk3

12π
Im [M ∗Di] . (31)

The correction term Fself, which appeared from integrating self-acting field
is equivalent to similar cross-terms in optics [70, 75] which describe the influ-
ence of interference of multipole moments on the scattering force. Its direction
depends on the direction of the excited dipole moment and relative phase between
the monopole and dipole.

Figure 6 – Demonstration of an asymmetric scattering diagram obtained by
monopole and dipole moment interference. The picture is reprinted from [42]

The proposed utilization of this effect is demonstrated in Figure 6. The
principle is as follows: by tailoring parameters and geometry of the particle we
can change the scattering diagram of the particle, making it asymmetric in some
directions. The force Fself then will be proportional to the momentum scattered
by the particle with negative sign. We therefore brand this term the recoil force
Fself = Frecoil:

Frecoil = −ρk3

12
Im [M ∗D] . (32)

The full acoustic force can then be described as a sum of three components
F = FM + FD + Frecoil :

F = −1

2
Re

[
i

ω
M ∗∇p − ρD∗ · (∇)v

]
− ρk3

12π
Im [M ∗D] . (33)

20



To the best of our knowledge Eq. (32) has not been shown in the literature
previously, and it is one of the central results in our work. For isotropic particles,
following optical analogy [76], it has been shown that the first two terms of Eq.(33),
previously well-known in the literature, physically amount to the extinction and
gradient forces which are connected with properties of the incident field through
polarizabilities of an isotropic particle as follows [72]:

FM + FD = Fgrad + Fext, (34)

Fgrad =
β

4
Re(αm)∇|p|2 + ρ

4
Re(αd)∇|v|2, (35)

Fext = Fsca + Fabs =
β

2
Im(αm) Im(p∗∇p) +

ρ

2
Im(αd) Im(v∗ · (∇)v), (36)

where αm, αd are the monopole and dipole polarizabilties of a spherical particle.
Physically, gradient force Fgrad represents a conservative force which seeks

to bring the particle to the minimum of incident field potential, while the extinc-
tion Fext represents the force arising as a result of absorption and scattering of the
incident field on the induced multipole moments.

It is possible to demonstrate, and it is further showcased on a spheroid model
object, that even for anisotropic particles in homogeneous fields such as a plane
wavewhere the gradient forceFgrad = 0, the extinction forceFext is always directed
in the direction of propagation of incident field, unless Willis’ coupling is taken
into consideration [25]. For anisotropic particles posessing inversion symmetry,
therefore, the only mechanism of the emergence of transverse forces is asymmetric
scattering via multipole interference described by Frecoil, which makes it necesarry
to be taken into account to accurately predict the acoustomechanical behaviour of
anisotropic scatterers in the dipole approximation.

Finally, the expression for torque can be derived in an analogous way. The
monopole moment can not generate any rotation, so we are left with dipole contri-
butions:

T =
ρ

2
Re [D∗ × v]− ρk3

24π
Im [D∗ × D] (37)

Here the first term is momentum-arm torque which seeks to align the in-
duced dipole moment with the incident velocity field, while the second term is
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proportional to the acoustic spin density [77, 72] radiated by the particle, thus rep-
resenting the recoil part of torque.

Conclusions on Chapter 2
Starting from the basic equations of linear acoustics, we introduce the most

general stress-tensor approach to calculating acoustic forces on arbitrary objects,
and by employing themultipole expansion of the scattered field we arrive at a novel
expression for calculating acoustic radiation force on small particles. We explain
the new possible physics this expression uncovers for the acoustomechanics of
subwavelength particles, in particular for particles posessing geometric anisotropy.
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CHAPTER 3 THEORETICAL INVESTIGATION OF ACOUSTIC
RADIATION FORCE ON AN ELLIPSOID

This chapter is dedicated to developing a theory to calculate acoustic radi-
ation forces and torques on subwavelength ellipsoids. As a simplest anisotropic
particle which can break the mirror symmetry of the problem, it will be utilized
later for achieving directional force. Here we also discuss various possible dy-
namical effects which can be predicted from the analytical expression.

3.1 Problem statement

Figure 7 – A small subwavelength spheroid with major semi-axis a, minor
semi-axis b of static density ρp and compressibility βp submerged in an inviscid
compressible liquid with parameters ρh, βh illuminated with a plane pressure

wave

Consider a compressible ellipsoidal particle placed in inviscid compressible
fluid. We designate static density, compressibility and speed of sound of the par-
ticle as ρp, βp, cp, and parameters of the host media as ρh, βh, ch. Without loss of
generality, we assume the incident field to be a plane wave defined as:

p = p0e
ik·r−iωt, v =

k
ωρh

p0e
ik·r−iωt, (38)

where p0 is the magnitude of pressure, k is the wave vector and ω is the angular
frequency of the incident field. Ellipsoid geometry can be described using three
semi-axis values a ⩾ b ⩾ c. Without loss of generality, we also assume the particle
to be a spheroid (a case of ellipsoid with only two independent axes), a > b. The
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measure of spheroid anisotropy is called eccentricity, defined as

e =

√
1− b2

a2
. (39)

In order to compare the size of particle against wavelength, a size parameter
has to be introduced. For spheroid, in general this size parameter would have to
take eccentricity into account to compare relative size for spheroids with different
surface area to volume ratio [25]. However, since we will use spheroid of the same
eccentricity for calculations, it is enough to consider the simplest size parameter
ka, where k = 2π

λ is the wavenumber of incident wave, and a is themajor semi axis.
In this work we mainly consider the case when ka ≪ 1 (the Rayleigh regime).

Our goal therefore is to calculate the acoustic radiation force on a compress-
ible spheroid submerged in a compressible inviscid fluid illuminated with a plane
wave pressure field in the Rayleigh regime.

3.2 Transverse force and polarizabilities
A discussed above, Eq.(33) can be used to calculate forces on subwave-

length particles of any shape with known multipolar response. In general, for any
anisotropic particle we can express multipoles through polarizabilities in the fol-
lowing way:

M = −iωβhαmp(0), (40)

D =
↔
αd v(0), (41)

where αm is a scalar monopole polarizability, and ↔
αd is the dipole polarizability

dyadic. In case of a sphere the dipole dyadic is degenerated into a scalar. If the
principal axes of an ellipsoid are aligned with the axes of the coordinate system,
the dyadic is diagonal. For spheroid in particular it becomes:

↔
α
p

d=

αs 0 0

0 αs 0

0 0 αl

 (42)

here αs,l are the dipolar responses of a field incident on small and large dimensions
of a spheroid respectively. However, if we rotate spheroid around y-axis as shown
in Figure 8 by angle δ so that its principal axis no longer align with the axes and
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the incident field, the dyadic becomes:

↔
αd=

↔
R ·

↔
αp
d ·

↔
R=

cos
2 δ αs + sin2 δ αl 0 1

2 sin
2 δ (αs − αl)

0 αs 0
1
2 sin

2 δ (αs − αl) 0 cos2 δ αl + sin2 δ αs

 (43)

Assuming the incident wave to be a travelling pressure wave along x̂ direc-
tion:

p1 = p0e
ikx−iωt, v =

1

0

0

 p0
csρh

eikx−iωt (44)

Dipole moment of a rotated ellipsoid is no longer aligned with the incident field:

D =
↔
αd v1(0) =

p0
csρh

sin2 δ αl + cos2 δ αs

0
1
2 sin 2δ(αs − αl)

 (45)

Figure 8 – Ellipsoid rotated clockwise by angle δ with respect to the incident
field. The coordinate system of ellipsoid is marked as zp, xp. The expression for

force in original coordinate system can be found using rotation matrices

Substituting Eq.(45), (41), (40) into Eq.(7), one can write the equation for
force on a rotated ellipsoid through polarizabilities:

FM =
1

2
kβhp

2
0

Im [αm]

0

0

 , FD =
1

2
kβhp

2
0

sin2 δ Im [αl] + cos2 δ Im [αs]

0

0


(46)
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Frecoil = −βhk
4p20

12π

Re
[
α∗
m(sin

2 δ αl + cos2 δ αs)
]

0
1
2 sin 2δ Re [α∗

m(αs − αl)]

 (47)

From Eq. (46), (47) one can clearly see that, indeed, the only contribution to trans-
verse force comes from the interference term, and the transverse force depends on
the orientation of dipole and the relative phase between the monopole and dipole.

3.3 Polarizabilities in Rayleigh regime
In order to calculate forces and torques in the considered model, we now

obtain theoretical expression for monopole polarizability, and for the elements of
ellipsoid polarizability dyadic.

Monopole is proportional to a volume flow through the object per second
[71], and in the lowest order monopole polarizability should only depend on rel-
ative compressibility β̄ =

βp

βh
and volume of a particle. Thus taking polarizability

for sphere, you can renormalize it for a ellipsoid:

αsphere
m = 4πa3 (β̄ − 1), (48)

αellipsoid
m =

4π

3
abc (β̄ − 1).‘ (49)

In deriving the dipole polarizability dyadic, it is instrumental to consider the
analogy with optics, since polarizability of electric dipole for anisotropic parti-
cles is well studied in literature [78, 79]. Our derivation of electric polarizability
dyadic closely follows the derivation of electric polarizability tensor for dielectric
ellipsoids presented in [38].

Acoustic field obeys Helmholtz equation. The polarizability is derived in
the ’quasistatic’ limit, but instead of electrostatic potential, we search for acoustic
pressure, and consider it to be slowly varying comparing to the size of particle
(∂2

t p ≪ ∇2p):

∇2p− 1

c2s

∂2p

∂t2
= 0 −→ ∇2p = 0. (50)

It is convenient to search for the solution of this problem in ellipsoidal co-
ordinates (λ, µ, ν). Laplace’s equation in ellipsoidal coordinates is given by:

∇2p =(µ− ν)f(λ)
∂

∂λ

[
f(λ)

∂p

∂λ

]
+ (ν − λ)f(µ)

∂

∂µ

[
f(µ)

∂p

∂µ

]
+

26



+ (λ− µ)f(ν)
∂

∂ν

[
f(ν)

∂p

∂ν

]
, (51)

where f(q) =
√

(q + a2)(q + b2)(q + c2). The incident field is quasistatic, and
potential. We orient it along the y-axis, which in ellipsoidal coordinates reads:

pin = iωρ|v0|
[
(c2 + λ)(c2 + µ)(c2 + ν)

(a2 − c2)(b2 − c2)

]
. (52)

The form of the constant −iωρ is dictated by Euler’s Equation (Eq. (1)).
We are looking for solution psc, i.e the static perturbation (’scattering’) field

that represents the way an ellipsoid perturbs a static field around it under slowly
varying incident field. At infinity this perturbation field should obviously satisfy
limλ→∞ psc = 0.

On the surface of ellipsoid pressure must satisfy two boundary conditions:

pi = psc + pin, (53)

viλ = vscλ + vinλ −→ ρh∂λpi = ρp∂λpsc + ρp∂λpin. (54)

We search for the solution of Eq.(51) in the following form:

p(λ, µ, ν) = F (λ)
√

(c2 + µ)(c2 + ν), (55)

where, from Eq.(51) F (λ) is a solution to:

f(λ)
d

dλ

[
f(λ)

dF

dλ

]
−

[
a2 + b2

4
+

λ

2

]
F (λ) = 0. (56)

The two independent solutions to this are:

F1(λ) =
√

c2 + λ; F2(λ) = F1(λ)

∫ ∞

λ

dq

F 2
1 (q)f(q)

(57)

The first solution F1 does not go to zero at the infinity as required, so:

psc(λ, µ, ν) = CscF2(λ)
√
(c2 + µ)(c2 + ν), (58)

pi(λ, µ, ν) = CiF1(λ)
√

(c2 + µ)(c2 + ν). (59)
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Using the boundary conditions Eq.(53),(54) and solving for Csc and Ci, the
perturbed field is given by:

psc = pin
abc

2

ρp − ρh
ρ1

∫∞
λ

dq
(c2+q)f(q)

1 +
L3(ρh−ρp)

ρp

, (60)

where L3 is the geometric factor of ellipsoid along axis ẑ. The geometric factors
can calculated as follows:

L1 =
abc

2

∫ ∞

0

dq

(a2 + q)f(q)
, (61)

L2 =
abc

2

∫ ∞

0

dq

(b2 + q)f(q)
, (62)

L3 =
abc

2

∫ ∞

0

dq

(c2 + q)f(q)
. (63)

In the far field the perturbed field can be expanded in accordance:

psc ∼
−iωρ|v0| cos θ

r2
abc

3

ρh−ρp
ρp

1 +
L3(ρh−ρp)

ρp

. (64)

We can think of a ’static’ dipole analogy in acoustics like in electrostatics,
and its field can be derived from Laplace’s equations by bringing two monopole
sources of opposite sign into each other (can also be derived by keeping only the
term before imaginary unit in Eq. (16)):

pD = iρhchk
D cos θ
4πr2

= iρhω
D cos θ
4πr2

. (65)

So finally, by comparing (32) with (31) we can rewrite the αd,i element of
the polarizability dyadic as:

αd,i =
4π

3
abc

ρp − ρh
ρp + Li [ρh − ρp]

=
4π

3
abc

ρ̄− 1

ρ̄+ Li [1− ρ̄]
. (66)

Where ρ̄ =
ρp
ρh
is a relative density of ellipsoid to surrounding media.

For a sphere the geometric factors L1 = L2 = L3 = 1
3 , and the result

agrees with the one obtained in [13, 72]. Note that even though when considering
acoustic radiation force and torque effects, we limit our attention to spheroids, our
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polarizability expression are correct for a general case of ellipsoid. For spheroids
in particular, the number of independent tensor terms reduces to two, and there
exist analytical expressions for the depolarization factors Li for oblate and prolate
spheroids. [80]

It is apparent that the polarizabilities provided by Eq. (49), (66) and obtained
in the static regime can only be used for lossy particles, as otherwise they are purely
real. It happens because static polarizability does not account for rescattering of
the incident field by the particle, i.e in static approximation Pext = Pabs, where Pext

is power extinguished by a multipole, and Pabs is power absorbed by the multipole.
This problem can be dealt with as in optics [78, 81], by applying heuristic approach:
it is possible to construct polarizability in such a way that it will by design satisfy
the enenrgy conservation conditionPext = Pabs+Psca. For this we need expressions
for absorbed and radiated power for both multipoles.

Acoustic power of multipoles, radiated and extinguished respectively, is
given by [82]:

P sca
M =

M 2ρcsk
2

8π
=

ωk3β|αm|2p20
8π

, P ext
M =

1

2
βωp20 Im [αm] , (67)

P sca
D =

|D|2ρcsk4

24π
=

ωk3β|αd|2p20
24π

, P ext
M =

1

2
βωp20 Im [αd] . (68)

Then we apply heuristic constraint from optics on imaginary part of cor-
rected polarizabilities, which gives us the required condition [83]:

Im
(
− 1

αRC
m

)
=
Im

(
αRC
m

)
|αRC

m |2
= Im

(
− 1

αst
m

)
+

k3

4π
. (69)

And with the additional constraint on the real part
(Re(1/αRC) = Re(1/αst)), it is possible to derive the corrected monopole
polarizability:

αRC
m =

αst
m

1− i k
3

4πα
st
m

. (70)

Dipole polarizability is a tensor, however the same approach is valid for it
as well. Condition similiar to (69) can be written in the tensor form [83]:

(
α̂d

RC)−1
=

(
α̂d

st)−1 − i
k3

12π
Î. (71)
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Polarizability dyadic in the principal axes of ellipsoid is diagonal, so its in-
verse is simply the inverse of each tensor component, and corrected dipole tensor
components are given by:

αRC
s,l =

αst
s,l

1− i k3

12πα
st
s,l

. (72)

Radiative correction in acoustics was previously obtained for spheres via
Taylor expansion of Mie coefficients in the Generalized Lorenz-Mie Theory
(GLMT)[13] and is in consistence with our expression. This section represents
generalization of this result to the case of an ellipsoid. To the best of our knowl-
edge, the expressions for polarizabilities of compressible ellipsoids have not been
obtained before. Moreoever, as they are connected with intrinsic scattering coef-
ficients of ellipsoids (see Appendix C), they are applicable for calculating forces
exerted on small ellipsoids by any structured time-harmonic field.

Conclusions on Chapter 3
Having derived all theoretical apparatus required to calculate forces on the

simplest example of anisotropic particles, it is now possible to conduct analysis of
the ensuing dynamics and compare our analytical results to numerical calculations.
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CHAPTER 4 ACOUSTOMECHANICS OF SPHEROIDAL PARTICLES
In this chapter, we present the analysis of previously obtained theoretical

results, and compare them with the results of numerical calculations. All calcula-
tions were carried out in a commercial package COMSOLMultiphysics Acoustics
module [84], which utilizes finite element method to solve differential equations
numerically.

For axisymmetric objects such as spheroids, it is possible to carry out cal-
culations both in 3D and 2D domain with axial symmetry in COMSOL. The use
of 2D axisymmetric model allows us to significantly reduce computation time and
extend the reasonable range of computation to the characteristic particle size much
smaller than the wavelength. The details of numerical calculation are given in Ap-
pendices A and B.

4.1 Calculation of forces and torques in subwavelength regime
We start off by considering amodel problem to verify the validity of obtained

theoretical expressions as well as the correctness of constructed numerical models.

The geometry of the problem is showcased in Figure 9.a). We consider a
lossy sphere with radius a, illuminated with evanescent field, given by:

p = p0 e
ikzz−κx, v =

p0
ωρh

iκ

0

kz

 eikzz−κx.

This is the simplest problem that allows us to verify the validity of torque and
two force component calculations in three orthogonal directions [72]. In Figure
9.b) the comparison of the analytical and numerical results of the calculation of
the force and torque with are demonstrated for the cases of 2D and 3D models.
The analytical calculation were done using the novel expressions from Chapter
2, Eq.(33), (37), with exact sphere polarizabilities calculated using generalized
Mie theory [13, 85, 86]. The field and particle parameters are βp = 3 + 0.7i,
ρp = 2 + 0.5i, kz/k = 1.34, κ/k = 0.89. Note that here and further all forces Fx,
Fz are normalized by F0 = πβ|A|2a2/2, and torques Ty by T0 = F0/k .

It is clear that forces and torques calculated in 2D and 3D geometries agree
with each other, and match theoretical prediction in the subwavelength region both
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Figure 9 – Demonstration of validity of numerical and theoretical models. (a) -
geometry of the model problem. (b) - comparison of numerically calculated

forces and torques with theoretical values

for lossy and the lossless particles. The divergence between theory and numerical
results around ∼ 0.7 ka can be explained by the fact that our theory only consid-
ers first two multipole moments, and is thus only valid for particles with small
characteristic size.
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The verified 2DCOMSOLmodel was used for all presented torque and force
calculations on a spheroid, and 3D model was used for visualizing radiation pat-
terns and performing multipole expansion.

4.2 Verification of spheroid polarizability expressions
We now are able to verify the expressions for polarizabilities of ellipsoidal

particles obtained earlier in Section 3.3 by using the numerical simulation.
The most graphic demonstration of the validity of derived theoretical model

can be obtained by calculating dependence of radiation stresses on the geometrical
parameters of the particle.

Figure 10 – The comparison of numerical and theoretical dependence of acoustic
radiation forces and torque on eccentricity of the particle. The parameters of the

particles are ρ̄ = 7, β̄ = 2, parameters of the field p0 = 1, k = 0.03

In Figure 10 one can see the comparison of theoretical and numerical de-
pendence of acoustic radiation stresses of a rotated ellipsoid on the eccentricity of
the particle, introduced in Chapter 2 in Eq.(39). The calculation is carried out in
deeply subwavelength regime (ka = 0.03, δ = π/4), and excellent agreement is
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demonstrated. The increase in transverse force ratio, Fz/Fx with eccentricity is an
anticipated result, and can physically be explained by the fact that with increase of
particle anisotropy, a particle seems to increase the share of power radiated in the
transverse direction.

4.3 Sail force on subwavelength spheroid
Having ability to calculate forces and torques, and to verify them numeri-

cally, we can now analyze the results and the physics behind them. First, let us plot
the ratio of transverse to longitudinal force, Fz/Fx, which we brand as acoustic lift
effectiveness by analogy [35] to the effect in optics (and hydrodynamics), in the
variable space of relative material parameters:

Figure 11 – The color map of transverse force ratio. The parameters of the
system: angle δ = π/4, k = 0.1, e = 0.96. The recoil force can be negative both
in x and y directions. Radiation patterns in points were calculated in COMSOL

and qualitatively agree with theoretical prediction.
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From figure is apparent that by varying the relative parameters, it is possible
to control the magnitude and sign of the transverse acoustic force. Moreover, we
confirm the physical mechanism behind the emergence of directional force, pro-
posed in Section 2.3 in Figure 6: by tailoring relative phase and magnitude of the
excited moments, we can control the direction and magnitude of the recoil force
Frecoil. The highest effective lift is in the areas where the extinction force in x di-
rection is suppressed by the recoil force and the recoil force in z direction is high.
Let us repeat the expression from Section 2.3 for clarity (Eq.(32)):

Frecoil = − ρk3

12π
Im [M ∗D] . (73)

Figure 12 – Multipolar content of field scattered by a rotated subwavelength
ellipsoid depending on relative material parameters. For real harmonics yellow
color represents area where function is positive, and blue represents negative

areas. For radiation patterns blue color is the maximum of scattering magnitude.

The direction of recoil force Frecoil can be qualitatively analysed by looking
at Figure 12, which showcases the multipolar content of the scattered field de-
pending on relative material parameters. The multipolar content can be inferred
directly from expressions for polarizabilities. The ẑ - directed spherical harmonic
Y10 which is essentially responsible for the emergence of a transverse force has the
same phase all over parameter space. However, since monopole changes its phase
by π on the β̄ = 1 line, their interference may give both positive (in the β̄ < 1

region) and negative (in the β̄ > 1 region) transverse force. The Y11 harmonic,
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directed along the x-axis does change sign on the ρ̄ = 1 line, and interfering with
monopole it gives negative recoil in the (β̄ ≶ 1, ρ̄ ≶ 1) regions, and positive recoil
in the (β̄ ≶ 1, ρ̄ ≷ 1) regions.

Because this recoil force depends on the material, size and shape of the par-
ticle this effect can be utilized for particle sorting, which has already been imple-
mented in optics [87]. Note that even though the x̂-component of the recoil force
can be negative, full force F = Fsca + Fabs + Frecoil in the direction of incidence is
always positive for a single plane wave incident on a passive particle [88, 89]. It is,
however, possible to obtain even the negative force directionality in the direction
of incidence for other field configurations, such as crossed plane waves [90, 91].

Taking a point in the upper-right (ρ̄ > 1, β̄ > 1) quadrant of the color plot,
it can be demonstrated that in the subwavelength regime the transverse force for
ellispoids in this quadrant is always negative and the lift ratio is high due to neg-
ative x̂-recoil. This negative force is explained by the negative phase of a β̄ > 1

monopole in a subwavelength regime. Such negative ’sail force’ would be com-
pletely unexpected in the regime of geometric acoustics analysis. It represents an-
other curious result of this work, and obviously can only be achieved in the case of
compressible ellipsoids. In case this material parameter range is unattainable with
conventional materials, it may be possible to use acoustic metamaterials, which
can also extend the material range even to negative values [92, 93].

Figure 13 – Negative sail force on a particle with (ρ̄ = 7, β̄ = 2). (a) -
Comparison between theory devised in this work, Lima et al and numerical

calculations (left longitudinal force, right - transverse force) (b) - Demonstration
of negative sail effect on a compressible ellipsoid

To benchmark our calculations, we compare our results with the semi-
numerical procedure presented by Lima et al [24]. Although accurately predicting
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the longitudinal component of force, it seems like their theory fails to accurately
represent the transverse force component, thus, not being able to capture this effect.
More details about the comparison is in the Appendix C.

In order to understand the acoustomechanic behaviour of such particles, we
also calculate the dependence of acoustic radiation force and torque on the rotation
angle of ellipsoid, which is demonstrated in Figure 14:

Figure 14 – Stability analysis of a subwavelength ellipsoid (ρ̄ = 7, β̄ = 2, e
=0.96). The stable configuration is achieved when δ = 0 and Fz = 0

The stable configuration is achieved in a point where torque is zero and any
perturbation would bring the particle back to its state. The stability conditions for
our geometry are:

Ty = 0,
∂Ty

∂δ
= 0 (74)

From Figure 14 it is clearly seen, that the stable configuration for prolate
spheroid in a plane wave is when its major axis is perpendicular to the wave-vector,
i.e the rotation angle δ = 0 and the lateral force vanishes. If you analyze the
expression for forces and torques through polarizabilities, it becomes apparent that
this is true for any ellipsoid. It is therefore impossible to achieve stable acoustic
lift on a spheroid with a plane-wave in subwavelength regime.
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4.4 Stable lift
In optics stable lift was achieved for small wavelengths in (or close to) the

regime of geometric optics [35, 36]. Thus, the prediction is that if we go beyond
subwavelength regime in acoustics we may discover a similar effect.

In Figure 15 the wavelength dependence of forces and torques on a rotated
ellipsoid (β̄ = 3, ρ̄ = 7, e = 0.96) in a resonant regime is presented. As discussed
in the previous chapter, in subwavelength regimes for such material parameters
and rotation angle δ = π/4 the acoustic radiation force is always negative, while
torque is always positive. In the resonant regime, transverse force and out plane
torque can be both positive and negative, so they have multiple zeros for specific
wavelengths. The first such zero of torque, at k = 1.91 is showcased in Figure
15.a.

Figure 15 – Spheroid in a resonant regime. (a) Dependence of forces and torques
on ka (b) - Multipole decomposition and scattering cross section. It is carried it in
the coordinate system of the particle, with zp-axis aligned along the symmetry

axis of spheroid.

This zero of torque is located to the left of monopole resonance, as can be
seen from Figure 16.b.

To analyze the stability of this configuration, the dependence of acoustic
torques and forces on the rotation angle δ is calculated and presented in Figure 16.
From Figure 16 we can see that the the first zero of torque in k = 1.91. δ = π/4 is
indeed a stable configuration, as Ty = 0, ∂Ty/∂δ > 0, which makes this particle
undergo a stable acoustic lift with the lateral force in a positive direction. Due
to the symmetry of particle, rotation angle δ = −π/4 is also a stable lift point,
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and the particle undergoes a negative lateral propulsion. The effective lift ratio
for these parameters Fz/Fx = 0.1 which makes it strong enough to register in an
experiment. All the other points in Figure 16 are unstable, the spheroidal particle
with considered material parameters illuminated with a plane wave of considered
wavelength is expected to always experience lateral propulsion.

Figure 16 – Stability analysis of a resonant ellipsoid (ρ̄ = 7, β̄ = 3, e =0.96). One
stable configuration is achieved when δ = π/4 and Fz is a positive non-zero
value, and another stable configuration exists for δ = −π/4 and Fz > 0.

The origin of the stability of this lift configuration is expected to come from
the influence of higher-order multipoles on the expression for acoustic torque. For
the same particle, many other stable points exist for different multipole interference
configurations at different wavelength.
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CONCLUSION
This work was dedicated to developing a model for describing acoustic ra-

diation forces and torques on subwavelength anisotropic particles, as well as in-
vestigating the effects anisotropy might play on acoustomechanic behaviour of
anisotropic scatterers. As an object model spheroid particle were considered in
particular.

The topical motive of this thesis is developing a theory of acoustic radia-
tion force based on optomechanical analogy. This analogy yielded the following
principal theoretical developments of this thesis:

a) a simple and physically transparent expression for acoustic radiation force
in dipole approximation, incorporating previously ignored acoustic recoil
force was derived,

b) monopole and dipole polarizabilities for compressible ellipsoids of arbitrary
shape were obtained in subwavelength approximation.
The ultimate result obtained in the thesis is a first fully analytical model de-

scribing acoustic radiation force and torque on compressible subwavelength ellip-
soids in monopole and dipole regime. In order to confirm these findings, a model
for efficient numerical calculation of lateral forces in COMSOL was developed.
The acoustomechnical behaviour of ellipsoids in this model was then analytically
investigated and numerically verified, and the following results were obtained:

a) the appearance of strong lateral forces on rotated ellipsoids in subwavelength
regime, in particular a counter-intuitive ’negative sail’ force;

b) a possibility of stable acoustic lift was demonstrated.
Physically clear approach to studying acoustic force directionality developed

in this thesis can be readily applied to other acoustic systems.

40



REFERENCES
1 Landau L. D., Lifshitz E. M. FluidMechanics.—Oxford, England, UK, 1987.

2 Vessot K. L. On the acoustic radiation pressure on spheres // Proc. R. Soc.
London A - Math. Phys. Sci. — 1934. — Vol. 147, no. 861. — P. 212–240.

3 Yosioka K., Kawasima Y. Acoustic radiation pressure on a compressible
sphere // Acta Acust. United Acust. — 1955. — Vol. 5, no. 3. — P. 167–173.

4 Westervelt P. J. The Theory of Steady Forces Caused by Sound Waves // J.
Acoust. Soc. Am. — 1951. — Vol. 23, no. 3. — P. 312.

5 Gor’kov L. P.On the Forces Acting on a Small Particle in an Acoustical Field
in an Ideal Fluid // Soviet Physics Doklady. — 1962. — Vol. 6. — P. 773.

6 Maidanik G. Torques Due to Acoustical Radiation Pressure // J. Acoust. Soc.
Am. — 1958. — Vol. 30, no. 7. — P. 620.

7 Silva G. T., Lobo T. P., Mitri F. G. Radiation torque produced by an arbitrary
acoustic wave // Europhys. Lett. — 2012. — Vol. 97, no. 5. — P. 54003.

8 Settnes M., Bruus H. Forces acting on a small particle in an acoustical field
in a viscous fluid // Phys. Rev. E. — 2012. — Vol. 85, no. 1. — P. 016327.

9 Zhang L.,Marston P. L. Acoustic radiation torque on small objects in viscous
fluids and connection with viscous dissipation // J. Acoust. Soc. Am.— 2014.
— Vol. 136, no. 6. — P. 2917.

10 Karlsen J. T., Bruus H. Forces acting on a small particle in an acoustical
field in a thermoviscous fluid // Phys. Rev. E. — 2015. — Vol. 92, no. 4.
— P. 043010.. — eprint: 26565335.

11 Acoustic Microfluidics / P. Zhang [et al.] // Annu. Rev. Anal. Chem. — 2020.
— Vol. 13, no. 1. — P. 17–43.

12 Sackmann E. K., Fulton A. L., Beebe D. J. The present and future role of
microfluidics in biomedical research // Nature. — 2014. — Vol. 507. —
P. 181–189.

13 Baresch D., Thomas J.-L.,Marchiano R. Observation of a Single-Beam Gra-
dient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers // Phys.
Rev. Lett. — 2016. — Vol. 116, no. 2. — P. 024301.

41

26565335


14 Acoustic tweezers: patterning cells and microparticles using standing surface
acoustic waves (SSAW) / J. Shi [et al.] // Lab Chip.— 2009.—Vol. 9, no. 20.
— P. 2890–2895.

15 Andrade M. A. B., Prez N., Adamowski J. C. Review of Progress in Acoustic
Levitation // Braz. J. Phys. — 2018. — Vol. 48, no. 2. — P. 190–213.

16 Observation of a single-beam gradient force optical trap for dielectric parti-
cles / A. Ashkin [et al.] // Opt. Lett. — 1986. — Vol. 11, no. 5. — P. 288–290.

17 Acoustic tweezers / L. Meng [et al.] // J. Phys. D: Appl. Phys.— 2019.—Vol.
52, no. 27. — P. 273001.

18 Wiklund M. Acoustofluidics 12: Biocompatibility and cell viability in mi-
crofluidic acoustic resonators // Lab Chip. — 2012. — Vol. 12, no. 11. —
P. 2018–2028.

19 Carovac A., Smajlovic F., Junuzovic D.Application of ultrasound in medicine
// Acta Inform. Med. — 2011. — Vol. 19, no. 3. — P. 168–171. — eprint:
23408755.

20 Acoustic tweezers for the life sciences / A. Ozcelik [et al.] // Nat. Methods.
— 2018. — Vol. 15. — P. 1021–1028.

21 Acoustofluidic separation of cells and particles / M. Wu [et al.] // Microsyst.
Nanoeng. — 2019. — Vol. 5, no. 32. — P. 1–18.

22 Microbubble enhanced acoustic tweezers for size-independent cell sorting /
L. Meng [et al.] // Appl. Phys. Lett. — 2020. — Vol. 116, no. 7. — P. 073701.

23 Baudoin M., Thomas J.-L. Acoustic Tweezers for Particle and Fluid Mi-
cromanipulation // Annu. Rev. Fluid Mech. — 2020. — Vol. 52, no. 1. —
P. 205–234.

24 Lima E. B., Silva G. T.Mean acoustic fields exerted on a subwavelength ax-
isymmetric particlea) // J. Acoust. Soc. Am. — 2021. — Vol. 150, no. 1. —
P. 376.

25 Acoustic radiation force and radiation torque beyond particles: Effects of non-
spherical shape and Willis coupling. — 2021.

26 Optical pulling force / J. Chen [et al.] // Nat. Photonics. — 2011. — Vol. 5.
— P. 531–534.

42

23408755


27 Experimental demonstration of optical transport, sorting and self-
arrangement using a ‘tractor beam’ / O. Brzobohat [et al.] // Nat. Photonics.
— 2013. — Vol. 7. — P. 123–127.

28 Reverse orbiting of microparticles in optical vortices / A. Jesacher [et al.]
// Opt. Lett. — 2006. — Vol. 31, no. 19. — P. 2824–2826.

29 Magallanes H., Brasselet E.Macroscopic direct observation of optical spin-
dependent lateral forces and left-handed torques // Nat. Photonics. — 2018.
— Vol. 12. — P. 461–464.

30 Bekshaev A. Y., Bliokh K. Y., Nori F. Transverse Spin and Momentum in Two-
Wave Interference // Phys. Rev. X. — 2015. — Vol. 5, no. 1. — P. 011039.

31 Lateral optical force on paired chiral nanoparticles in linearly polarized plane
waves / H. Chen [et al.] // Opt. Lett. — 2015. — Vol. 40, no. 23. —
P. 5530–5533.

32 Wang S. B., Chan C. T. Lateral optical force on chiral particles near a surface
// Nat. Commun. — 2014. — Vol. 5, no. 3307. — P. 1–8.

33 Direct measurements of the extraordinary optical momentum and transverse
spin-dependent force using a nano-cantilever / M. Antognozzi [et al.] // Nat.
Phys. — 2016. — Vol. 12. — P. 731–735.

34 All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in In-
terference Fields / T. Zhang [et al.] // ACS Nano. — 2017. — Vol. 11, no. 4.
— P. 4292–4300.

35 Stable optical lift / G. A. Swartzlander [et al.] // Nat. Photonics. — 2011.
— Vol. 5. — P. 48–51.

36 Optical lift from dielectric semicylinders / S. H. Simpson [et al.] // Opt. Lett.
— 2012. — Vol. 37, no. 19. — P. 4038–4040.

37 Prospects and physical mechanisms for photonic space propulsion / I.
Levchenko [et al.] // Nat. Photonics. — 2018. — Vol. 12. — P. 649–657.

38 Bohren C. F., Huffman D. R. Absorption and Scattering of Light by Small
Particles. — 1998.

43



39 Multipole interplay controls optical forces and ultra-directional scatter-
ing / A. Kiselev [et al.] // Opt. Express. — 2020. — Vol. 28, no. 19. —
P. 27547–27560.

40 Tailoring Optical Gradient Force and Optical Scattering and Absorption
Force / J. Du [et al.] // Sci. Rep. — 2017. — Vol. 7, no. 18042. — P. 1–7.

41 Kerker M., Wang D.-S., Giles C. L. Electromagnetic scattering by magnetic
spheres // JOSA. — 1983. — Vol. 73, no. 6. — P. 765–767.

42 Wei L., Rodrguez-Fortuo F. J. Far-field and near-field directionality in acous-
tic scattering // New J. Phys. — 2020. — Vol. 22, no. 8. — P. 083016.

43 Achouri K., Kiselev A., Martin O. J. F. Multipolar origin of electromagnetic
transverse force resulting from two-wave interference // Phys. Rev. B. —
2020. — Vol. 102, no. 8. — P. 085107.

44 Gladyshev S., Frizyuk K., Bogdanov A. Symmetry analysis and multipole
classification of eigenmodes in electromagnetic resonators for engineering
their optical properties // Phys. Rev. B. — 2020. — Vol. 102, no. 7. —
P. 075103.

45 Optical pulling forces and their applications / H. Li [et al.] // Adv. Opt. Pho-
tonics. — 2020. — Vol. 12, no. 2. — P. 288–366.

46 Chirality sorting using two-wave-interference–induced lateral optical force /
H. Chen [et al.] // Phys. Rev. A. — 2016. — Vol. 93, no. 5. — P. 053833.

47 Lateral forces on circularly polarizable particles near a surface / F. J.
Rodrguez-Fortuo [et al.] // Nat. Commun. — 2015. — Vol. 6, no. 8799. —
P. 1–8.

48 Dynamic consequences of optical spin–orbit interaction / S. Sukhov [et al.]
// Nat. Photonics. — 2015. — Vol. 9. — P. 809–812.

49 Transverse spin forces and non-equilibrium particle dynamics in a circularly
polarized vacuum optical trap / V. Svak [et al.] // Nat. Commun. — 2018.
— Vol. 9, no. 5453. — P. 1–8.

50 Transverse optical forces for manipulating nanoparticles / A. A. Zharov [et
al.] // Phys. Rev. A. — 2016. — Vol. 94, no. 6. — P. 063845.

44



51 Acoustic resonators: Symmetry classification and multipolar content of the
eigenmodes / M. Tsimokha [et al.] // Phys. Rev. B. — 2022. — Vol. 105, no.
16. — P. 165311.

52 Three-dimensional broadband tunable terahertz metamaterials / K. Fan [et al.]
// Phys. Rev. B. — 2013. — Vol. 87, no. 16. — P. 161104.

53 Multipolar theory of bianisotropic response / M. Poleva [et al.] // arXiv. —
2022. — eprint: 2205.01082.

54 Bianisotropic Photonic Metamaterials / C. É. Kriegler [et al.] // IEEE J. Sel.
Top. Quantum Electron. — 2009. — Vol. 16, no. 2. — P. 367–375.

55 Sieck C. F., Al A., Haberman M. R. Origins of Willis coupling and acoustic
bianisotropy in acoustic metamaterials through source-driven homogeniza-
tion // Phys. Rev. B. — 2017. — Vol. 96, no. 10. — P. 104303.

56 Acoustic meta-atom with experimentally verified maximumWillis coupling /
A. Melnikov [et al.] // Nat. Commun.— 2019.—Vol. 10, no. 3148.— P. 1–7.

57 Maximum Willis Coupling in Acoustic Scatterers / L. Quan [et al.] // Phys.
Rev. Lett. — 2018. — Vol. 120, no. 25. — P. 254301.

58 Sepehrirahnama S., Oberst S. Acoustic Radiation Force and Torque Acting
on Asymmetric Objects in Acoustic Bessel Beam of Zeroth Order Within
Rayleigh Scattering Limit // Front. Phys. — 2022.

59 Marston P. L.,Wei W., Thiessen D. B. Acoustic Radiation Force On Elliptical
Cylinders And Spheroidal Objects In Low Frequency Standing Waves // AIP
Conf. Proc. — 2006. — Vol. 838, no. 1. — P. 495–499.

60 Silva G. T., Drinkwater B. W. Acoustic radiation force exerted on a small
spheroidal rigid particle by a beam of arbitrary wavefront: Examples of trav-
eling and standing plane waves // J. Acoust. Soc. Am. — 2018. — Vol. 144,
no. 5. — EL453.

61 Nonlinear Interaction of Acoustic Waves with a Spheroidal Particle: Radia-
tion Force and Torque Effects / E. B. Lima [et al.] // Phys. Rev. Appl.— 2020.
— Vol. 13, no. 6. — P. 064048.

62 Leo-Neto J. P., Lopes J. H., Silva G. T. Acoustic radiation torque exerted on
a subwavelength spheroidal particle by a traveling and standing plane wave
// J. Acoust. Soc. Am. — 2020. — Vol. 147, no. 4. — P. 2177.

45

2205.01082


63 Acoustic spin transfer to a subwavelength spheroidal particle / J. H. Lopes
[et al.] // Phys. Rev. E. — 2020. — Vol. 101, no. 4. — P. 043102.

64 Acoustic radiation force on a compressible spheroid / T. S. Jerome [et al.] // J.
Acoust. Soc. Am. — 2020. — Vol. 148, no. 4. — P. 2403.

65 Acoustic radiation torque on a compressible spheroid / T. S. Jerome [et al.]
// J. Acoust. Soc. Am. — 2021. — Vol. 149, no. 3. — P. 2081.

66 Isakovich M. A. General Acoustics. — 1973.

67 Bruus H. Acoustofluidics 1: Governing equations in microfluidics // Lab on
a Chip. — 2011. — Vol. 11, issue 22. — P. 3742–3751. — ISSN 14730189.

68 Bruus H. Acoustofluidics 2: Perturbation theory and ultrasound resonance
modes // Lab on a Chip. — 2012. — Vol. 12, issue 1. — P. 20–28. — ISSN
14730189.

69 Bruus H. Acoustofluidics 7: The acoustic radiation force on small particles
// Lab on a Chip. — 2012. — Vol. 12, issue 6. — P. 1014–1021. — ISSN
14730189.

70 Optical forces on small magnetodielectric particles / M. Nieto-Vesperinas [et
al.] // Opt. Express. — 2010. — Vol. 18, no. 11. — P. 11428–11443.

71 Blackstock D. T. Fundamentals of Physical Acoustics.—Hoboken, NJ, USA,
2000.

72 Acoustic Radiation Force and Torque on Small Particles as Measures of the
Canonical Momentum and Spin Densities / I. D. Toftul [et al.] // Phys. Rev.
Lett. — 2019. — Vol. 123, no. 18. — P. 183901.

73 Su X.,Norris A. N.Retrieval method for the bianisotropic polarizability tensor
of Willis acoustic scatterers // Phys. Rev. B. — 2018. — Vol. 98, no. 17. —
P. 174305.

74 A Short Survey on Green’s Function for Acoustic Problems / A. R. Okoyenta
[et al.] // J. Theor. Comp. Acout. — 2020. — Vol. 28, no. 02. — P. 1950025.

75 Chaumet P. C., Rahmani A. Electromagnetic force and torque on magnetic
and negative-index scatterers // Opt. Express. — 2009. — Vol. 17, no. 4. —
P. 2224–2234.

46



76 Tailoring Optical Gradient Force and Optical Scattering and Absorption
Force / J. Du [et al.] // Sci. Rep. — 2017. — Vol. 7, no. 18042. — P. 1–7.

77 Bliokh K. Y., Nori F. Spin and orbital angular momenta of acoustic beams
// Phys. Rev. B. — 2019. — Vol. 99, no. 17. — P. 174310.

78 George Schatz K. Kelly Eduardo Coronado L. L. Z. and. The Optical Prop-
erties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric
Environment. — 2003.

79 Moroz A. Depolarization field of spheroidal particles // J. Opt. Soc. Am. B,
JOSAB. — 2009. — Vol. 26, no. 3. — P. 517–527.

80 Senior T. B. A. Low-frequency scattering // J. Acoust. Soc. Am. — 1975. —
Vol. 53, no. 3. — P. 742.

81 Wokaun A., Gordon J. P., Liao P. F. Radiation Damping in Surface-Enhanced
Raman Scattering // Phys. Rev. Lett. — 1982. — Vol. 48, no. 14. —
P. 957–960.

82 Williams E. G. Fourier Acoustics. — 1999.

83 Ru E. C. L., Somerville W. R., Auguié B. Radiative correction in approximate
treatments of electromagnetic scattering by point and body scatterers // Phys-
ical Review A - Atomic, Molecular, and Optical Physics. — 2013.—Vol. 87,
issue 1. — P. 1–12. — ISSN 10502947.

84 The Acoustics Module User’s Guide. COMSOLMultiphysics v5.6. — 2020.

85 Baresch D., Thomas J.-L., Marchiano R. Three-dimensional acoustic radia-
tion force on an arbitrarily located elastic sphere // J. Acoust. Soc. Am. —
2013. — Vol. 133, no. 1. — P. 25.

86 Sapozhnikov O. A., Bailey M. R.Radiation force of an arbitrary acoustic beam
on an elastic sphere in a fluid // J. Acoust. Soc. Am. — 2013. — Vol. 133,
no. 2. — P. 661.

87 Directional Optical Sorting of Silicon Nanoparticles / D. A. Shilkin [et al.]
// ACS Photonics. — 2017. — Vol. 4, no. 9. — P. 2312–2319.

88 Acoustic Pulling with a Single Incident Plane Wave / Y. Meng [et al.] // Phys.
Rev. Appl. — 2020. — Vol. 14, no. 1. — P. 014089.

47



89 Zhang L., Marston P. L. Acoustic radiation force expressed using complex
phase shifts and momentum-transfer cross sections // J. Acoust. Soc. Am. —
2016. — Vol. 140, no. 2. — EL178.

90 Xu S., Qiu C., Liu Z. Transversally stable acoustic pulling force produced by
two crossed plane waves // Europhys. Lett. — 2012. — Vol. 99, no. 4. —
P. 44003.

91 Acoustic Tractor Beam / C. E. M. Dmor [et al.] // Phys. Rev. Lett. — 2014.
— Vol. 112, no. 17. — P. 174302.

92 Ma G., Sheng P. Acoustic metamaterials: From local resonances to broad
horizons // Sci. Adv. — 2016. — Vol. 2, no. 2. — e1501595.

93 Li J., Chan C. T. Double-negative acoustic metamaterial // Phys. Rev. E. —
2004. — Vol. 70, no. 5. — P. 055602.

94 Efficient finite element modeling of radiation forces on elastic particles of
arbitrary size and geometry / P. Glynne-Jones [et al.] // J. Acoust. Soc. Am.
— 2013. — Vol. 133, no. 4. — P. 1885.

95 A numerical study of microparticle acoustophoresis driven by acoustic radi-
ation forces and streaming-induced drag forces / P. B. Muller [et al.] // Lab
Chip. — 2012. — Vol. 12, no. 22. — P. 4617–4627.

48



APPENDIX A. NUMERICAL INVESTIGATION OF ELLIPSOID
SCATTERING: RADIATION PATTERN AND SCATTERING CROSS

SECTION
This section describes the details of numerical calculations carried out in a

3D numerical model for the last chapter of this thesis.
In this work we utilized the Linear Acoustics module in the frequency do-

main, which can be used to solve scattering problems for time-harmonic fields.
This package includes the linearization of Euler equations described in the first
chapter, allowing us to calculate the scattered first-order perturbation fields. Then
these fields can be integrated over some surface encompassing the particle to ob-
tain forces or torques, and scattering cross section with multipole expansion [94,
95].

The geometry of 3D model is outlined in Figure A.1.

Figure A.1 – Geometry of the 3D model. (a) - Outline of basic elements of a 3D
numerical model. The particle, illuminated with a monochromatic wave, is

submerged in host media, which contains integration layer to calculate integral
values. All of the geometry is encased with the absorptive perfectly matched

layer (PML) to simulate the properties of free field propagation. (b) Example of a
model. PML and host media are marked with green and blue respectively.

The 3D model was mostly used to calculate radiation patterns and to obtain
multipole decomposition of the scattered field. Multipole decomposition in our
model can be calculated both in own reference system of the ellipsoid and in the
lab frame.

The multipole coefficients Amn in the decomposition (Eq. (11)):
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psc(r, ϕ, θ) =
∞∑

n=−∞

− l∑
m=l

AmnRn(kr)Y
m
n (ϕ, θ),

can be retrieved using integration over sphere in the following way:

Amn =
1

p0

1

h2
n(kRint)

1

R2
int

∫
∂S

dS ps(r, θ, ϕ)Y
m∗
n (θ, ϕ). (75)

which is possible due to orthogonality of spherical harmonics on a spherical sur-
face. Note that Hankel function of the second kind h(2)

n is used because COMSOL
Multiphysics employs the e+iωt convention for time-harmonic fields [84].

The scattering cross section was also calculated in 3D first by retrieving
scattered energy, and dividing it by incident acoustic intensity:

σsc =
Wsc

Iinc
=

1

Iinc

∫
∂S

dS
1

2
Re [(n · vs)p∗s] , (76)

where Iinc = 1
2Re [p

∗
i vi] = 1

2p
2
0
k
ωρ . The forces and torques were calculated by

integration of the explicit definition of acoustic stress tensor in Eq.7, 8.
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APPENDIX B. NUMERICAL CALCULATION OF FORCES AND
TORQUES ON 2D AXISYMMETRIC OBJECTS

COMSOLMultiphysics is supplied with the possibility to solve 3D acoustic
scattering problems for axisymmetric objects as a series of 2D scattering problems,
which significantly reduces the computational complexity of the solved problem.
The geometry of our model is shown in Figure B.1

Figure B.1 – The geometry of 2D axisymmetric problem. The fields are
calculated in a 2D model, and then can be revolved around the symmetry. The

rotation of ellipsoid here is imitated with oblique incidence of field.

This is done with the help Jacobi-Anger expansion of incident and scattered
fields into azimuthal modes:

(p, v) =
∑
m

(pm, vm)eimφ. (77)

The model naturally uses cylindrical coordinates. If calculating z-component of
force is fairly straightforward, the expressions for transverse force and torque re-
quires derivation.

The general expression for force, from the main text:

⟨Fi⟩ =
∫
∂S

dS

([
1

2
β0⟨p2⟩ −

1

2
ρ0⟨v2⟩

]
δji + ρ0⟨vivj⟩

)
nj (78)
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This expression is correct regardless of coordinate system. The fields in this
axisymmetric model are expressed in cylindrical coordinates, but we want to find
forces in the cartesian system. In order to do this, we can employ the rotation
matrices to connect tensor expressed in the cylindrical fields to cartesian system
forces. Let us designate Π̂ij = πijei ⊗ ej , where ei, ej are cartesian unit vectors,
and Παβ = παβeα ⊗ eβ, where eα, eβ - are cylindrical wave vectors. Now if we
introduce rotation matrix:

ni = R̂iα · nα, (79)

here and further the (·) symbol designates matrix multiplication, and Einstein in-
dices are used to illustrate the coordinate system of vector space only.

We can rewrite the expression for force in the following way:

F = −
∫
∂S

⟨Π̂ij⟩njdS = −
∫
S

R̂iα · ⟨Π̂αβ⟩ · R̂βj · R̂jβnβdS = −
∫
S

⟨Π̂iβ⟩ · nβdS,
(80)

where ⟨Π̂iβ⟩ = R̂iα · ⟨Π̂αβ⟩
This rotation matrix is written as:

R̂iα =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 (81)

Then let us designate the elements of Π̂αβ tensor asW = 1
2β0⟨p

2⟩− 1
2ρ0⟨v

2⟩,
and vαβ = ⟨vαvβ⟩ and omitting the constants:

Π̂T
xβ =

 W cosφ+ vrr cosϕ− vφr sinφ
−W sinφ+ vrφ cosφ− vφφ sinφ

vrz cosφ− vφz sinφ

 (82)

Π̂T
yβ =

W sinφ+ vφr cosφ+ vrr sinφ
W cosφ+ vφφ cosφ+ vrφ sinφ

vφz cosφ+ vrz sinφ

 (83)

Π̂T
zβ =

 vzr

vzφ

W + vzz

 (84)
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Now if we integrate over φ, we can turn the surface integral of (80) into a line
integral which is exactly what we can calculate in COMSOL. All the integrable
terms in (82, 83, 84) can be divided into the following types:∫ 2π

0

vivj cosφ dφ =
1

2
Re

∫ 2π

0

∑
mm′

vmi e
imφv∗m

′

j e−im′φ(
eiφ + e−iφ)

2
=

=
π

2
Re

[∑
m

vmi v
∗m+1
j +

∑
m

vm+1
i v∗mj

]
, (85)

∫ 2π

0

vivj sinφ dφ =
2π

4
Re

[
−i

∑
m

vmi v
∗m+1
j + i

∑
m

vm+1
i v∗mj

]
=

=
π

2
Im

[∑
m

vmi v
∗m+1
j −

∑
m

vm+1
i v∗mj

]
, (86)

∫ 2π

0

vivj dφ = π Re

[∑
m

vmi v
∗m
j

]
, (87)

Where the orthogonality of harmonics was used.
The normal vector to a circle in cylindrical coordinates is

n = (r/
√
r2 + z2, 0, z/

√
r2 + z2). The force components can then be writ-

ten as line integrals over dl = drdz, where the m,m + 1 harmonics are
mixed:

Fx = −2π

∮
rdl

∑
m

0.25nr Re
[
βpmp∗m+1 − ρ(vm · v∗m+1) + 2ρvmr v

∗m+1
r

]
+

+ 0.25nr Im
[
ρvmr v

∗ m+1
φ − vm+1

r v∗ m
φ

]
+ 0.25nz Re

[
ρvmr v

∗ m+1
z + vm+1

r v∗ m
z

]
+

+ 0.25nz Im
[
ρvmφ v

∗ m+1
z − vm+1

φ v∗ m
z

]
, (88)

Fy = −2π

∮
rdl

∑
m

0.25nr Im
[
βpmp∗m+1 − ρ(vm · v∗m+1) + 2ρvmr v

∗m+1
r

]
+

+ 0.25nr Re
[
ρvmr v

∗ m+1
φ − vm+1

r v∗ m
φ

]
+ 0.25nz Im

[
ρvmr v

∗ m+1
z + vm+1

r v∗ m
z

]
+

+ 0.25nz Re
[
ρvmφ v

∗ m+1
z − vm+1

φ v∗ m
z

]
, (89)
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Fz = −2π

∮
rdl

∑
m

0.25nz Re [βpmp∗ m − ρ(vm · v∗ m)] + 0.5nr Re [ρvmr v
∗ m
z ] +

+ 0.5nz Re [ρvmz v
∗ m
z ] . (90)

Torques can obtained in the analogousway, through already calculated components
of ⟨Π̂⟩ using the Eq.(8).

These forces and torques can then be calculated by solving the scattering
problem for sufficient number of harmonics, and integrating the obtained fields
over some line encompassing the ellipsoid, as demonstrated in Figure B.1.

To obtain the same accuracy as the 3D solution, the resulting calculation in
this geometry is at least a magnitude faster.
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APPENDIX C. COMPARISON TO THE OTHER SOURCES
In the work by E. Lima [24] a semi-numerical approach to calculate acoustic

radiation forces and torques on arbitrary axisymmetric particles was developed.
We use this work for comparison with our theoretical findings, therefore it was
required to develop a link between our formalism and the formalism used in this
work.

The geometry considered in the article is shown in the Figure C.1:

Figure C.1 – Geometry of the considered problem. An axisymmetric object has
arbitrary orientation with respect to the fixed axis, its rotation being described by

two euler angles: α, δ. Red axis represent own own coordinate system of
axisymmetric particle. The inset describes the rotations required to make

transformation from particle to lab frame. The figure is reprinted from Ref. [24].

It is reduced to our problem when angle α = 0. Angle β in Figure C.1 is
equivalent to angle δ used throughout our work, if x → z, z → x, αs,l → αl,s.

In the article, scattered field is expanded in spherical harmonics using scat-
tering and incident beam-shape coefficients (snm and anm respectively):

psc =p0[a00s00Y
0
0 (θp, φp)h0(krp) + h1(krp)[a1,−1s1,−1Y

−1
1 (θp, φp)+ (91)

+ a10s10Y
0
1 (θp, φp) + a11s11Y

1
1 (θp, φp)]h1(krp)].

where a00, a1,−1, a10, a11 - are the beam shape coefficients of the incident field, and
s00, s1,−1, s10, s11 are the scattering coefficients of the particle. All the values are
calculated in own frame of reference of axisymmetric object, with ẑ-axis aligned
with the axis of symmetry.
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The angular distribution of the (n,m) mode in the scattered field can be
introduced as:

pnm(θp, φp) =
psc(kR, θp, φp)

p0anmhn(kR)
. (92)

Then the scattering coefficients can be found by integrating over the full
angle:

snm =

∫ 2π

0

dφp

∫ π

9

dθp sin θppnm(θp, ϕp)Y
m∗
m (θp, φp). (93)

The article was aimed at finding the expression for force through these sct-
tering coefficients, which can be found numerically and then used for the analytical
calculations. The expressions for force components for ẑ-incident plane wave is
written in the article as:

F =F0
4π

k2A
cosα sin 2β Re [3(s10 − s11) + 2s00(s

∗
10 − s∗11)] ex+

+F0
4π

k2A
sinα sin 2β Re [3(s10 − s11) + 2s00(s

∗
10 − s∗11)] ey+ (94)

+8π Re
[
3(s10 cos2 β + s11 sin2 β) + s00(1 + 2s∗10 cos

2 β + 2s∗11 sin
2 β)

]
ez,

where F0 = 0.25Aβhp
2
0, A being cross-section area of the spheroid. In order to

find the connection between the scattering coefficients and polarizabilities in our
work, we express scattered field:

psc =
−ρhck

2

4π
[Mh0(k rp) + |D| cos(θp)kh1(k rp)] , (95)

M = −iωβhαmp0, D = αdv0, (96)

and integrate this expression over the full angle in Eq. 93 in two geometries:

Figure C.2 – The geometry of the scattering problem (a) - to connect αl and (b) -
to connect αs with scattering coefficients
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The resulting obtained connection is found as:

αm = −4πi

k3
s00, αl = −12πi

k3
s10, αs = −12πi

k3
s11. (97)

And the resulting expression for longitudinal force from Eq.94 through po-
larizabilities applied to the geometric problem outlined in the main body of our
text (e.g in Figure 8):

FLima∥ =
1

2
k βh p

2
0[Im(αm) + sin2 β Im(αl) + cos2 β Im(αs)−

− k3

6π
Re

[
α∗
m(sin

2 β αl + cos2 β αs)
]
], (98)

the result which completely matches the Equations 46, 47 from the main text. The
transverse force is, however:

FLima⊥ =
1

2
kβhp

2
0 sin2β [Im(αl − αs)−

k3

12π
Re (α∗

m(αs − αl))]. (99)

The Eq. 99 involves an additional term comparing to our Eq. 47 from the
main text. It is probably the origin of divergence of Lima’s approach to our theo-
retical results and numerical calculations as shown in Figure 13.
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